
HAL Id: hal-01179466
https://hal.univ-brest.fr/hal-01179466v1

Submitted on 14 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Meta Model Supporting both Hardware and
Smalltalk-based Execution of FPGA Circuits

Xuan Sang Le, Loic Lagadec, Luc Fabresse, Jannik Laval, Noury Bouraqadi

To cite this version:
Xuan Sang Le, Loic Lagadec, Luc Fabresse, Jannik Laval, Noury Bouraqadi. A Meta Model Supporting
both Hardware and Smalltalk-based Execution of FPGA Circuits. IWST 2015, ESUG, Jul 2015,
Bressia, Italy. �10.1145/2811237.2811296�. �hal-01179466�

https://hal.univ-brest.fr/hal-01179466v1
https://hal.archives-ouvertes.fr

HAL Id: hal-01179466
https://hal.univ-brest.fr/hal-01179466

Submitted on 14 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Meta Model Supporting both Hardware and
Smalltalk-based Execution of FPGA Circuits

Xuan Sang Le, Loic Lagadec, Luc Fabresse, Jannik Laval, Noury Bouraqadi

To cite this version:
Xuan Sang Le, Loic Lagadec, Luc Fabresse, Jannik Laval, Noury Bouraqadi. A Meta Model Supporting
both Hardware and Smalltalk-based Execution of FPGA Circuits. IWST 2015, ESUG, Jul 2015,
Bressia, Italy. �10.1145/nnnnnnn.nnnnnnn�. �hal-01179466�

https://hal.univ-brest.fr/hal-01179466
https://hal.archives-ouvertes.fr

A META MODEL SUPPORTING BOTH HARDWARE AND
SMALLTALK-BASED EXECUTION OF FPGA CIRCUITS

LE Xuan Sang
Lab-STICC, ENSTA Bretagne/
Institut Mines-Telecom, Mines

Douai
xsang.le@gmail.com

Loïc Lagadec
Lab-STICC, ENSTA Bretagne
loic.lagadec@ensta-bretagne.fr

Luc Fabresse Jannik Laval
Noury Bouraqadi

Institut Mines-Telecom, Mines
Douai

luc.fabresse@mines-douai.fr/
jannik.laval@gmail.com/
bouraqadi@gmail.com

Abstract
High level synthesis (HLS) refers to an automated pro-
cess that creates a digital hardware from an algorithmic
description of some computation. From the perspective of
Smalltalk, this process consists of converting code from the
oriented object level to the register transfer level (RTL),
that supports direct compilation to the hardware level.
In this paper, we present first s teps t o a chieve t his pro-
cess. We introduce a Smalltalk-based meta-model that
allows expressing descriptions (i.e. models) of digital cir-
cuits. These descriptions can be materialized as Smalltalk
code. A such circuit description can be run on top of the
Smalltalk VM, simulating the parallelism intrinsic of hard-
ware. Alternatively, it can be compiled into a binary repre-
sentation directly transferable to FPGA chips, which can
run and exchange data with Smalltalk objects.

Keywords Smalltalk, Pharo, FPGA, VHDL, Meta-model,
Dynamic.

1. INTRODUCTION
For the past three decades, high level synthesis (HLS) has
represented an effort from the research community to pro-
vide "algorithm to gates" capabilities. Its ambition is to
bring the advantage of modern software techniques into
the hardware design world and therefore let designers ef-
ficiently b uild a nd v erify h ardware, w hich i s traditionally
a long and tedious process. Synthesis begins with a high-

level specification of a problem, where the algorithm is de-
scribed using a high-level language (Smalltalk in our case).
The code is then analysed, architecturally constrained and
scheduled to create a register transfer level (RTL) repre-
sentation that can be implemented on the actual hardware.
The HLS process consists of activities [1, 2] listed below:

• Source code analysis: from here the code is analysed
lexically, the algorithm is optimised and the control/-
data flow graph (CDFG) of the algorithm is built.

• Resource allocation: this step determines all data ele-
ments and operations on the CDFG. Thus we can esti-
mate resources needed (memory, hardware block, etc.)
on the FPGA.

• Scheduling : the time slot (latency in term of clocks)
is assigned to each operation on the CDFG. Since
the algorithms are often sequential, the scheduling is
needed for synchronising between operations.

• Resource binding : operations and data elements on
the CDFG are assigned to specific operations (adder,
multiplier, etc.) and memory elements (registers, etc.)
on the FPGA.

• Low level representation of the algorithm : transforma-
tion of the algorithm to a RTL representation that can
be synthesized to the gate level by the use of a logic
synthesis tool.

Most of today’s HLS tools rely on strongly typed lan-
guages like C/C++ [3–5], Mathlab and Java which can
simplify the resource allocation step. However, the static
nature of these languages makes them more challenging
for debugging generated circuits. For each minor change in
source-code, a complete offline recompilation of the whole
project is required. Furthermore, the generated low-level
representation of the algorithm is often static and there-
fore, difficult to interact with for verification. Our approach
uses the dynamic language Smalltalk instead to build the

HLS chain. Thereby, we can benefit from Smalltalk’s dy-
namicity to syntactically analyse the code, its architectural
constraints and directly generate the model of the circuit.

The meta-model that we present in this article is our
first step toward a HLS chain using Smalltalk. In traditional
HLS tools, the circuit can be described using a Hardware
description language (HDL) or a static meta-model [3, 6–
8] which acts as an intermediate format that can be
verified using an external simulator. Since these meta-
models are invariant, we cannot dynamically interact with
them (insert debug signal, probe signal, etc.). There is also
another Smalltalk-based meta-model [9]. This meta-model
is an object oriented description of the FPGA circuit and
can be simulated using an internal simulator or executed
on hardware. However, it allows defining only specifications
that are not executable.

Our approach is different, our meta-model allows build-
ing directly executable models in which the circuit is
treated as a Smalltalk object whose internal states can
be changed (input, output, signal value, etc..) and can be
inspected. The outside world can manipulate it as a nor-
mal object. The meta-model describes not only the circuit
structure but also its behaviour. By using the meta-model,
the circuit can be transparently verified with or without
hardware. Finally, to support synthesis on the actual hard-
ware, our meta-model is capable of exporting circuit de-
scriptions to VHDL descriptions for low level synthesis.

