
HAL Id: hal-01166868
https://hal.univ-brest.fr/hal-01166868v1
Submitted on 23 Jun 2015 (v1), last revised 15 Sep 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of cache related preemption delay analysis
into a priority assignment algorithm (Poster Short

Paper)
Hai-Nam Tran, Frank Singhoff, Stéphane Rubini, Jalil Boukhobza

To cite this version:
Hai-Nam Tran, Frank Singhoff, Stéphane Rubini, Jalil Boukhobza. Integration of cache related pre-
emption delay analysis into a priority assignment algorithm (Poster Short Paper). EWiLi’14, The 4th
Embedded Operating Systems Workshop., Sep 2014, Lisbon, Portugal. �hal-01166868v1�

https://hal.univ-brest.fr/hal-01166868v1
https://hal.archives-ouvertes.fr

Integration of cache related preemption delay analysis into
a priority assignment algorithm

Hai Nam Tran, Frank Singhoff, Stéphane Rubini, Jalil Boukhobza
Univ. Bretagne Occidentale, UMR 6285, Lab-STICC, F-29200 Brest, France

{hai-nam.tran,singhoff,rubini,boukhobza}@univ-brest.fr

ABSTRACT
Handling cache related preemption delay (CRPD) in pre-
emptive scheduling context for real-time systems stays an
open issue despite of its practical importance. Priority as-
signment algorithms and feasibility tests are usually based
on the assumption that the preemption cost is negligible.
Then, a system that could be schedulable on design time
can fail to meet its timing constraints in practice due to
preemption costs. In this article, we propose a simple ap-
proach to take into account the CRPD when performing pri-
ority assignment. The goal is to have a priority assignment
algorithm which guarantees the schedulability of systems
when tasks suffer CRPD on run-time. For such a purpose,
we propose an extension of the feasibility test of Audsley
and illustrate it with some examples. An implementation of
our priority assignment method has been integrated to the
Cheddar scheduling analyzer. A comparison of the proposed
algorithm with classical priority assignment algorithms is
achieved.

Categories and Subject Descriptors
C.3 [[Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.2.4 [Software Engi-
neering]: Software/Program Verification—Validation

Keywords
Real-Time Embedded System, Real-Time Scheduling, Pri-
ority Assignment

1. INTRODUCTION
Cache memories are crucial components to reduce the per-
formance gap between processor and memory speed. The
democratization of contemporary processors with large size
and multi level caches in embedded real-time systems moti-
vates the proposition of verification methods that are able
to handle this hardware component.

One of the most important verifications performed for em-

bedded real-time systems is schedulability analysis. Schedu-
lability analysis provides some means to prove that an em-
bedded system is schedulable. A system is said to be schedu-
lable if all timing constraints of the tasks composing the soft-
ware side of the system are satisfied. To study schedulability,
many assumptions are usually made in order to simplify the
analysis. One of them is that preemption cost is negligible.
Preemption cost is the additional time to process interrupt,
manipulate task queues and actually perform context switch.

Integrating a processor cache memory component in a em-
bedded real-time system increases the whole performance in
term of execution time, but unfortunately it may increase
task preemption costs too. When a task is preempted, some
memory blocks belonging to the task may be removed from
the cache. Once the task resumes, the operating system
needs to reload previously removed memory blocks into the
cache. Thus, task preemption introduces a new preemp-
tion cost called the cache related pre-emption delay (CRPD),
which is the additional time to refill the cache with cache
blocks previously evicted on preemption time. To sum up,
integrating cache in a embedded real-time system may in-
crease execution time variability and decrease predictability
of response times of a given task.

Problem statement. CRPD introduces two issues. First,
it takes a high proportion in preemption cost and makes
the preemption cost becoming not negligible anymore [12].
Second, the cumulative CRPD of a task set during a fea-
sibility interval depends on priority assignment algorithm
[20]. We recall that a feasibility interval is an interval for
which testing of task’s feasibility is needed [4]. If a system
is not schedulable because of CRPD, we have to reorder
the priority of tasks. However, there could be a possible
outcome that the new priority assignment produces a big-
ger cumulative CRPD and still a non-schedulable system.
Then, CRPD creates a cyclic dependency between schedul-
ing analysis, priority assignment and preemption cost. To
the best of our knowledge, there are no existing methods to
assign priority to tasks and to guarantee that the system is
schedulable while experimenting CRPD.

