
HAL Id: hal-01167361
https://hal.univ-brest.fr/hal-01167361v1

Submitted on 15 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Process Assessment Issues in a Bachelor Capstone
Project

Vincent Ribaud, Alexandre Bescond, Matthieu Gourvenec, Joël Gueguen,
Victorien Lamour, Alexandre Levieux, Thomas Parvillers, Rory O’Connor

To cite this version:
Vincent Ribaud, Alexandre Bescond, Matthieu Gourvenec, Joël Gueguen, Victorien Lamour, et al..
Process Assessment Issues in a Bachelor Capstone Project. Software Process Education, Training and
Professionalism, Jun 2015, Göteborg, Sweden. pp.25-33. �hal-01167361�

https://hal.univ-brest.fr/hal-01167361v1
https://hal.archives-ouvertes.fr

 25

Process Assessment Issues in a Bachelor Capstone Project

Vincent Ribaud
Univ. Bretagne Occidentale,

UMR 6285, Lab-STICC
CS 93837, F-29200 Brest, France

ribaud@univ-brest.fr

Alexandre Bescond, Matthieu
Gourvenec, Joël Gueguen,

Victorien Lamour, Alexandre
Levieux, Thomas Parvillers

Univ. Bretagne Occidentale, FR,
Bachelor of Computer Science

{FirstName.LastName}@
etudiant.univ-brest.fr

Rory V. O’Connor
School of Computing, Dublin City

University
Glasnevin, Dublin 9, Ireland
roconnor@computing.dcu.ie

Abstract

Based on a small subset of ISO/IEC
15504:2006, a Process Assessment was
performed in the capstone project of a
Bachelor in Computer Science. Parallel to this
assessment, students performed a continuous
self-assessment using an ability model based
on 15504 Base Practices and Work Products.
This paper highlights how students' self-
assessment and teacher's assessment are
correlated. The capstone project itself
implements major constructivism principles.
This paper presents also the students’ point of
view through different questionnaires and
students’ participation to the paper.

1. Introduction
The ACM Computing Curricula [ACM05]

establishes the following requirement for a Bachelor
curriculum: "Demonstration that each student has
integrated the various elements of the undergraduate
experience by undertaking, completing, and presenting
a capstone project." The capstone project is intended to
provide students with a learning by doing approach
about software development, from requirements to
qualification testing. Indeed, the project progress is
sustained by software processes. It helps students to be
conscious about and improve what they are doing when
processes are replaced in a whole picture and when a
continuous assessment provide them with objective
feedback. Hence, a main capstone teacher's activity is
to assist students with appreciation and guidance, a task
that relies on the assessment of students' practices and
students' products. Students were encouraged to
perform a self-assessment in parallel of the teacher's
assessment. Consequently, we implemented an
experimental protocol to observe how students' self-
assessment and teacher's assessment are correlated.

Our implementation of a capstone project results
from a twenty years experience about project and
problem-based learning for software development.
From the designer’s side - the teacher, most
constructivism principles are taken in account and
implemented. However, what’s up from the
constructors’ side – the students – The question was
raised to the class using several questionnaires and
several students accepted to anonymize answers and to
analyze results. Hence they are co-authors of this paper
whose structure is: section II presents process
assessment, section III statistics and pedagogical
practices, section IV the practicum, students and
teacher roles. Questionnaires results are intertwined in
the sections and commented by students and teacher.

2. Process assessment
The main goal of the capstone project is to learn by
doing a simplified cycle of software development
through a somewhat realistic project. Until this year,
students worked in small teams (2-3 people). Thanks to
doubling the hours allocated to the project this year and
to avoid too much behaviorist division of labor
between students, the capstone project was performed
individually from A to Z.

2.1 Software processes
A side-effect goal of the capstone project is to be
exposed to some kind of process assessment. We
choose a small subset of the ISO/IEC 15504:2006
Process Reference Model, mainly the Software-related
Processes of the ENG Process Group [15504-Part 5]:
ENG.3 System architectural design, ENG.4 Software
requirements analysis, ENG.5 Software design, ENG.6
Software construction, ENG.7 Software integration,
ENG.8 Software testing. Process Purpose, Process
Objectives and Base Practices have been kept without
any modification; Input and Outputs Work Products
have been reduced to the main products.
We recall some definitions from the ISO/IEC 15504
standard [15504]: “processes are grouped according to
the type of activity they address: the processes included

Copyright © by the paper’s authors.