In this paper, we first introduce a simple example that
presents our motivation for the meta-model as well as the
challenges of modelling digital circuits (2). Section 3 de-
scribes architecturally our meta-model and section 4 shows
how a FPGA circuit can be simulated in Smalltalk. We
then describe how the circuit-model can be transparently
executed and debugged on the hardware in section 5. In
the last section of the paper (6), we discuss some limita-
tion of the meta-model and depict some future works.

2. PROBLEMS THROUGH AN
EXAMPLE

Consider the simple example of an Arithmetic Logic Unit
(ALU) as shown in figure 1. This ALU (at the top right of
the figure) has a very simple architecture and functionality:
it has two data inputs (A,B) that represent two operands
and one data output (R) which is the result of an opera-
tion. The ALU supports two basic operators (+ and AND)
which can be chosen via the opcode signal (’0’/’1’ for
+/AND respectively). Each operation is performed during
one single clock cycle (clk). Assume that we can model
this circuit with a class named SimpleALU, and use it as
shown in the figure’s top left code.There are two cases of
execution, depending on the execution context, as shown
in the bottom of the figure. If the hardware is available, and
the circuit is deployed or ready to be deployed, the circuit-
model is performed on hardware by sending out inputs and

getting back outputs as the circuit finishes its calculation.
Otherwise, the model is executed by modelling the circuit
in Smalltalk environment. For the last case, the model
(SimpleALU) must be able to capture both the structure
and the behaviour of the circuit.

Problem no. 1
The first problem when dealing with this modelling ap-
proach is to make the circuit acts as a normal Smalltalk
object. Apart from the specification of the circuit, the
model must be able to maintain the state of the circuit
over time. This allows the outside world to interact with
the circuit by assigning value to its inputs or reading it
outputs. As shown in the example code on figure 1, the
state of the ALU is represented by the values of A, B, R
and opcode. These values must be accessed as in a nor-
mal Smalltalk object, regardless of whether the circuit is
on hardware mode or it is simulated.

1 alu := SimpleALU new.
2 alu A:20.
3 alu B:15.
4 alu opcode:false. "add"
5 alu execute.
6 alu R asInteger "35"

ALU

A

B

R

opcode

clk

Execute
on FPGA

FPGA available ?

Outputs

No Yes

3

2

1

The circuit available on FPGA?

Circuit is synthesised?

Download
binary on

FPGA

Yes

Yes

No

No
Simulated
execution
 on VM

Figure 1: In the code (top left), the class SimpleALU
models structurally and behaviourally the FPGA circuit of
the ALU (top right). The schema on bottom shows how
the circuit can be performed with or without the hardware.

Problem no. 2
The second problem relates to the execution nature of the
FPGA circuit when simulated using Smalltalk. For a piece
of code in Smalltalk, most VMs perform sequentially, one
byte-code at a time. Since an operation frequently depends
on the result of an earlier operation, the order of execution
cannot be altered at will.

Digital hardware (like FPGA circuits), on the other
hand, is very different. A digital system is constructed from
a number of smaller components by wiring their inputs and
outputs together. When a signal changes, all components
connected to the signal are activated and hence opera-
tions related to these components are triggered accord-
ingly. These operations are performed in parallel1, each
one takes a specific amount of time to complete which
represents its propagation delay. After completion, each
component updates the value of its output ports. In case
of changes, these output signals, in turn, will activate all
components they are connected to, and initiate another
round of operations.

Consider the VHDL implementation of the previous
ALU example in the listing 1. The entity part (lines 6-
12) defines the external interface of the circuit: its name,
its input/output ports, and each port’s data type. The
architecture part (lines 15-31) describes the internal
structure and behaviour of the circuit. From here, we have
4 main parts: each of parts 1 to 3 is defined in a single
line (lines 18-20) while the last one gathers lines 21 to
30. All of them operate in parallel and can be placed in
any order inside the architecture body without changing
the circuit. The first three parts are called combinational
circuits which define their structure and how they are
connected together. The last one is called a process. It
describes the behaviour of the circuit that decide which
operation is performed depending on the value of the
opcode. All the statements inside this process body
are executed sequentially, thus their execution order is
important.

All 4 parts are activated only when their input values
are changed. For example the assignment to the signal
r1 (line 18) is performed whenever the signal A takes a
new value. The process (lines 21-30) is triggered each
time the clk signal changes its state. All assignments to
signals inside its body will only take effect at the end of
the process. All these parts need a propagation delay before
their associated signals’ values become stable.

This description shows the unique characteristics of
digital systems which are hard to be captured by a tra-
ditional programming language like Smalltalk. Therefore,
these characteristics must be taken into account in a such

1 In digital hardware design, the term concurrently is preferred in this
case. Here we use the term parallel to avoid the confusion about the
concurrence concept in Smalltalk world

Smalltalk-based executable meta-model of FPGA circuit
(4).

1 -- libraries declararion
2 library IEEE;
3 use IEEE.STD_LOGIC_1164.ALL;
4 use IEEE.NUMERIC_STD.ALL ;
5 -- Entity declaration
6 entity SimpleALU is
7 port (
8 clk:in std_logic;
9 A,B:in std_logic_vector (31 downto

0);
10 opcode:in std_logic;
11 R:out std_logic_vector (31 downto 0)
12);
13 end SimpleALU;
14 -- Architecture
15 architecture arch of SimpleALU is
16 Signal r1,r2,r3:signed (31 downto 0)

:=(others=>’0’);
17 begin
18 r1 <= signed(A);
19 r2 <= signed(B);
20 R<= std_logic_vector(r3);
21 process(clk)
22 begin
23 if rising_edge(clk) then
24 case opcode is
25 when ’0’ => r3 <=(r1+r2);
26 when ’1’ => r3 <= r1 AND r2

;
27 when others => (others=>’0’);
28 end case;
29 end if;
30 end process;
31 end architecture;

Listing 1: VHDL implementation for the simple ALU
circuit

Problem no. 3
The third problem concerns the execution of the circuit
on hardware. In this case, the circuit-model must take
care of all steps necessary to communicate with the actual
circuit on the FPGA (5) : (1) Automatically generate
hardware and Smalltalk side communication interface. (2)
Transparently encapsulate and deploy the circuit on the
hardware.

Since the meta-model can capture the nature of digital
circuits, it allows debugging circuit-model’s behaviour us-
ing the traditional Smalltalk debug features like: stop the
execution at a given point, process step-by-step or restart
the execution, etc. This is however not obvious when the
circuit model is executed on hardware. In this case, the cir-

cuit acts as a black box that can be accessible only after
execution finishes. Therefore, we are unable to inspect its
intermediate states.