Contributions of this article. The contribution of our work
is a method to perform priority assignment, which guaran-
tees a system is schedulable while experimenting the impact
of CRPD. To achieve this objective, we extended the feasi-

bility test proposed by Audsley [2] to be able to take into
account the CRPD. The work is integrated into the Cheddar
tool [16] which is an open source scheduling analyzer.

The rest of the paper is organized as follows. Section 2
presents the system models, notations and the gap between
priority assignment and feasibility test caused by CRPD.
Section 3 presents an overview of our approach to extend
a feasibility test to take into account the impact of CRPD
while performing priority assignment. In section 4, we ex-
plains a tree structure to deals with problems raised in sec-
tion 3. In section 5, we discuss the complexity of the ex-
tended feasibility test. In addition, we compares the priority
assignment produced by our approach with an example in
[2]. Section 6 discusses related works. Finally, 7 concludes
the article.

2. BACKGROUND AND NOTATIONS
In this section, we present the background and the nota-
tions required to introduce our priority assignment algo-
rithm. The work in this article could be considered as an
extension of the priority assignment algorithm and feasibil-
ity test of Audsley et al [2]. First, we present the system
model and the notations. Second, we show an example to il-
lustrate the limitations of classical fixed priority assignment
algorithms. In addition, an overview of Audsley’s optimal
priority assignment (OPA) is given. At the end of the sec-
tion, we discuss about feasibility test and CRPD analysis as
well as point out our motivations.

2.1 System model and notations
We assume a single core processor system running n tasks
with a preemptive fixed priority scheduler. Classical nota-
tions for real-time scheduling analysis are used [5] :

• τ1, τ2, ..., τi, ..., τn are the tasks of the system.

• Oi, Ti, Ci, Di are Offset, Period, Capacity and Dead-
line of task τi in the task set, respectively. Assuming
system starts execution at time 0, a task τi makes an
initial request at Oi, and then release periodically ev-
ery Ti units of time. Each release of a task is called a
job. It requires Ci units of time of computation and
must finish before Di units of time.

• release(tmi) and finish(tmi) are respectively the re-
lease time and the finish time of job m of task τi.

• hp(i) (respectively lp(i)) is the set of tasks with prior-
ities higher (respectively lower) than τi.

We extend these classical notations to model the CRPD
when task τj preempts task τi. We note this delay by
crpd(τj , τi) in the sequel.

A job of a task can then be defined by a 3-uplets composed
of the name of the task, the job release time and its ca-
pacity. For example, the 3-uplets (τi, 0, 1) refers to a job of
task τi, which is released at time 0 and requires 1 unit of
computation time.

Task C T D priority1 (RM) priority2
A 1 4 4 1 2
B 2 7 7 2 3
C 3 7 7 3 1

Table 1: Task set example. The fourth column is pri-
ority assigned using RM. The fifth column is the pri-
ority assignment which makes the task set schedu-
lable with CRPD

Figure 1: Scheduling simulation of the task set in
Table 1 under Rate Monotonic priority assignment.
Task C missed the deadline at 7 due to the preemp-
tion by task A.

2.2 Limitation of classical fixed priority assign-
ment algorithm

With classical fixed priority assignment algorithm, priori-
ties of all tasks are fixed before execution time. Classical
schedulability methods do not considered CRPD in the sys-
tem model. As a result, a system which has been verified
as schedulable on design time may be unschedulable on ex-
ecution time as CRPDs may occur. We give an example to
illustrate this issue in Table 1. All tasks are released at time
point 0.

With the task set in Table 1, we assume that crpd(A,C) =
1. We apply a Rate Monotonic (RM) priority assignment for
which fixed priorities are assigned according to the period
of the tasks. The lower period task has the higher priority
level. This task set is not schedulable, as can be seen in
Figure 1.

Only one priority assignment can make the task set schedu-
lable: when we assign priority levels 2, 3 and 1 to respec-
tively task A,B and C. This priority assignment can be
reached by using the priority assignment algorithm proposed
in this article.