Proceedings of the International Workshop on Software Process
Education, Training and Professionalism, Gothenburg, Sweden

20015-06-15 published at http://ceur-ws.org

 26

in the same group contribute to a complementary area”,
“a process is a set of interrelated or interacting
activities which transforms inputs into outputs”, “a
base practice is an activity that, when consistently
performed, contributes to achieving a specific process
purpose”, and “a work product is an artifact associated
with the execution of a process”.

2.2 Ability model
From an individual human perspective, the 15504
Exemplar Process Model can be seen as a
competencies model related to the knowledge, skills
and attitudes involved in a software project. A
competencies model defines and organizes the
elements of a curriculum (or a professional baseline)
and their relationships. During the education period, all
the students use the same model but they can
individually change afterwards.
A hierarchical model is easier to manage and use. We
kept the hierarchical decomposition issued from the
15504: process groups –process – base practices and
products. A competency model is decomposed into
competency areas (mapping to process groups); each
area roughly corresponding to one of the main division
of the profession or of a curriculum. Each area
organizes the competencies into families (mapping to
processes). A family roughly corresponds to main
activities of the area. Each family is made of a set of
knowledge and abilities (mapping to base practices),
eventually called competencies; each of these entities
being represented by a designation and a detailed
description.

2.3 Process Assessment

ISO 15504 [15504] defines a measurement framework
for the assessment of process capability defined on a
six point ordinal scale which represents increasing
capability of the implemented process, from not
achieving the process purpose through to meeting
current and projected business goals. [15504-2]. Within
this measurement framework, the measure of capability
is based upon a set of process attributes (PA). Each
attribute defines a particular aspect of process
capability. The extent of process attribute achievement
is characterized on a defined rating scale: N Not
Achieved, P Partially Achieved, L Largely Achieved, F
Fully Achieved. Capability Level 0 denotes an
incomplete process, either not performed at all, or for
which there is little or no evidence of systematic

achievement of the process purpose [15504-3].
Capability Level 1 denotes a performed process that
achieves its process purpose through the performance
of necessary actions and the presence of appropriate
input and output work products which, collectively,
ensure that the process purpose is achieved [15504-3].
Higher levels denote higher process maturity: the
process is managed (Level 2), established (Level 3),
predictable (Level 4), optimizing (Level 5).
If students are able to perform a process, it denotes a
successful learning of software processes, and teachers'
assessments rate this capability. Because we believe
that learning is sustained by continuous assessment,
self-directed, done by teachers or a third-party, the
research question aims to state how students' self-
assessment and teacher's assessment are correlated and
if self-assessment for performing BP and delivering
WP is an alternative to external assessment about
15504 Level 1. Obviously, the assessment main goal is
students' ability to perform the selected processes set.

3. The capstone project
This section overviews the project and assessment
results, then presents each process with assessment
details, teacher's analysis and students' comments.

3.1 Overview

3.1.1 Schedule

The curriculum is a 3-year Bachelor of Computer
Science. The project happens the third year before
students' internship. The project is performed during a
period of 2 weeks. Before the dedicated weeks, 40
lecture hours are dispatched all the semester along and
some homework is required. Ideally, students should be
familiar with the Author-Reader cycle as the project
starts and have performed the requirements and
architectural design processes. Each deliverable can be
reviewed as much as needed by the teacher that
provides students with comments and suggestions.

3.1.2 System architecture

The system is made of 2 sub-systems:
• PocketAgenda (PA) for address books and agenda

management and interface with a central directory;
• WhoIsWho (WIW) for managing the directory and

a social network.

 27

PocketAgenda is implemented with Java, JSF
relying on a Oracle RDBMS. WhoIsWho is
implemented in C or Java using a small RDBMS or
files. Both sub-systems communicate with a protocol to
establish using UDP.

The system is delivered in two batches. Batch 1
scope is: PocketAgenda – address book and directory
interface; WhoIsWho - directory management. Batch 2
scope is: PocketAgenda – agenda and social network
interface; WhoIsWho – social network management.