To enable the software-like debug control capabilities
on hardware, the meta-model must generate and inject
some dedicated debug components into the main circuit.
These components allow halting the execution every time
a debug trigger id raised (i.e. unconditional/conditional
break point). The state of the circuit can be accessed
during this phase, then the execution can be resumed at
will. Evidently, the injected debug modules can be easily
removed from the main circuit after the validation.

3. FPGA CIRCUITS MODELLING
To describe FPGA circuits, our meta-model relies strongly
on the well known hardware description language VHDL.
The language comes with many extensions and can be used
for hardware description or simulation purposes. Since our
objective is to model FPGA circuits that can be actually
executed on hardware, the meta-model is based on a subset
of VHDL dedicated for the synthesizable system: the IEEE
1076.66 RTL synthesis standard (VHDL-87)[10]. It can
describe directly or indirectly almost every VHDL struc-
tures in the standard. Such structures are called meta-
descriptions in our meta-model. A meta-description con-
tains structural and behavioural informations about an el-
ement of a circuit (data, operation, control or other sub-
circuit). Thereby, for each individual element, we know
how it is organised, how it connects to other elements and
how it is performed (executed) when activated. In addition,
a meta-description holds also its equivalent VHDL repre-
sentation (#asVHDL message) to facilitate the conversion.
In this way, when all elements are connected together, we
have a full structural and behavioural description of a cir-
cuit. A simplified class diagram of the meta-model can be
found in the appendix of this paper.

3.1 Modelling circuit signals as data objects
The state of a circuit at a particular point in time is
represented by values of its ports and of its internal signals.
The circuit-model, apart from the specification, contains
also the data objects which refer to these signals. A Signal
is an object of a data type that represents either wires,
or output of a combinational logic, or latches or registers.
A Port is a Signal with additional information about its
direction. In our meta model, a Port must be either input,
output or bidirectional (inout).

The meta-model supports two main data types, the
Logic and the LogicVector (in accordance with the
std_logic and std_logic_vector types of the IEEE
standard 1164) because they are supported by most syn-
thesis tools. Each one is defined by a set of values that the
data object (Signal, Port) can assume, and a set of oper-
ations that can be performed on objects of this data type.

Based on these two data types, we can easily model other
data types like signed,unsigned,etc. if needed. In ad-
dition, to ease the interaction with the circuit, the meta-
model also supports the native Smalltalk Integer data
type by providing conversions methods (#asInteger,
#asLogicVector:, etc.).

As mentioned above, in digital circuits, each operation
has a propagation delay, and thus the assignment of oper-
ation’s output to a signal needs also a delay to take effect.
That’s why we model a Signal as an object with a history.
To maintain this time history, a signal holds two infor-
mations: (1) the current value of the signal (before the
operation) and (2) the new value that will take effect af-
ter the propagation delay of the operation. Each time the
signal is updated (i.e. once the propagation delay elapses),
the new value will become current.

1 HDLSketch subclass: #SimpleALU
2 instanceVariableNames: ’r1 r2 r3’
3
4 SimpleALU»setUpPorts
5 self in:{#A.#B}of:(LogicVector size:32

).
6 self in:#opcode of:Logic new.
7 self out:#R of:(LogicVector size:32)
8
9 SimpleALU»setUpSignals

10 r1 := Signal of:(LogicVector size:32
signed:true).

11 r2 := Signal of:(LogicVector size:32
signed:true).

12 r3 := Signal of:(LogicVector size:32
signed:true).

Listing 2: Initialise the state of the circuit

As shown in listing 2, the two methods #setUpPorts
and #setUpSignals define the state of the SimpleALU
circuit. The first method describes the external interface
of the circuit by specifying its input and output ports as
well as the data type of each port. The second method ini-
tialises ALU’s internal signals. The two methods are nor-
mal Smalltalk methods which are used to initialise data ob-
jects for the circuit (modelled by the meta-model), there-
fore they are compiled by the default Smalltalk compiler.

3.2 Circuit architecture modelling
To simplify the circuit specification process, in addition to
the meta-model, we introduce a dedicated domain specific
language (DSL) based on a subset of Smalltalk. This DSL
allows to easily and directly describe the FPGA circuits in
Smalltalk.

Listing 3 shows the implementation of the SimpleALU
circuit using this DSL. The method #execute defines the
architecture of the circuit. As mentioned in section 2, since
we cannot capture the characteristics of digital hardware

using the traditional Smalltalk, the DSL is used instead
in this case. We apply a convention that all methods with
the pragma #hdl: are implemented using the DSL and are
handled by a specific compiler.

1 SimpleALU»execute
2 <hdl:#combinational >
3 r1 <- (self A).
4 r2 <- (self B).
5 self R <- r3.
6 {self clk} onChange:[
7 self done <- false.
8 self clk posedge ifTrue:[
9 self opcode caseOf: {
10 [’0’] -> [r3 <- (r1 + r2)].
11 [’1’] -> [r3 <- (r1 and:r2)].
12 }.
13 self done <- true.
14]].

Listing 3: Implementation of the SimpleALU using our
DSL

Figure 2 shows how the methods with the #hdl:
pragma are compiled. We reimplement the class method
#compile:classified:notifying: so that the class
HDLSketch use a dedicated compiler for the DSL (the
ModelBuilder). When a method is identified as a DSL
method, the compiler will first analyse it and verify whether
the syntax is supported by the DSL. Since the DSL is a
subset of Smalltalk, we can benefit from many features
of the default Smalltalk editor like syntax highlight, er-
ror report system, etc. If the syntax analysis succeeds,
the model of the circuit described by the method is gen-
erated automatically by compiling each DSL statement
to an equivalent meta-description. This model is just the
skeleton of the circuit and doesn’t have any specific data
objects yet. When an instance of the class SimpleALU
is created, its data objects are initialised (via the setup
methods) and are assigned to this skeleton to create a
complete executable model. Note that each DSL method
generates a corresponding circuit-model. This feature has
several benefits: (1) it allows having different implementa-
tions of the same circuit; (2) we can define multiple DSL
methods as sub-circuits and use them in the main method
(the main DSL methods). Although at this point the DSL
code is syntactically correct, sometimes, its semantics are
erroneous which makes the generated model improper.
Therefore, it is worthwhile to make an integral check of
the circuit-model. For instance, the meta-model is able to
detect some common problems: (1) assignment to signals
of different data types, (2) sequential statements outside
of process or using combinational statements inside a pro-
cess, (3) illegal operations on the data type of a signal,
or (4) multi-source driving to a signal. In addition to this

1 HDLSketch class » compile:text
2 classified:aCategory
3 notifying:requestor
4 |ast|
5 ast := self compiler parse: text.
6 (ast hasPragmaNamed: #hdl:) ifTrue:[
7 ModelBuilder for:self
8 ast:ast notificator:requestor.
9 ˆself compiledMethodFor:ast selector.