2.3 Audsley’s Optimal Priority Assignment
Let now introduce the Audsley’s priority assignment algo-
rithm. Audsley’s priority assignment algorithm is said to be
optimal in the sense that for a given system model, it pro-
vides a feasible priority ordering, resulting in a schedulable
system, whenever such an ordering exists.

The pseudo code for the Audsley’s algorithm is given be-
low. For n tasks, the algorithm performs at most n(n+1)/2
schedulability tests and guarantees to find a schedulable pri-
ority assignment if one exists.

We have n priority levels corresponding to n tasks, with n
is the lowest priority level. The algorithm starts by assign-
ing the lowest priority level to a task. This task is called
assessing task in the sequel. If the assessing task is not
schedulable, the algorithm tries to assign the priority level
to a different task, i.e. the assessing task is changed. If
the assessing task is schedulable, the algorithm actually as-
signs this priority level to this task and then, moves to the
next higher priority level. Then, it checks if a task in the
unassigned priority tasks is feasible with this higher priority
level. The algorithm continues until all tasks are assigned
a priority level. If there are not any schedulable tasks at a
given priority level, the system is not schedulable and the
algorithm terminates.

f o r each p r i o r i t y l e v e l i , l owest f i r s t {
f o r each unass igned task τ {
i f τ i s s chedu lab l e at p r i o r i t y i {

a s s i g n τ to p r i o r i t y i
break (cont inue outer loop)
}

}
re turn unschedulab le

}
re turn schedu lab l e

In the Audsley approach, a feasibility test is used to verify
the schedulability of a task under a given priority level. We
discuss about feasibility tests and CRPD analysis in the next
section.

2.4 Feasibility test and CRPD analysis
With the system model presented in Section 2.1, for a given
task set, the worst case response time Ri for each task τi can
be computed and compared against the task deadline. The
worst case response time occurs when all tasks are released
at the same point in time (i.e. point in time called a critical
instant). An iterative approach is used to compute the worst
case response time of a given task. The task set is schedu-
lable if every task meets their deadline (i.e. ∀i : Ri ≤ Di).

The equation to compute Ri is [8]:

Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉
· Cj (1)

To take into account the CRPD, the term γi,j is introduced
by [18]. γi,j refers to the total cost of all pre-emptions due
to jobs of task τj (τj ∈ hp(i)) executing within the response
time of task τi. γi,j includes two delays. First, γi,j includes
the CRPD caused by jobs of higher priority tasks which
preempt jobs of task τi. Second, γi,j also includes the CRPD
caused by jobs of higher priority tasks which preempt each
other. In other words, γi,j includes CRPD of task τj caused
to the jobs of task τk, where τk has lower priority than τj ,
τk ∈ hp(i) ∩ lp(j). The detailed computation of γi,j is not
in the scope of this article.

Then, the worst case response time of task τi can be com-

DA B

CA

CB

CC

: activation of task

CD

C

: capacity of task

Figure 2: Four jobs released between the interval
[t, t+Di) of job of task τi

puted by:

Ri = Ci +
∑

∀j∈hp(i)

(⌈
Ri

Tj

⌉
· Cj + γi,j

)
(2)

As we can see, the priority of tasks in the set hp(i) must be
known to identify the set lp(j) and also hp(i) ∩ lp(j).

In [18], authors assumed that task priorities are preliminar-
ily assigned when computing γi,j . In the Audsley’s priority
assignment algorithm, the assessing task is assumed to have
the lowest priority so the set hp(i) can be computed. Other
tasks have higher priorities than the assessing task, however,
relative priorities between those tasks are unknown. As a re-
sult, the set lp(j) can not be computed and thus, it is not
possible to compute γi,j . To perform priority assignment
taking into account the impact of CRPD, we need a method
to solve this issue.

3. OVERVIEW OF THE APPROACH
In this section, first, we give the basic ideas of our approach.
Then, we point out some issues raised by our approach.

The idea of the approach is based on the feasibility test
in [2]. Contrary to the approach of [18] which consists of
computing the task worst case response time, we verify the
feasibility for each job of those tasks during the feasibility
interval.