3.1.3 Rating scheme

Table 1 presents the rating scheme. Students'
assessment was continuous and communicated to
students regularly; hence they have been made aware
of their progression each day and adjusted their effort.

Table 1: Rating scheme

Process Work product Pt.

 Batch 1
ENG.4 Use cases –Social network 1
ENG.3 Interfaces specification 1
ENG.5 Detailed Design Document 2
ENG.6 4GL applications 3
ENG.6 Network application 3
 Batch 2
ENG.4 Use cases 3
ENG.6 4GL applications 2
ENG.6 Java/SQL application 1
 Project
ENG.7 Integration schema,

configuration, version sheet
1

ENG.8 Test reports 1
Attitude Assiduity, commitment,

organization
2

Total 20

3.1.4 Statistics

Table 2 presents teacher's assessment. BP and WP
rating are aggregated using an all-or-none principle: if
all BP or WP in a process are rated at least Largely (or

Fully), the process is rated Largely (or Fully)1. At the
two-third of the project, students have been made
aware of the Level 2 and its attributes. However, the
teacher has not enough time to track the PA 2.1
Performance management and only the PA 2.2 Work
product management was tracked for the most
advanced students: those who were assessed by the
teacher for all processes at L or F; it represents 7
students over 23.

Table 2: Teacher's assessment

 BP level 1 WP level 1 WP2

 L F L F L

ENG.4 Requirement 3 13 7 10 3
ENG.3/5 Design 7 3 8 8 2
ENG.4 Construction 4 6 10 6 4
ENG.7 Integration 7 0 5 2 1
ENG.8 Testing 6 10 12 3 1

As the project ends, students have to complete a
summary including hour’s breakdown and self-
assessment of achievement for each process. Summary
was mandatory and 22 students over 23 completed it.
Table 3 presents students' self-assessment and the
average hours spent for each process. Last column
indicates the number of times where the teacher's
assessment matches the student's self-assessment.

Table 3: Overview of self-assessment and match
 Hrs N P L F Match

ENG.4 Requirements 20 0 0 8 14 18
ENG.3/5 Design 19 0 0 11 11 16
ENG.4 Construction 48 0 6 9 7 14
ENG.7 Integration 9 4 7 9 2 11
ENG.8 Testing 5 2 7 9 4 10

3.1.5 Information about students

The class comprises 24 students. One gave up in the
middle of the project. Among 23 remaining, 3 students'
projects failed, 4 projects were barely satisfactory, 9
good, 5 very good and 2 excellent. Questionnaires were

1 BPs that are a kind of Develop test criteria or Develop test

procedures, are out of scope and excluded from aggregates.

 28

completed by 22 students. 6 students have participated
to the writing of this paper and were classified as: 1
project failed, 1 was barely satisfactory, 1 good, 2 very
good and 1 excellent.
A unique student works in parallel. 20 completed first
and second year in our Bachelor. 17 were assiduous. 15
repeated at least a class before the Bachelor final year
(in high school or at the university). 15 were able to
perform the project outside the university labs. 10
claimed to have a good knowledge of SQL and Java
before the project.

3.2 Project progress
Students were advised that they can freely participate
to the following experiment: they will have to regularly
update a competency model comprising the ENG
process group, the 6 processes above and their Base
Practices and main Work Products and self-assess on
the N-P-L-F scale. The teacher will also assess the
same BPs and WPs and volunteers students will
correlate self-assessment and teacher's assessment and
deliver anonymous results for the paper. All students
did agree with the experiment but only 18 delivered the
completed competency model to volunteers. The data
distribution is presented in tables in each process
subsection. The match with teacher's assessment is
indicated as the last column of each table. Teacher
analysis and comments made by students co-authoring
the paper are reported at end of process subsection.

3.2.1 Requirements

According to students' estimates average, they spent 20
hours over 102 total hours to capture, write and
manage requirements through use cases. A 4-hour
lecture about use cases was delivered in January at the
beginning of the semester, then the iterative process of
writing and being reviewed by the teacher started.
When the project full-time period had started, 6-7
students over 22 have completed the requirement
process and produced the requirement specification
WP. The remaining completed theses tasks during the
project. Without surprise, the more backward students
(for this task or the following one) failed.
Table 4 presents main Base Practices (ENG.4.BP1:
Specify software requirements; ENG.4.BP3: Develop
criteria for software testing; ENG.4.BP4: Ensure
consistency) and main Work Products (17-11 Software

requirements) for the ENG.4 Software requirements
analysis process.