10].
11 ˆsuper compile:text
12 classified:aCategory
13 notifying:requestor.

Error
report

Syntax analysis

Model generation

Circuit checking

Executable code generation

error Ok

Ok

error

Figure 2: The compilation process of the DSL

verification, in this phase, the meta-model handles also
the automatic signal resizing in the operations of two or
more LogicVector signals of different size.

At the end of the compilation process, the compiler
generates the byte-codes that describes how the DSL code
is executed (with or without hardware) when the method is
called, as shown in listing 4. These byte-codes constitute a
CompiledMethod. From the Smalltalk perspective, there
is no difference between this method and other Smalltalk
methods and thus it can be executed as any Smalltalk
method.

1 HDLSketch class»compiledMethodFor:aMessage
2 |source|
3 source := aMessage,’
4 self perform:#’,aMessage.
5 ˆsuper compile:source classified:self

category notifying:nil.
Listing 4: Generation of a CompiledMethod describing
how the DSL code is executed

When the DSL method is called (e.g. the #execute
method of SimpleALU), il will execute the #perform:
method. This latter allows to automatically decide whether
to perform the circuit in modelling mode or on the real
hardware. The detail of this method can be found in listing
9 of section 5.

Like the traditional Smalltalk compilation process, the
DSL method is compiled on-the-go whenever the DSL

code is changed and saved, and therefore the circuit-model
is updated accordingly.

3.3 Reuse of legacy VHDL code
One common problem when modelling hardware systems
is how we can reuse existing VHDL designs in our model.
Such reuse can enrich the models design while reducing
the production cost by benefiting of an existing rich set
of third-party VHDL code. Our meta-model supports the
reuse of almost every VHDL designs conforming to the
IEEE 1076.66 RTL standard. At the moment of this writ-
ing, the meta-model is able to import a VHDL design
and reconstruct a black-box circuit model of it. That is,
a model with only the external interface (input/output
ports). Its internal architecture is "unknown" and thus we
are unable to simulate it in Smalltalk. However, since it is
a model based on our meta-model, we can easily integrate
it with other circuit-models.

Obviously, a circuit that uses a black-box in our meta-
model cannot be simulated in Smalltalk. However, it paves
the way to co-simulation where the black-box runs on the
real hardware and the rest is simulated by Smalltalk VM.
We plan to extend our solution to support this feature in
a future work.

The hardware execution of black-box models is easier
since the VHDL code already exists and is ready for synthe-
sis. There is no code generation needed. The meta-model
only needs to generate the appropriate communication in-
terface.

4. SMALLTALK-BASED EXECUTION
OF THE FPGA CIRCUIT MODEL

4.1 Execution model: time-driven vs. event-driven
To understand how the simulated execution of FPGA
circuits works in the Smalltalk environment, one must
understand what kind of execution model is used in the
meta-model. For such a model, two kinds of systems need
to be taken in to account, the continuous systems and the
discrete systems [11]. In the first ones, the state of the
system (signals, ports) changes continuously with respect
to time, whereas in the latter ones, the state changes
instantaneously at separate points in times. In reality, there
are few systems that are either completely continuous or
discrete, although often, one type dominates the other.
For example, a synchronous circuit that uses the global
clock can be considered as a continuous system since its
state can be changed at each clock. But at micro-level,
when a part of the circuit is active, all related operations
will be performed and make change on its outputs. This
change, in consequence, will trigger instantaneously other
parts connected to it. This process is repeated until the
state of each part becomes stable. These parts, therefore,
can be considered as discrete systems. The challenge here
is to find an computational model that mimics closely the

behaviour of such time-advance systems. There are, in
fact, two models that can be used in this case: time-driven
and event-driven.

A continuous system can be easily simulated using the
time-driven [9, 11, 12]. With this approach, the simulation
advances time with a fix increment of exactly ∆t time
units which is called simulation clock2. After each clock,
the state of the system is updated for the interval of [t, t+
∆t]. This approach, however, is not very appropriate for
simulating a discrete system. For a such system, the time
step ∆t must be small enough to capture all events. Often,
this time step is extremely small which is unacceptable
as the simulation time involved. Furthermore, there are
obviously empty time steps that cause wasting simulation
time.

An event-driven simulation [9, 11, 13, 14] has a nature
close to a discrete system. The simulation time in this
case advances directly to the next-event time. An event
represents a state change of the system caused by incom-
ing data or internal processes. For the case of a discrete
system, the approach consists of following steps: (1) the
simulation time is initialised and all the occurrence times
of future events are collected in an event-queue. (2) The
simulation time is advanced to the closest next-event time
in the event-queue. (3) The state of the system is updated
by executing the scheduled events. (4) The event-queue is
updated and the second step is repeated. The advantage
of this method is that we can skip the periods of inac-
tivity by advancing directly to the next event time and
therefore, avoiding unnecessary empty cycles. In term of
causality, this is perfectly safe because the state change
of the system only happens at event times. This model of
simulation can be easily applied to a continuous system
since it is based on the occurrence of events and in such
continuous system, each event occurs after a ∆t interval
of time.

This description shows why we use the event-driven
simulation model in our meta-model.

4.2 Event-driven circuit-model execution
simulation

4.2.1 Modelling the propagation execution of
circuit’s parts

As mentioned in section 2, a circuit may contain many
combinational and process parts. A process (e.g. line 21-
30, listing 1) has a sensitivity list consisting of signals (e.g.
clk) that will trigger it as their values are changed. In our
meta-model, all combinational parts are considered as one-
line processes in which the inputs of each part are its sensi-
tivity list. To trigger the processes we use the observer pat-
tern. Each time a signal changes its value, it will announce

2The simulation clock is unrelated to the hardware clock and is used
only by the simulator to keep track of the simulation time as the
simulation proceeds

an event to all processes that have it in their sensitivity
list, and thus active the corresponding processes. Listing 5
shows how these parts are executed when becoming active.