A task is schedulable if its jobs released during the feasibility
interval can meet their deadlines. Assuming a job of task τi
is released at time t and has a deadline Di, the job of task
τi will experiment interference Ii caused by jobs of higher
priority tasks during the interval [t, t + Di). Then, the job
of task τi is feasible if:

Ci + Ii < Di (3)

Ii may include three different delays. First, it may include
the execution time of jobs of tasks in hp(i) which are released
during the interval [t, t+Di). Second, Ii may also include the
CRPD caused by those jobs directly or indirectly preempting
a job of task τi. Finally, Ii may include the CRPD caused
by the those jobs preempt each other.

We focus on how to compute the upper-bound CRPD caused
by those jobs of tasks in hp(i) preempt each other, the third
delay component. Figure 2 hows an example in which we as-
sume that we have four jobs of higher priority tasks released
between [t, t + Di). We also assume that the processor is
idle before t. As priorities of tasks are unknown, computing
cumulative CRPD is a problem.

One may wonder if task B preempts task A or not and would
task C preempt task A or task B. We analyze those prob-
lems in sections 3.1 and 3.2. Because of the complexity of
the problems, we chose to assess the CPRD of a set of jobs
by creating a tree structure, which is presented in the next
section.

In addition, these problems are also the reason we have to
verify the feasibility of each releases of those tasks instead
of computing the worst case response time.

3.1 Identifying relevant preemptions
The first problem is that with unknown task priorities, it
is impossible to identify the preemptions that will occur.
However, we can assess the jobs released during an interval
and find the highest cumulative CRPD. The assessment is
based on the job capacities, the release times and also CRPD
between tasks.

A preemption may occur if the conditions of a potential pre-
emption hold.

Definition 1. A potential preemption could be defined as
the preemption between two jobs m and n of τi and τj , which
could occur if release(τmi) > release(τnj) and finish(τnj) >
release(τmj). Those conditions are defined based on the
work in [7].

We also have to consider the case where a task is preempted
several times. As we can see in the figure 2, if task A has
the lowest priority, it will be preempted by task B and then
later by task D.

It is also important to notice that we should take into ac-
count the CRPD caused by indirect preemptions. For ex-
ample, if task B preempts A and then C preempts B, then
C can remove useful data of A in the cache.

Finaly, not every preemption causes CRPD. Thus, the high-
est number of preemptions could not correspond to the high-
est value of cumulative CRPD.

3.2 Implicit priority policy
A second issue is related to priority. When we have several
tasks which were preempted and which are waiting for the
processor, there could be an implicit priority policy was set.

We illustrate this problem by an example. If task B can
preempt A, it means that the priority of task B is higher
than A. If task C preempts B, then, at the time that B
finishes, B should be executed first. In case later we have
an activation of task D, D could preempt B. In other words,
if B preempted A, D will not preempt A.

A B

CB

CA A

A B

CC

C

B

CAB

1

2

3 C

Figure 3: An example of computing the tree with 3
jobs. Only the decisions of the scheduler to choose
which task to run are shown.

In conclusion, we have two problems to compute the maxi-
mum CRPD of a set of task releases when task priorities are
unknown. In the next sections, we propose a mean to solve
them by building a tree structure.

4. CRPD TREE
In this section, we present our method to deal with problems
listed above in order to compute the third delay component
of Ii. First, we introduce the CRPD tree, which is a tool
used to assess the CRPD of a set of jobs. Second, we show
how to compute the tree and provide an example to demon-
strate the method.

For a set of jobs with unknown task priorities, we use a
tree structure to compute all preemption schemes. Second,
the conditions of relative priority between tasks, which is
related to a specific cumulative CRPD value. The result of
the computation includes two parts. The first part is the
possible cumulative CRPDs for this set. The second part
is the conditions of relative priority between tasks, which is
related to a specific cumulative CRPD value.

The tree T = (N,E) is defined by N , the set of node and
E, the set of edge. Each node n of N models a running
job at a point of time. Each node n is defined by a 4-uplet
(a, b, c, d,) where a is a point in time, b a task name, c the
remaining capacity of the task and d its CRPD. Each edge
e from E models a decision of the scheduler. We can have
three types of edges modeling three different events during
scheduling: allowing preemption, not allowing preemption,
choosing a job in the set of jobs waiting to be run.

4.1 How to compute the tree
In this section, we present how the tree can be built from a
set jobs of tasks. The tree is computed by using a recursive
algorithm. The main idea is to assess all higher priority jobs
released between the time interval [t, t+Di) of job released
at t of task τi. Jobs are ordered according to their release
times. We start from the first job. At the release time of
the job, we check if there are any previous jobs which are
running or which are ready to run.