 Table 4: ENG.4 assessment (self and teacher)
 N P L F Match
BP1. SW requirements 0 2 9 7 6
BP3. Test criteria 0 5 7 5 2
BP4. Consistency 1 3 7 7 8
17-8 Interface requirements 0 3 1 8 6
17-11 SW requirements 0 1 10 7 9

Thanks to the Author-Reader cycle, specification
writing iterates several time during the semester and
the final mark given to almost SW requirement
document was Fully Achieved. However matching
between students and teacher assessments is poor. A
deeper look on data yields a possible explanation:
“good” students, despite the excellent final mark, were
aware of the cycle and the improvement suggested by
the teacher at each iteration, hence they self-assess
generally as Largely Achieved whereas the teacher
rated a Fully Achieved; “normal” students took the
final mark as the level they achieved and self-assessed
as F whereas the teacher rated a L.
Clearly, students did not understand the ENG.4.BP3:
Develop criteria for software testing and failed the self-
assessment. The definition is “Use the software
requirements to define acceptance criteria for the
software product tests. Software product tests should
demonstrate compliance with the software
requirements. [15504-Part 5]” The teacher defined
acceptance criteria and students were not aware of this
topic, however they confused “develop criteria for SW
testing” and “testing SW” and self-assessed at a much
higher level that the teacher did.

Students' comment. It was the first time that we have
to write use cases from a statement of work. Eliciting
and writing requirements were difficult and the Author-
Reader cycle helped to produce complete and usable
use cases and to acquire a writing style. Because of the
novelty of the task and to achieve a certain maturity
degree, it is required to start the writing task early in
the semester.

3.2.2 Architectural and detailed design

On average, students spent 19 hours over 102 total
hours to perform architectural and detailed design.
Design is split in data modeling, Web-based design and

 29

oriented-object design. The PocketAgenda subsystem
is structured around a database schema. Modeling is
performed using SQL Developer Data Modeler, freely
available through the Oracle Academy program. Data
architectural design results in a Logical model, data
detailed design (obvious in that case) is performed
through automated forward engineering and results in a
Relational model. A 2-hour lecture about Data Modeler
was delivered in February after the use cases phase.
then the iterative Author/Reader cycle started.
Jdeveloper is a Java IDE for the Oracle Application
Development Framework (ADF). ADF is an end-to-
end development framework, built on top of the
Enterprise Java platform, and providing integrated
solutions including data access, business services
development, a controller layer, a JSF tag library
implementation. 12 labs hour were devoted to learning
the framework, insufficient for mastering the IDE but
enough for a quick start.
UML modeling and object-oriented design are taught
in dedicated lectures during the curriculum (30 hours
each). However, nearly all students had no idea how to
perform the design. Design was taught by example:
students have developed a component of the batch 1
from a design document provided by the teacher. Then
they had to develop another batch 1 components and
retro-design their development. Finally they had to
establish the design of remaining components.
Architectural design was also shown by example: a
complete cycle was provided for one networked
function: use case, interface specification, design for
the client and server sides, client and server stubs
program. Students reproduced the scheme.

Table 5: ENG.3 and 5 assessments (self and teacher)
 N P L F Match
BP1. Describe syst. arch. 0 4 10 5 6
BP3. Define interfaces 0 4 6 8 6
BP3. Detailed design 0 2 9 7 7
BP4. Consistency 1 2 9 6 8
04-01 Database design 0 1 6 11 13
04-04 High level design 0 4 6 8 8
04-05 Low level design 0 2 8 8 11

Table 5 presents main Base Practices (ENG.3.BP3:
Define interfaces; ENG.5.BP3: Develop detailed
design; ENG.5.BP5: Ensure consistency) and main
Work Products (04-01 Database design; 04-04/05

High/low level SW design) for the ENG.3 et 5 System
and software design process.
Again, matching is poor, except maybe for technical
design. A similar concern to requirements arose with
design: a few students were aware of the improvement
cycle performed by the Author-Reader cycle and took
the Work Product (Design Document) as an indication
of their achievement. Another explanation is related to
the fact that bachelor students are focused on
technology, hence there are more able to self-assess on
technical tasks (Database or Detailed Design).