1 HDLSketch » partsExecution:msg
2 [
3 |processes|
4 self signalsUpdate.
5 processes := self getActiveProcesses:

msg.
6 processes do:[:p|p execute].
7 processes notEmpty.
8] whileTrue

Listing 5: Propagation execution of the circuit parts

Remember that each signal is an object with history,
and it only takes the new value after being updated. In
the signals update phase, if there is a value change in
a signal, the #signalsUpdate message will activate all
processes watching this signal. Since these processes are
performed in parallel and the state of the circuit doesn’t
change until the next signals update, their execution order
doesn’t matter. This propagation execution is repeated
until all signals stabilise and there are no active processes.

4.2.2 Circuit-model execution in responding to
incoming data

Based on the #partsExecution, we can model the com-
plete circuit execution in responding to the incoming data.
There are two methods of execution depending on whether
the simulation timing information is important or not.

Execution without timing information:
If we just want to assign input values to the circuit, execute
it and get back its outputs regardless of how much time
it takes to complete the calculation, the execution of the
circuit can be implemented as shown in listing 6.

1 HDLSketch » modellingExecution:msg
2 |processes|
3 [self done] whileFalse:[
4 self clk clock.
5 self partsExecution:msg.
6].
Listing 6: Circuit execution without timing informations

This is how we make the circuit acts like a normal object
in Smalltalk. The inputs are assigned to values at the first
time. By default, the circuits have a done signal indicating
whether the calculation is finished. Execution is performed
continuously at each clock until the done signal is asserted.

The code shown in figure 1 (section 2) is based on
this principle. After the value assignment to A, B and
opcode, the #execute method is called which in turn
executes the #perform:method (listing 9). If the circuit is

in modelling mode, the #modellingExecution: will carry
out the execution task. The output R will be accessible
after this execution finishes.

Execution with precise timing information:
If we want an execution simulation with all timing informa-
tion (like in traditional simulators), the execution, in this
case, is implemented along with a time queue. This latter
contains the next-event times and the signals that will be
assigned to new values in each event, as illustrated in list-
ing 7. We can consider this time-queue as a test-bench in
traditional simulators.

1 HDLSketch » modellingExecution:msg
timeQueue:queue dumpOn:aStream

2 |candidate|
3 [
4 candidate := queue nextTimeEvent.
5 candidate notNil.
6] whileTrue:[
7 self signalsAssignment:(candidate

signals).
8 self partsExecution:msg.
9 self takeSnapshotAt:candidate time

on:aStream
10].

Listing 7: Execution simulation with a time-queue

At each execution step, the simulation time advances
to the closest next-event time, the inputs signals related
to this event are assigned to new values and the propaga-
tion execution is performed. At the end of each event,
the state of the circuit along with the current timing
information is recorded in a Value Change Dump file
(VCD). This process is repeated until the time-queue
is empty. The final VCD file can then be viewed by a
external VCD viewer to inspect the simulation result.

1 alu := SimpleALU new.
2 queue := {
3 #clk clock: 50ns.
4 #A change:{1. 3. 5. 7} every:50ns.
5 #B change:{0. 2. 4. 6} every:50ns.
6 #opcode change:{’0’.’1’} every:100ns.
7 } asTimeQueueFor:400ns.
8 stream := WaveFormStream on:’ALU.vcd’.
9 alu modellingExecution:#execute timeQueue:

queue dumpOn:stream.
Listing 8: Simulating the SimpleALU circuit using the
time queue. The simulation execution is performed for
400 nanoseconds

For example, the listing 8 shows how the SimpleALU
can be simulated with a time queue and figure 3 how the
simulation result can be inspected in a VCD viewer.

Figure 3: Waveform view of the simulation result (listing
8)

Although the meta-model is able to simulate the prop-
agation delay behaviour of the circuit parts, there is no
way to quantitatively measure this delay. Therefore, it is
impossible for the meta-model to detect whether the delay
time is greater than the global clock period. This verifica-
tion is necessary to ensure that the circuit meets all timing
constraints. Such verification need to be performed on the
FPGA vendor’s specific software.

5. HARDWARE-BASED EXECUTION
OF THE FPGA CIRCUIT MODEL

5.1 Low-level synthesis of a circuit-model on
FPGA

To deploy the circuit on FPGA for hardware execution, it
needs to be synthesized first. The model of a circuit can
be easily exported to VHDL for synthesis. The problem
is that each circuit has an arbitrary external interface,
which obstructs transparent Smalltalk interaction during
FPGA execution. We need, therefore, an intermediate and
normalised communication interface between the circuit
and the Smalltalk, as illustrated in the figure 4. This
interface must be capable of: (1) automatically decoding
the data it receives from Smalltalk and assigning values
to corresponding input ports of the circuit; (2) at the end
of execution, encoding the output values of the circuit
into a format that can be understood by Smalltalk. In the
example shown in figure 4, we add an additional interface
circuit (FX2 interface) to the global circuit and connect
it to the SimpleALU. This interface circuit is generated
automatically and directly using our meta model (without
the DSL). The interface’s internal architecture changes
dynamically depending on which circuit it connects to.

After the final circuit is generated, synthesis proceeds
as follows. A FPGA hardware description is produced and
the synthesiser is initialized. This synthesiser is an abstract
representation of the synthesis toolchain provided by the
hardware vendor. From the circuit-model, the VHDL code
of the circuit is exported and passed to this toolchain
(along with the hardware configuration) for low level syn-
thesis. This process, at the end, produces a binary repre-
sentation (bit file) of the circuit which can then be de-

SimpleALU

FX2Interface

RA B

Final circuit

VHDL

0110

Bit file

<<generate>>

Low level
synthesis

opcode

1 HDLSketch class»synthesis
2 |circuit hwconfig synth|
3 circuit := FX2Interface on:self.
4 hwconfig := Nexys2 on:circuit.
5 synth := RemoteSynthesis new.
6 synth config:hwconfig.
7 synth synthesise.

Figure 4: Offline synthesis process to generate the binary
description of the circuit for deployment on the Nexys 2
FPGA board

ployed easily on the FPGA. Since the low-level synthesis
process takes an significant amount of time to complete,
it’s worth to do it offline.