• If there are no jobs, we add a node to the tree, to mark
the activation of the current job.

• If there is a job running, we add 2 nodes. One node

12, A, 1, 0

7, C, 3, 0

8, A, 1, 1 8, C, 2, 0

12, A, 1, 0

9, C, 2, 0 10, A, 1, 0

Figure 4:

represents the preemption occurred and one node rep-
resents the preemption did not occur, as can be seen in
Figure 3 when assessing the activation of job of task B
(second job). By doing that, we can analyse all possi-
ble preemption decisions of the scheduler, which is the
problem presented in section 3.1.

• If there are q jobs ready to run, we have to add q + 1
nodes with one additional node presents the current
checking job. The new nodes represents the different
decisions of the scheduler to choose a job to run, as can
be seen when assessing the activation of job of task C
(third job) in the right branch of Figure 3. When the
job of task C is activated, the scheduler has to choose
to run task A, which was prempted by B, or task C.
In addition, it is also important to take the relative
priority problem in section 3.2 into account when we
have this case.

Then, we move on the next job. The algorithm finishes when
all jobs are checked.

We also see that in the left branch of Figure 3, there is an
extra node of job of task B added. It is because this job
executes when job of task A is finished but job of task C is
not released.

4.2 Example
In this section, we present an example to illustrate the algo-
rithm. We use the task set of Table 1. We test if task B is
feasible with priority level 3. The first release of B at time
point 0 is feasible, we skip the presentation of this test. We
check the second release of B at time point 7.

In the duration [7, 7+DB), there are three releases: (C, 7, 2),
(A, 8, 1) and (A, 12, 1). The assumption about CRPD is that
crpd(A,C) = 1. The interference caused by the capacity of
3 jobs is 5 units of time.

Figure 4 is the output of the algorithm. If the release of C at
7 is preempted by release of A at 8, there is 1 unit of CRPD

Figure 5: Scheduling simulation of left branch

Figure 6: Scheduling simulation of right branch

added to the capacity of C, as can be seen in Figure 5. If
not, we have the scheduling simulation as seen in Figure 6.

if A preempts C => I7B = CB + 5 = 7 = DB

if A doesnot preempt C => I7B = CB + 5 + 1 = 8 > DB

From this analysis, we can see that task B can be feasible
at priority level 3 if the task A does not preempt task C. It
means that A has lower priority than C. When continuing
the test, we see that both A and C cannot be feasible at
priority level 3 and B is feasible with a condition. As men-
tioned in section 3, the task set is feasible if we assign task
A, B, C priority level 2, 3 and 1, respectively.

5. EVALUATION
To evaluation our algorithm, we first analyze its complex-
ity and then, we compare its results to a classical priority
assignment algorithm such as the Audsley algorithm.

5.1 Complexity of the algorithm
The complexity of Audsley’s optimal priority assignment al-
gorithm is O((n2 +n) ·E), where E is the complexity of the
feasibility test.

In our algorithm, for each feasibility test we have to cre-
ate one CRPD tree with a complexity about F . Thus, the
complexity becomes O(((n2 + n) · E) · F)

To compute F , the complexity of the tree, we must compute
the number of nodes in the tree. The number of nodes in
the tree depends on how many potential preemptions and
implicit priority occur (see section 3.1 and 3.2). Indeed,
we have one potential preemption, we need to add two new
nodes.

In the worst case, build the tree has a complexity similar
to the complexity of performing scheduling simulation with
all possible priority assignment schemes. Then If we have
n priority levels and m jobs released during an interval, the
worst case number of node is about n! ∗m.

Task Ci Ti Di Oi Audsley According
to CRPD

A 1 10 1 4 1 2
B 1 10 2 5 4 4
C 5 20 6 0 2 1
D 8 40 9 7 3 3
E 8 40 14 27 6 6
F 6 40 30 0 5 5

Table 2: Comparing our algorithm to the Audsley
priority assignment algorithm

5.2 Applying our algorithm to the Audsley’s
case study

To evaluate the priority assignment algorithm with updated
feasibility test, we compare its results with the Audsley’s al-
gorithm. The task set example in table 2 has been proposed
in [2] to access the efficiency of the Audsley algorithm.

