Hai Nam Tran
email: hai-nam.tran@univ-brest.fr

Frank Singhoff
email: singhoff@univ-brest.fr

Stéphane Rubini
email: rubini@univ-brest.fr

Jalil Boukhobza
email: boukhobza@univ-brest.fr

Integration of Cache Related Preemption Delay Analysis in Priority Assignment Algorithm

Keywords: C.3 [[Special-Purpose and Application-Based Systems]: Real-time and embedded systems; D.2.4 [Software Engineering]: Software/Program Verification-Validation Real-Time Embedded System, Real-Time Scheduling, Priority Assignment

Handling cache related preemption delay (CRPD) in a preemptive scheduling context for real-time systems stays an open subject despite of its practical importance. Priority assignment algorithms and feasibility tests are usually based on the assumption that preemption cost is negligible. Then, a system that could be schedulable at design time can fail to meet its timing constraints in practice due to preemption cost. In this article, we propose an elementary approach to take into consideration the CRPD while assigning priorities to tasks. The goal is to acquire a priority assignment algorithm guaranteeing the schedulability of the system when its tasks suffer CRPD at run-time.

PROBLEM STATEMENT

Cache related preemption delay (CRPD) introduces two issues. First, it accounts a high proportion in preemption cost and causes preemption cost to be significant [START_REF] Li | Quantifying the cost of context switch[END_REF]. Second, the total CRPD of a task set during its feasibility interval, which is an interval for which testing of task feasibility is needed [START_REF] Cucu | Feasibility intervals for fixed-priority real-time scheduling on uniform multiprocessors[END_REF], depends on the applied priority assignment policies.

Most of the research in priority assignment algorithms on uniprocessor systems have mainly focused on finding the optimal priority assignment algorithm for a specific system model [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF], [START_REF] Leung | On the complexity of fixed-priority scheduling of periodic, real-time tasks[END_REF], [START_REF] Audsley | Optimal priority assignment and feasibility of static priority tasks with arbitrary start times[END_REF], [START_REF] Davis | Robust priority assignment for fixed priority real-time systems[END_REF]. To the best of our knowledge, there is no existing work in the domain of priority assignment considering CRPD.

EWiLi'2014, November 2014, Lisbon, Portugal. Copyright retained by the authors.

If a system is not schedulable under a priority assignment policy because of CRPD, a method to work around could be reordering task priorities. The goal is to reduce the total CRPD while still maintaining the feasibility of tasks. For example by lowering the number of preemptions. The solution consists in evaluating CRPD of tasks, which is computed by using timing analysis techniques,the total number of preemptions and also the feasibility of each tasks. As far as we know there is no existing method to achieve this goal. The problem is that total CRPD depends on the applied priority assignment policy but solving this dependency is still an open issue.

INTEGRATION OF CRPD ANALYSIS IN PRIORITY ASSIGNMENT ALGORITHM

We assume an uniprocessor system running n tasks with a preemptive fixed priority scheduler. Classical notations for real-time scheduling analysis are used. Assuming system starts execution at time 0, a task τi makes an initial request at offset Oi, and then releases periodically every Ti units of time. Each release of a task is called a job. It requires Ci units of time of computation and must finish before Di units of time. Exact computation of CRPD for each pair of tasks, for example when task τA preempts task τB, using timing analysis technique is out of the scope of this article.

To break the dependency stated in Section 1, we propose a priority assignment algorithm, if it finishes assigning a priority level to each tasks of the system, the resulted system is guaranteed to be schedulable while experimenting the impact of CRPD. It includes the integration of a feasibility test into the priority assignment algorithm of Audsley [START_REF] Audsley | Optimal priority assignment and feasibility of static priority tasks with arbitrary start times[END_REF].