5.2 Hardware-based execution of the circuit-model
For each circuit-model, the meta-model generates auto-
matically a signature which is an unique number that helps
identifying the circuit. Normally, this value has no effect
when simulating the circuit in Smalltalk, it is used only
to detect whether the circuit is already deployed on the
FPGA. In case the circuit is synthesized but isn’t available
on the FPGA, a deployment of the circuit is necessary be-
fore hardware execution. Listing 9 describes how the model
switches between Smalltalk and hardware-based execution.

1 HDLSketch»performs:msg
2 msg = self class mainMsg ifTrue:[
3 self FPGAAvailable ifTrue:[
4 self deployIfNotReady.
5 self availableOnFPGA ifTrue:[
6 ˆself hardwareExecution.
7]]].
8 self modellingExecution:msg.
Listing 9: Execution switching between modelling mode
and hardware mode

The deployed circuit acts as a blackbox whose internal
state cannot be fetched. The model encodes its inputs
(ports) as a Smalltalk ByteArray which is sent to the
circuit via a Foreign Function Interface (FFI). This byte-
array is then decoded by the interface circuit on hardware.

This process allows assigning the correct value to each
input port of the target circuit. When the incoming data
is ready, the target circuit is triggered and the calculation
starts. The interface circuit will wait until the calculation
is finished (i.e. the done signal is asserted) and encode the
output data to a ByteArray that can be easily handled by
the model. Figure 5 shows how the SimpleALU example
can be executed on hardware in this way.

#[<A>,,<opcode>]#[<R>]

SimpleALU

FX2Interface

RA B opcode

1 HDLSketch»hardwareExecution
2 self availableOnFPGA ifTrue:[
3 self signalsUpdate.
4 self sendInputsToFPGA.
5 self triggerCircuit.
6 self getOutput.
7 self signalsUpdate.
8] ifFalse:[
9 self modellingExecution:#execute].

Figure 5: Hardware execution of the SimpleALU circuit

5.3 Controllability and debugging
To enable software-like debug capabilities on hardware-
based execution of the circuit model, the meta-model
provides a mechanism to halt the execution flow by cutting
out the clock supplied to the circuit. That is, instead
of feeding the circuit with the global clock, the meta-
model generates a clock controller which gets the global
clock as input and issues a controllable clock signal to the
circuit. This controller can disable the output clock when
a control signal is triggered (i.e. a breakpoint is set or met
its condition). When the clock is cut out, the execution
of the circuit is stopped as a result and its current state
is maintained. This state can easily be read back to the
Smalltalk environment and mapped to the circuit-model
via the communication interface.

To demonstrate these debug features, we consider a
hardware implementation example of the famous 3n + 1
problem also know as the Collatz conjecture, given any
integer number n > 0:

F (n) =
{

n/2 if n is even
3n+1 if n is odd

Collatz conjecture states that, for any number n, repeat-
edly applying this procedure will eventually give us the

number 1. Theoretically it could happen that this is not
the case. So far, no such number has been found, but it
has not been proven otherwise.

Assume the class CollatzConjecture implements a
circuit model of this problem. The circuit takes an integer
(i.e. n) as input and repeatedly recalculates the value
of n at each clock. The execution is done when the
output value is 1, otherwise, it is repeated indefinitely. The
implementation details of CollatzConjecture using our
DSL can be found in listing 13 in the appendix (it is not
an efficient implementation though).

Static breakpoints
Setting a static breakpoint on a circuit model is easy by
sending the #halt message to it, as in any Smalltalk code.

CollatzConjecture»execute
<hdl:#combinational >
...

nValue = 2 ifTrue:[
self halt."n=2 halting"

] ifFalse:[
(nValue at:0) ifFalse:[

nValueNext <- (’0’,(nValue
from: 31 downto:1))."n/2"

] ifTrue:["3n+1"
nValueNext <- (((nValue from: 3

0 downto:0),’0’)+nValue+1
).

]].
...

Listing 10: A segment of the CollatzConjecture code
shows how we can set the unconditional breakpoint for
the circuit

For example, say we want to verify whether the value
of n has converged to 2. We can modify the code in the
listing 13 by halting the execution when the value of n is
2 as shown in listing 10.

When the meta-model compiles this code to build the
circuit-model, it will generate automatically a halt signal
that will be activated each time the value of nValue is 2.
This signal is connected to the clock controller as control
signal (figure 6). Therefore, its activation will disable the
circuit clock and stop the execution forever (until reset).

The clock counter measures the execution time of the
circuit in clock cycles. It starts as the circuit enters the
computations and stops when the done signal of the circuit
is asserted. Since the counter uses the same clock as the
circuit, it is also halted when the clock is disabled. In
this way, we can inspect exactly the execution time of the
circuit at the breakpoint.

Because the communication interface (FX2Interface)
uses the global clock, it is not affected by the halt signal
and thus can normally fetch the circuit state and map

FX2Interface

Target
 circuit

In 1

In 2

in n

…

out 1
out 2

out m

…

Inputs outputs

……

Clock
controller

halt

global clock

clk

Smalltalk VM

start done

clock
counter

exec. clocks

Figure 6: The clock clk is disabled each time the halt
signal is asserted. The clock counter counts the total clock
cycles of the execution

back values to the circuit-model on the Smalltalk side.
Listing 11 shows how we can inspect the circuit state at
the breakpoint.

1 obj := CollatzConjecture new.
2 obj input:10.
3 obj execute.
4 Transcript show: obj output asInteger;cr.
5 Transcript show: ’No. step: ’, obj

executionClocks asString.
6 "2
7 No. step: 5"
Listing 11: The modified CollatzConjecture circuit (with
breakpoint) is executed with input=10 and is halted at
value 2 after 5 steps (clocks)

Since the unconditional breakpoint is hardwired in the
model, the circuit needs to be re-synthesized and deployed
to the hardware each time it is changed.

Dynamic breakpoints
Enabling the dynamic conditional breakpoint on the
hardware-based execution is much more challenging, since
the breakpoint is set manually and dynamically at run
time without changing the circuit architecture. To enable
this functionality, each time the circuit is deployed, the
meta-model generates and injects automatically a debug-

specific sub-circuit to the main circuit as shown in figure
7.