We apply our priority assignment algorithm on this case
study with the following assumption on CRPD: crpd(A,C) =
1, crpd(B,D) = 1, crpd(C,E) = 1 and crpd(B,F) = 1.

In the Table 2, the column 5 shows priority assigned by
Audsley algorithm and the column 6 the priorities assigned
by the algorithm proposed in this article.

From this case study, we can see that the algorithm with
our updated feasibility test lowering the priority of task A
because of the assumption crpd(A,C) = 1. This assumption
makes task C not schedulable at priority level 2. Thus, task
set is not schedulable with the the original priority assign-
ment while is it schedulable with ours.

6. RELATED WORKS
In this section, first, we present related works to priority
assignment algorithms. Second, we discuss about the com-
putation of CRPD and its integration in scheduling analysis.

One of the most known priority assignment result is the Liu
and Layland [13] one which showed that for synchronous
periodic tasks with deadlines on requests Rate Monotonic is
the optimal priority assignment algorithm.

Latter, assumptions on task release times and deadlines have
been relaxed. For example, Leung and Whitehead [11] showed
that for synchronous tasks with deadlines less than or equal
to their periods Deadline Monotonic (DM) is optimal in-
stead. Furthermore, audsley [2] addressed asynchronous pe-
riodic tasks with arbitrary deadlines.

Davis and Burns [6] improved Audsley’s algorithm by taking
tolerable interference into account. The algorithm assigns
priority to a task, which is not only feasible but also can
tolerate highest number of interference.

Finally, Wang et al [21] proposed preemption threshold to
improve the schedulability and to reduce preemption over-
head. However, in their models, the preemption cost is as-
sumed to be zero.

Most of the research in priority assignment algorithms on

single-processor systems have mainly focused on finding the
optimal priority assignment algorithm for specific system
models. To the best of our knowledge, there is no research
in the domain of priority assignment taking CRPD into ac-
count.

However, with the arrival of multiprocessor architectures in
embedded real-time systems, many works have been made
on CRPD computation. The computation of CRPD, when
a preemption occurs, is based on the two classical analysis
methods called Useful Cache Blocks [10] and Evicting Cache
Blocks [3]. Both of them have lead to many extensions [10,
3, 19, 1].

Then, the integration of CRPD into fixed priority scheduling
analysis can be made by adding CRPD into the worst case
response time equation [10, 3, 17],

Scheduling analysis with CRPD and dynamic scheduling has
also been investigated. Ju et al.[9] and Luniss et al.[15]
developed CRPD analysis for pre-emptive Earliest Deadline
First (EDF) scheduling.

In addition, feasibility tests, which took CRPD into account
or not, obviously assumed that priorities of tasks are known,
which is not the case in this article.

7. CONCLUSIONS
In this article, we presented an approach to perform priority
assignment with CRPD. The problem we are dealing with
is the lack of feasibility tests taking into account the impact
of CRPD, in order to be applied during priority assignment.

We used Audsley’s optimal priority assignment algorithm
and extended the original feasibility test proposed in [2]
to consider the impact of CRPD. The approach consists in
verifying the feasibility of each job of each task during its
feasibility interval while accounting the interference due to
jobs of higher priority tasks. CRPD is a part of this inter-
ference. The algorithm to compute the CRPD due to by
jobs of tasks with unknown relative priorities handles a tree
structure storing potential preemptions. We have evaluated
this algorithm by comparing its performances with classical
priority assignment algorithms.

There are many open problems that we could address in the
future. First, we have not investigated the optimality of
the method. Second, the complexity of the method has to
be precisely characterized. Finally, we plan to investigate
how to combine the feasibility test with the memory layout
optimization as suggested in [14].

8. REFERENCES
[1] S. Altmeyer, R. I. Davis, and C. Maiza. Pre-emption

cost aware response time analysis for fixed priority
pre-emptive systems. 32nd RTSS, 2011.

[2] N. C. Audsley. Optimal priority assignment and
feasibility of static priority tasks with arbitrary start
times. Citeseer, 1991.