Students' comment. Requirement specifications
greatly helped to figure out the system behavior and
facilitated the design phase and interface specification.
However, students had never learnt architectural design
and interfaces between sub-systems. Design time has to
be immediately followed by coding time and could not
spread along the semester as we did it for requirements.
Students performed high level design for a batch and
low level design for the other, and both have
advantages depending on the student's personality:
either creative or preferring to be guided.

3.2.3 Construction

On average, students spent 48 hours over 102 total
hours to develop the software. Java, network
programming and database / SQL programming are
taught in dedicated lectures during the curriculum (60
hours each). Despite of this amount, 12 students self-
judged as having a poor knowledge of SQL and Java,
and 10 students were unable to develop the client-
server application although a Java server skeleton has
been provided. Time constraints also played their role:
because the network component was perceived by
difficult by some students, they did not commit to the
work and invested others more cost-effective tasks.
Students have almost no idea of test-driven
development and a lack of a test strategy; hence unit
were poorly tested. This point has to be addressed in
the next edition.
Table 6 presents main Base Practices (ENG.6.BP1:
Develop unit verification procedures; ENG.6.BP2:
Develop SW units; ENG.6.BP3: Ensure consistency;
ENG.6.BP4: Verify SW units) and main Work
Products (11-05 Software unit; 14-04 Test log) for the
ENG.6 Construction process.

 30

Table 6: ENG.6 assessment (self and teacher)
 N P L F Match
BP1. Verification procedures 2 3 10 3 6
BP2. Develop units 0 5 8 5 8
BP3. Consistency 0 7 8 3 9
BP4. Verify units 0 7 8 3 6
11-05 Software unit 0 4 9 5 8

Unit testing is a little more familiar to students, and
although they probably misunderstood the ENG.6.BP1:
Develop unit verification procedures; the matching is
not so worse that for the ENG.4.BP3: Develop criteria
for software testing. The discrepancy between students
and teacher assessments about ENG.6.BP2: Develop
software units stems from the “goggle-paste”
phenomena; only a few students writes his/her own
code and has been assessed at the Largely or Full level
by the teacher; most students adapt code from others
without a real understanding of the programming
activity and over-assess themselves.

Students' comment. This process raised a certain
anxiety because students had doubt about their ability
to develop a stand-alone server interoperating with a
JDeveloper application. Students had never learnt a
4GL (fourth generation language) environment such as
JDeveloper, hence they reported that the switch from a
3GL to a 4GL was difficult but once understood, they
appreciated the power leverage of such environments.
The majority of students whose successfully developed
the client-server component reported that they could
not achieve it without the help of the skeleton provided
by the teacher. For some students, a poor Java literacy
prevent them to struggle with the network part. Some
students failed because they jumped to code before
having any draft or idea to realize it.

3.2.4 Integration and tests

On average, students spent 15 hours over 102 total
hours to integrate and perform qualification tests of the
software. These topics are unaddressed in the
curriculum and because they mostly occur at the end of
the project, no time was available to complete the
learning. In the best cases, students have respected
their interfaces specification and few problems arose
when they had to integrate the Java client program
within the JDeveloper application. In other cases, they
were unable to perform the integration and the
assessment was partial and based on the Java client

code. Test cases specification stemmed from use cases,
hence no test plan was required. Test procedure was
reduced to test each use case - success scenario and
main extensions, to verify the conformity to use cases
and the results achieved.
Table 7 presents main Base Practices (ENG.7.BP3:
Integrate software item; ENG.7.BP5: Ensure
consistency; ENG.8.BP1: Develop tests for integrated
software product; ENG.8.BP2: Test integrated software
product) and main Work Products (08-21 Software test
plan; 11-01 Software product; 14-04 Test log) for the
ENG.7 et 8 Software integration and software testing
process.