FX2Interface

M
U

X

Target
 circuit

In 1

In 2

in n

…

=

=

=

out 1

out 2

out m

…

Inputs outputs

……

…

ref. 1

ref. 2

ref. m
select

Clock
controller break

global clock
resume

clk

Smalltalk VM

Debug sub-circuit

start done

clock
counter

exec. clocks Breakpoint controller

Figure 7: The debug sub-circuit added to the main circuit
allows to dynamically set breakpoint conditions on each
output of the target circuit

The debug sub-circuit connects each output of the tar-
get circuit to a comparator as first operand, the second
operand is set manually by the Breakpoint controller. This
allows to dynamically set a trigger condition to a break-
point. The comparator is asserted when the two operands
are equal. In this way, each output port of the circuit
has a corresponding breakpoint. It is the responsibility of
the Breakpoint controller to decide which breakpoint is
used to stop the execution flow (by issuing the select
signal to the multiplexer MUX). Through this controller
we can manually set conditional breakpoint to the cir-
cuit from Smalltalk environment by sending the mes-
sage #setBreakpointOn:aPort value:aValue to the
circuit-model.

The advantage of this approach is that there’s no need
to modify the circuit architecture and the breakpoint con-
dition can be dynamically changed at will. Furthermore, we
can have multiple conditional breakpoints at a time and
can specify which one will be triggered when its condition
is met.

The specified breakpoint, when asserted, will trigger the
break signal on the clock controller to disable the target
circuit as well as the clock counter. At this point, the state
of the circuit is ready for inspecting.

To resume the halted execution, the Breakpoint con-
troller needs to trigger the resume signal to wake up the
target circuit and the clock counter. The execution flow
can then continue from that point. This resumption can
be triggered from Smalltalk.

Back to the CollatzConjecture example (listing 13),
assume the input value is 10, this time we want to verify

Figure 8: Software-based simulation of the CollatzConjecture circuit with breakpoint condition output = 8. The red zone
shows the execution stopping time when the breakpoint condition was met

if the value of the output is 8 after some calculations
(before it converges to 1). The listing 12 demonstrates
how to stop the execution when output=8.

1 obj := CollatzConjecture new.
2 obj input:10.
3 obj setBreakpointOn:#output value:8.
4 obj enableBreakpointOn:#output.
5 obj execute.
6 Transcript show:’Value:’,obj output

asString; show:’, No. step: ’, obj
executionClocks asString.

7 obj resume.
8 Transcript show:’Value:’,obj output

asString;show:’, No. step: ’, obj
executionClocks asString.

9
10 "Value:8, No. step: 4"
11 "Value:1, No. step: 7"

Listing 12: At line 3, we set the breakpoint condition for
the output port. Line 4 tells the Breakpoint controller
to trigger the break signal when the output meets
its condition. Line 7 continues the execution flow by
triggering the resume signal

As shown in line 10-11, the execution of the circuit is
stopped when the value of output is 8. Reaching this point
takes 4 clock cycles. After resuming, output converges to
1 in 3 more clock cycles or 7 cycles altogether.

Figure 8 shows a software-based simulation result of the
example to visually illustrate how the conditional break-
point works. Obviously, the circuit-model with the con-
ditional breakpoint can be executed directly on the real
hardware.

6. CONCLUSION AND FUTURE WORK
In this paper, we have introduced a meta-model for mod-
elling FPGA circuits using Smalltalk. This meta-model al-

lows to describe and execute digital circuits at the RTL
level. In this work, we focus mainly on an abstract exe-
cution of the circuit-model to make it act as a normal
Smalltalk object. The meta-model captures the nature and
the main characteristics of hardware circuits. We’ve devel-
oped a mechanism that helps run the generated circuit-
model with (simulation mode) or without hardware. More-
over, to make the execution process transparent, a com-
plete and automatic deployment and interface generation
tool-chain is implemented and integrated inside the meta-
model. The ability of setting breakpoint to the hardware-
based execution of the circuit model is another valuable
feature of the meta-model. This enables the software-like
debug control capabilities on hardware debugging, and
therefore facilitate the debug process.

In the short-term, we plan to extend this work in sev-
eral directions to enrich the meta-model: (1) add more de-
scription to support archive elements like library, package
or function call in VHDL. These elements enable efficient
reuse of common hardware functionalities in the design
process.(2) For the hardware-based execution method, the
meta-model can only access the external state (ports) of
the real circuit on hardware. Since the circuit acts as a
blackbox in this case, its internal signals aren’t externally
visible. This can be resolved by adding "probe ports" to
the circuit which connect to the internal signals that we
want to inspect. (3) Support co-simulation of circuits that
use black-box models in our meta-model. (4) Although the
meta-model can convert existing legacy VHDL designs to
black-box circuit models (i.e. only the external interface
is imported), the current meta-model is unable to infer
and entirely reconstruct the internal architecture of these
VHDL designs. This can be overcome by implementing
an additional VHDL parser that fully supports the IEEE
1076.66 RTL standard. With this parser, we can easily
convert the VHDL descriptions to our meta-descriptions.

Based on this meta-model, our long-term plan is to
build a Smalltalk-based HLS chain by rising up the ab-

straction level. Within our team, there is some work [2]
that can be reused for this purpose. The challenge here
is to propose a methodology to convert the Smalltalk dy-
namic code (dynamic type) to a typed data control and
data flow graph (CDFG). Based on this CDFG, we can
build the corresponding circuit using our meta-model.

References
[1] P. Coussy and A. Morawiec, High-Level Synthesis: From

Algorithm to Digital Circuit. Springer, 2008.
[2] M. Ben Hammouda, P. Coussy, and L. Lagadec, “A

design approach to automatically synthesize ANSI-C
assertions during High-Level Synthesis of hardware
accelerators,” 2014 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 165–168, 2014.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6865091

[3] W. Meeus, K. Van Beeck, T. Goedeme, J. Meel,
and D. Stroobandt, “An overview of today’s high-level
synthesis tools,” Design Automation for Embedded
Systems, vol. 16, no. 3, pp. 31–51, Aug. 2012.
[Online]. Available: http://link.springer.com/10.1007/
s10617-012-9096-8

[4] Synopsys, “Functional specification for SystemC 2.0,”
2002.

[5] S. Swan, “An Introduction to System Level Modeling in
SystemC 2 . 0,” Cadence Design Systems, Inc., Tech. Rep.
May, 2001.