[3] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil,
and A. Wellings. Adding instruction cache effect to
schedulability analysis of preemptive real-time
systems. In Real-Time Technology and Applications

Symposium, 1996. Proceedings., 1996 IEEE, pages
204–212. IEEE, 1996.

[4] L. Cucu and J. Goossens. Feasibility intervals for
fixed-priority real-time scheduling on uniform
multiprocessors. In Emerging Technologies and
Factory Automation, 2006. ETFA’06. IEEE
Conference on, pages 397–404. IEEE, 2006.

[5] R. I. Davis. Burns standard notation for real-time
scheduling. In Proceedings of the conference organized
in celebration of Professor Alan Burns sixtieth
birthday, page 38.

[6] R. I. Davis and A. Burns. Robust priority assignment
for fixed priority real-time systems. In Real-Time
Systems Symposium, 2007. RTSS 2007. 28th IEEE
International, pages 3–14. IEEE, 2007.

[7] R. Dobrin and G. Fohler. Reducing the number of
preemptions in fixed priority scheduling. In Real-Time
Systems, 2004. ECRTS 2004. Proceedings. 16th
Euromicro Conference on, pages 144–152. IEEE, 2004.

[8] M. Joseph and P. Pandya. Finding response times in a
real-time system. The Computer Journal,
29(5):390–395, 1986.

[9] L. Ju, S. Chakraborty, and A. Roychoudhury.
Accounting for cache-related preemption delay in
dynamic priority schedulability analysis. In Design,
Automation & Test in Europe Conference &
Exhibition, 2007. DATE’07, pages 1–6. IEEE, 2007.

[10] C.-G. Lee, H. Hahn, Y.-M. Seo, S. L. Min, R. Ha,
S. Hong, C. Y. Park, M. Lee, and C. S. Kim. Analysis
of cache-related preemption delay in fixed-priority
preemptive scheduling. Computers, IEEE
Transactions on, 47(6):700–713, 1998.

[11] J. Y.-T. Leung and J. Whitehead. On the complexity
of fixed-priority scheduling of periodic, real-time tasks.
Performance evaluation, 2(4):237–250, 1982.

[12] C. Li, C. Ding, and K. Shen. Quantifying the cost of
context switch. In Proceedings of the 2007 workshop on
Experimental computer science, page 2. ACM, 2007.

[13] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM),
20(1):46–61, 1973.

[14] W. Lunniss, S. Altmeyer, and R. I. Davis. Optimising
task layout to increase schedulability via reduced
cache related pre-emption delays. In Proceedings of the
20th International Conference on Real-Time and
Network Systems, pages 161–170. ACM, 2012.

[15] W. Lunniss, S. Altmeyer, C. Maiza, and R. I. Davis.
Integrating cache related pre-emption delay analysis
into edf scheduling. University of York, York, UK,
Technical Report YCS-2012-478. Available from
http://www-users. cs. york. ac. uk/˜ wlunniss, 2012.

[16] F. Singhoff, J. Legrand, L. Nana, and L. Marcé.
Cheddar: a flexible real time scheduling framework. In
ACM SIGAda Ada Letters, volume 24, pages 1–8.
ACM, 2004.

[17] J. Staschulat and R. Ernst. Scalable precision cache
analysis for preemptive scheduling. In ACM SIGPLAN
Notices, volume 40, pages 157–165. ACM, 2005.

[18] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling
analysis of real-time systems with precise modeling of
cache related preemption delay. In Real-Time Systems,

2005.(ECRTS 2005). Proceedings. 17th Euromicro
Conference on, pages 41–48. IEEE, 2005.

[19] Y. Tan and V. Mooney. Timing analysis for
preemptive multitasking real-time systems with
caches. ACM Transactions on Embedded Computing
Systems (TECS), 6(1):7, 2007.

[20] H. N. Tran, F. Singhoff, S. Rubini, and J. Boukhobza.
Instruction cache in hard real-time systems: modeling
and integration in scheduling analysis tools with aadl.
In The 12th IEEE International Conference on
Embedded and Ubiquitous Computing. IEEE, 2014.

[21] Y. Wang and M. Saksena. Scheduling fixed-priority
tasks with preemption threshold. In Real-Time
Computing Systems and Applications, 1999.
RTCSA’99. Sixth International Conference on, pages
328–335. IEEE, 1999.