 Table 7: ENG.7 and 8 assessments (self and teacher)
 N P L F Match
BP3. Integrate SW items 2 4 10 1 9
BP5. Consistency 2 3 11 1 9
BP1. Develop tests 2 5 10 2 4
BP2. Test product 0 5 9 3 9
08-21 Software test plan 0 4 11 2 3
11-01 SW product 0 4 9 4 9
14-04 Test log 0 4 11 2 10

We observe the same poor correlation for the
ENG.8.BP1: Develop tests for integrated software
product and the WP 08-21 Software test plan,
indicating that students are not aware of the test
definition and planning activity, a common hole in a
Bachelor curriculum although testing is an ability
strongly required by employers.
Integration is also an uncovered topic and students are
not aware of the subject: for the ENG.7.BP3: Integrate
software item, 11 students (over 18) were assessed by
the teacher as Not or Partially whereas they only 6 self-
assessed N or P.

Students' comment. Some students were aware of the
poor maturity of the integrated product, partly due to
the lack of testing. Although the Junit framework has
been taught during the first semester, some students did
not see the point to use it while some others did not see
how to use it for the project. Students that did not
develop the server had no integration to perform.

 31

4. Students and teacher roles
Constructivism can be summed up with two
fundamental statements [Duf96]: (i) learning is defined
as an active process for knowledge building rather than
a knowledge acquisition process; (ii) teaching is
essentially aimed at helping students in this process
rather than transmitting knowledge.
Among practices belonging to the constructivist
stream, Dwyer [Dwy94] and Tardif [Tar98] define a
learning paradigm, in opposition with the main
teaching paradigm. The learning paradigm provides a
framework which allows the school to constitute a
learners’ community for the pupils as well as the
teachers and the other staff members.
This section aims to relate the educational system with
the new roles required in a constructivism approach.
The questionnaire collects anonymously students'
perception about roles. Teacher's role has to be rated on
the scale used to rate practices and products: Not
achieved, Partially Achieved, Largely Achieved, Fully
Achieved. Students' self-opinion about their roles and
about the practicum are expressed on a 5-point Likert
scale from Strongly Agree to Strongly Disagree.

4.1 Teachers' role
Tardif [Tar98] defines teachers’ roles as creators of
pedagogical environments; interdependent, open-
minded, critical professionals; development instigators;
mediators between knowledge and students; coaches;
collaborators for the students’ success of a whole
school. The first role was questioned in a special part
of the questionnaire related to the educational system
and is presented in section 4.3. Table 8 presents
students' rating about the teacher's roles.

Table 8: Students' rating about teacher's roles

? N P L F

a professional, open-minded and
open to criticism

1 4 17

a development instigator 1 8 13
a mediator between knowledge
and students

 2 7 13

 a coach 1 4 6 11

Students' comment. Students agree with the teacher's
roles required. The majority of students want to be

instigated but not directed to a solution. Some students
stated that teachers fall into two categories: those that
don't care of students and those that help too much and
deprive them of autonomy because they want to control
the learning results. They appreciated the balanced
teacher's attitude and to be on his or her own but also to
have a teacher in case of emergency. Students noticed
that the teacher wanted that everyone speak, discuss
and compare points of view and aimed an active
participation. Some students complained that the
teacher did not share his time equally between students
and pointed out that a second teacher will be useful.

4.2 Students' role
Tardif [Tar98] defines students’ roles as investigators;
co-operators sometimes experts; clarifying actors;
strategic users of available resources. The
questionnaire set the following definitions:
investigator: I discussed with other students my
questions about the project and/or I defended my
solutions; co-operators sometimes experts: I explained
some project points to other students and/or I had
myself explanations from others; clarifying actors: I
asked the teacher or other students in order to insure
my good project understanding and to verify the
adequacy of my proposals; strategic users of available
resources: I used the available resources and/or
supplementary resources and I verified their relevance.
Table 9 presents students' perception about their roles.

Table 9: Students' self-perception about their roles

strg
agr agr

neu-
tral dsgr

strg
dsgr

investigator 12 8 2
co-operators - experts 10 11 1
clarifying actors 14 7 1
strategic users 7 8 6

 Students' comment. Some students underestimate
themselves and some definitions (strategic users, for
instance) were seen as out of the reach and they could
not use it to qualify themselves. However students have
learnt to debate, find and explain solutions. Students
learnt a lot about to work with consistency and
traceability, to respond to demands within the
recommended time and to log his or her work in order
to notice the project progress.