[6] S. Vernalde, P. Schaumont, and I. Bolsens, “An object
oriented programming approach for hardware design,”
Proceedings. IEEE Computer Society Workshop on VLSI
’99. System Design: Towards System-on-a-Chip Paradigm,
pp. 68–73. [Online]. Available: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=760478

[7] T. Kuhn and W. Rosenstiel, “Java based object
oriented hardware specification and synthesis,” Pro-
ceedings 2000. Design Automation Conference. (IEEE
Cat. No.00CH37106), pp. 579–581. [Online]. Avail-
able: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=835167

[8] M. Geilen, J. Voeten, P. van der Putten, L. van Bokhoven,
and M. Stevens, “Object-oriented modelling and
specification using SHE,” Computer Languages, vol. 27,
no. 1-3, pp. 19–38, Apr. 2001. [Online]. Available: http://
linkinghub.elsevier.com/retrieve/pii/S0096055101000145

[9] D. Picard and L. Lagadec, “Multi-Level Simulation of
Heterogeneous Reconfigurable Platforms,” ReCoSoC’08,
Barcelona, Spain, 2008.

[10] IEEE, “IEEE Standard for VHDL Register Transfer Level
(RTL) Synthesis,” Tech. Rep. October, 2004.

[11] P. Sloot, “Model Execution: Event driven versus Time
driven.” [Online]. Available: http://artemis.wszib.edu.pl/
~sloot/1_4.html

[12] Wikipedia, “Time-driven programming,” 2014. [Online].
Available: http://en.wikipedia.org/wiki/Time-driven_
programming

[13] M. Samek, “State Machines for Event-Driven Systems,”
2009.

[14] D. C. Schmidt and C. D. Cranor, “Half-sync/half-async
- an architectural pattern for efficient and well-structured
concurrent i/o,” in in Proceedings of the 2 nd Annual Con-
ference on the Pattern Languages of Programs. Addison-
Wesley, 1995, pp. 1–10.

[15] “SystemC.” [Online]. Available: http://systemc.org
[16] Wikipedia, “Collatz conjecture.” [Online]. Available:

http://en.wikipedia.org/wiki/Collatz_conjecture

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6865091
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6865091
http://link.springer.com/10.1007/s10617-012-9096-8
http://link.springer.com/10.1007/s10617-012-9096-8
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=760478
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=760478
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=835167
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=835167
http://linkinghub.elsevier.com/retrieve/pii/S0096055101000145
http://linkinghub.elsevier.com/retrieve/pii/S0096055101000145
http://artemis.wszib.edu.pl/~sloot/1_4.html
http://artemis.wszib.edu.pl/~sloot/1_4.html
http://en.wikipedia.org/wiki/Time-driven_programming
http://en.wikipedia.org/wiki/Time-driven_programming
http://systemc.org
http://en.wikipedia.org/wiki/Collatz_conjecture

A. Appendix

HDLCase

HDLMetaHDLData

HDLStatement

HDLComponent

HDLControlHDLOperation

HDLIfElse

HDLLoopHDLLMux

HDLProcess

HDLArithmeticHDLLogic

HDLLAssignment

HDLConditionalSelection

1
*

1

*

1*

1
*

ConcurentControl SequentialControl

1

*

1

*
HDLType

Signal 1

1

1

1

1

*

1

1

HDLArchitectureHDLEntity

HDLDesignEntry

Port

1
1

1

* 1

1

1

*

1

HDLStaticObject
1

*

1

Logic

LogicVector

model
HDLSketch 1

1

Figure 9: Simplified class diagram of our meta-model with respect to the IEEE 1076.66 RTL synthesis standard (VHDL
87) [10]

1 HDLSketch subclass: #CollatzConjecture
2 instanceVariableNames: ’enum state stateNext nValue nValueNext ’
3
4 CollatzConjecture»setUpPorts
5 self in:#input of:(LogicVector size:32).
6 self out:#output of:(LogicVector size:32).
7
8 CollatzConjecture»setUpSignals
9 nValue := Signal of:(LogicVector size:32).
10 nValueNext := Signal of:(LogicVector size:32).
11 enum := Enum of:{ #IDLE. #EXEC}.
12 state := Signal of:(enum?#IDLE).
13 stateNext := Signal of:(enum?#IDLE).
14
15 CollatzConjecture»execute
16 <hdl:#combinational >
17 { self clk. self reset } onChange:[
18 self reset = true ifTrue:[
19 state <-(enum?#IDLE).
20 nValue reset:false.
21] ifFalse:[
22 self clk posedge ifTrue:[
23 state <- stateNext.
24 nValue <- nValueNext.
25].
26].
27].
28 { state. self start. nValue. self input} onChange: [
29 stateNext <- state.
30 nValueNext <- nValue.
31 state caseOf: {
32 [enum?#IDLE]->[
33 self done <- true.
34 self start = true ifTrue: [
35 self done <- false.
36 nValueNext <- (self input).
37 stateNext <- (enum?#EXEC)
38].
39].
40 [enum?#EXEC]->[
41 self done <- false.
42 nValue = 1 ifTrue:[
43 "n=1 finish the calculation"
44 stateNext <- (enum?#IDLE).
45] ifFalse:[
46 (nValue at:0) ifFalse:[
47 "n=n/2"
48 nValueNext <- (’0’,(nValue from: 31 downto:1)).
49] ifTrue:[
50 "n=3*n+1"
51 nValueNext <- (((nValue from: 30 downto:0),’0’) + nValue + 1).
52].
53]
54].
55 }
56 self output <- (nValue).

Listing 13: Hardware implementation of the Collatz conjecture problem using our DSL

	INTRODUCTION
	PROBLEMS THROUGH AN EXAMPLE
	FPGA CIRCUITS MODELLING
	Modelling circuit signals as data objects
	Circuit architecture modelling
	Reuse of legacy VHDL code

	SMALLTALK-BASED EXECUTION OF THE FPGA CIRCUIT MODEL
	Execution model: time-driven vs. event-driven
	Event-driven circuit-model execution simulation
	Modelling the propagation execution of circuit's parts
	Circuit-model execution in responding to incoming data

	HARDWARE-BASED EXECUTION OF THE FPGA CIRCUIT MODEL
	Low-level synthesis of a circuit-model on FPGA
	Hardware-based execution of the circuit-model
	Controllability and debugging

	CONCLUSION AND FUTURE WORK
	Appendix