For n tasks, Audsley's algorithm performs at most n(n + 1)/2 schedulability tests and guarantees to find a schedulable priority assignment if one exists. We have n priority levels corresponding to n tasks, with n being lowest priority level. The algorithm starts by assigning the lowest priority level to a task. This task is called assessing task in the sequel. If the assessing task is not schedulable, the algorithm tries to assign the priority level to a different task, i.e. the assessing task is changed. If the assessing task is schedulable, the algorithm actually assigns this priority level to this task and then, moves to the next higher priority level. Then, it checks whether a task in the unassigned priority tasks is feasible with this higher priority level. The algorithm continues until all tasks are assigned a priority level. If there are not any schedulable tasks at a given priority level, the system is not schedulable and the algorithm terminates. The pseudo code for the Audsley's algorithm is given below. In the original work of Audsley, that does not take CRPD into account, a feasibility test is used to verify the schedulability of a task under a given lowest priority level while relative priorities among higher priority tasks are unknown. Existing feasibility test with CRPD taken into account is not able to test the feasibility of a task in this context. For example, in [START_REF] Staschulat | Scheduling analysis of real-time systems with precise modeling of cache related preemption delay[END_REF], the authors assumed that task priorities are preliminarily assigned.

Contrary to the approach of existing feasibility tests which consists of computing a task worst case response time, we verify the feasibility for each job of a task during its feasibility interval. A task is schedulable if all its jobs released during the feasibility interval can meet their deadlines. Assuming a job of task τi is released at time t, requires Ci unit of computation time and must finish before Di, the job experiences interference Ii caused by other jobs of higher priority tasks during the interval [t, t + Di). Then, the job of task τi is feasible if:

Ci + Ii < Di (1)
Ii includes three delays components. First, it is the execution time of jobs of higher priority tasks which are released during the interval [t, t+Di). Second, Ii includes the CRPD caused by those jobs of higher priority tasks directly or indirectly preempting a job of task τi. Third, Ii also includes the CRPD caused by the those jobs preempt each other. Computation of the third component of Ii is the main challenge when tasks priorities are not assigned. A naive approach is to perform scheduling simulation for those jobs with all possible combinations of priority assignments and compute the total CRPD.

We propose a solution to compute that third delay component based on three information: release time, capacity and CRPD relationship. The idea is to compute a tree structure, which presents all preempting decisions the scheduler has to do. The tree T = (N, E) is defined by N , the set of node and E, the set of edge. Each node n of N models a running job at a point of time. Each node n is defined by a 4-uplet (a, b, c, d) where a is an instant, b is the job executing at the instant a, c is the remaining capacity of the task and d is the CRPD caused by the activation of this task. Each edge e from E models a decision of the scheduler. We can have three types of edges modeling three different events during scheduling: allow preemption, deny preemption, select a job in the set of jobs waiting to be executed. Each branch of the tree presents a non-conflict priority assignment scheme. By non-conflict, we mean that there are not any cases two tasks can preempt each other, for example, if τA preempts τB then later τB cannot preempt τA. Based on the tree, we can compute the upper-bound total CPRD.

We illustrate the tree by an example in Figure 1. Assuming that we have information of each job activation time, capacity and the CRPD when those tasks preempting each other. In this example, we have the activation of jobs of three task A, B and C in an interval. By computing the tree, we can assess all possible preemptions of the jobs, which can occur in a specific priority assignment scheme. Thus, evaluating the total CRPD in each branch of the tree.

CONCLUSIONS

In this article, we discuss a problem of CRPD and priority assignment and propose an elementary approach to solve this issue. We extend Audsley's optimal priority assignment algorithm [START_REF] Audsley | Optimal priority assignment and feasibility of static priority tasks with arbitrary start times[END_REF] by considering the impact of CRPD when assigning a priority level to a task. The approach consists in verifying the feasibility of each job of each task during its feasibility interval while accounting the interference due to jobs of higher priority tasks, including CRPD. A tree structured is implemented to compute the CRPD of jobs with unknown task priorities during an interval. We plan to evaluate the proposed approach in terms of complexity and optimality in the future works.

 f o r each p r i o r i t y l e v e l i , l o w e s t f i r s t { f o r each u n a s s i g n e d t a s k τ { i f τ i s s c h e d u l a b l e a t p r i o r i t y i { a s s i g n τ to p r i o r i t y i br eak (c o n t i n u e o u t e r l o o p) } } r e t u r n u n s c h e d u l a b l e } r e t u r n s c h e d u l a b l e

Figure 1 :

 1 Figure 1: An example of computing the tree with 3 jobs. Only the decisions of the scheduler to choose which task to run are shown.