 32

4.3 The practicum
Tardif [Tar98] defines the characteristics of a
pedagogical environment (the practicum) consistent
with the learning paradigm: constancy of learning and
time variability; cognitive imbalance; authenticity of
learning situations; transdisciplinarity; interactions
between theory and practice; embedment of assessment
within the learning situations. The last part of the
questionnaire let students express their opinions about
the practicum, which are presented in Table 10.
Table 10: Students' self-perception about the practicum

The Agenda project
strg
agr agr

neu-
tral dsgr

strg
dsgr

I had the time to learn
and do the project. 6 11 2 3
I found the project
complex. 5 12 2 3
I committed to
perform the project. 14 6 1 1
I found the project
realistic. 11 8 1 1 1
 I understand
relationships between
specifications, design,
building and tests. 15 6 1
I had to deepen my
knowledge and skills
to perform the project. 10 12
My work for the
project helped me to
understand lectures. 5 6 8 1 2
I used a lot the
reviewing facilities. 7 7 1 5 2
I made progress
thanks to the
reviewing facilities. 12 5 2 1 2
I improved my
working methods
thanks to the project. 6 9 7

Although one project objective is to relate to previous
lectures and to mobilize knowledge and skills gained
during the bachelor studies, it was not effective and
rather seen as a new learning experience, although
some students have enjoyed the project as an
experience to deepen the different notions of program
seen and learned during lectures. We were surprised
with the relatively poor use of reviewing.

Students' comment. Students appreciated that each
project phase has been explained from experience and
through examples. Students have been convinced of the
usefulness of the different phases performed in a
software project and that it might be applied to other
type of projects. Generally speaking, students prefer
project to labs. Using on-line tutorials as a learning
support is appreciated, but some students complain
about the quality of some tutorials written by the
teacher. A forum could be useful to share knowledge
and help others people. Shared documents could be an
alternative to mail exchange and might trigger the use
of reviewing facilities that some students misused.
Students asked to be exposed to a whole picture of the
project at the beginning and to start the project having
all project documents at their disposal. Some students
found the work load too heavy and time devoted to the
project too short. As a student said, all students learned
something during the project, and some students have
learned more than others!

5. Conclusion
The research question aims to see how students’ self-
assessment and external assessment [by a teacher] are
correlated. This is not true for topics not addressed in
the curriculum or unknown by students. For more
classical topics, assessments are correlated roughly for
the half of the study population. However, the study is
a suffering from a bias due to the learning process:
deliverables go through a Author-Reader cycle that
leads to improve them sufficiently to achieve a Largely
Achieved or Fully Achieved level but only “good”
students are aware of the help provided by the teacher
at each iteration. Hence “good” students under assess
themselves whereas “normal” students over assess
themselves considering that the resulting deliverable is
a witness of their achievement level. The bias
invalidates partially the experiment that has to be set
again outside of a learning situation.
Questionnaire and students-authors contribution
indicates that the system favors knowledge building,
encourage students to work in an active way, develop
autonomy and success feeling, improve assessment and
may develop mutual help; what is expected in a
successful project-based learning situation. Process
learning seems to be effective for requirements, design
and building but we need to improve the system for the
ENG.7 SW integration and ENG.8 SW testing process.

 33

6. Acknowledgments
We thank all the students of the 2014-2015 final year
of Bachelor in Computer Science to their agreement to
participate to this study.

References
 [Duf96] T. M. Duffy, D. J. Cunningham.
Constructivism : Implications for the design and
delivery of instruction. Handbook of Research for
Educational Communications and Technology,
MacMillan, 1996.
[Dwy94] D. Dwyer. Apple Classrooms of Tomorrow:
What we have learned. Educational Leadership, 54(7),
1994.
[15504] ISO/IEC 15504:2004. Information technology
-- Process assessment. ISO, Geneva, 2006.
[Tar98] J. Tardif. Intégrer les nouvelles technologies
de l’information – Quel cadre pédagogique ?. ESF,
1998

