
HAL Id: hal-01166136
https://hal.univ-brest.fr/hal-01166136v1

Submitted on 18 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Teaching Real-Time Scheduling Analysis with Cheddar
Frank Singhoff, Alain Plantec, Stéphane Rubini, Hai-Nam Tran, Vincent
Gaudel, Jalil Boukhobza, Laurent Lemarchand, Shuai Li, Etienne Borde,

Laurent Pautet, et al.

To cite this version:
Frank Singhoff, Alain Plantec, Stéphane Rubini, Hai-Nam Tran, Vincent Gaudel, et al.. Teaching
Real-Time Scheduling Analysis with Cheddar. 9ème édition de l’Ecole d’Eté “ Temps Réel ”, Aug
2015, Rennes, France. �hal-01166136�

https://hal.univ-brest.fr/hal-01166136v1
https://hal.archives-ouvertes.fr


Teaching Real-Time Scheduling Analysis with
Cheddar

Frank Singhoff 1, Alain Plantec 1, Stéphane Rubini 1, Hai-Nam Tran 1, Vincent Gaudel 1, Jalil Boukhobza 1,
Laurent Lemarchand 1, Shuai Li 1, Etienne Borde 2, Laurent Pautet 2, Jérôme Hugues 3,

Pierre Dissaux 4, Jérôme Legrand 4, Christian Fotsing 5, Blandine Djika 5

1Lab-STICC CNRS UMR 6285, UBO, UEB, 20 av Le Gorgeu, 29200 Brest, France
Email: firstname.lastname@univ-brest.fr

2Institut Mines-Telecom, TELECOM ParisTech, LTCI CNRS UMR 5141, 46 rue Barrault, 75013 Paris, France
Email:firstname.lastname@telecom-paristech.fr

3Université de Toulouse, ISAE, 10 Av. E. Belin, 31055 Toulouse Cedex 4, France
Email: jerome.hugues@isae.fr

4Ellidiss Technologies, 24 Quai de la Douane, 29200 Brest, France
Email:firstname.lastname@ellidiss.com

5Institut Universitaire de la Côte, BP 3001, Douala, Cameroun
Email:firstname.lastname@myiuc.com

Abstract—This article is a presentation of the Cheddar toolset.
Cheddar is a GPL open-source scheduling analysis tool. It has
been designed and distributed to allow students to understand the
main concepts of the real-time scheduling theory. The tool is built
around a simplified ADL (Architecture Description Language)
devoted to real-time scheduling theory. Students can directly build
their real-time systems models with this ADL and its associated
editor, however, it is expected that they use modeling tools to
illustrate how scheduling analysis fits in an engineering process.
In this article, we introduce the Cheddar ADL and the scheduling
analysis features of Cheddar. We also present how Cheddar is
implemented and how it can be adapted to specific requirements.
Two examples of use of Cheddar are then described. Finally, in
the annex of this article, teachers may find a sample of hand-outs
that may be used to illustrate real-time scheduling theory with
their students.

I. INTRODUCTION

This article is a presentation of the Cheddar toolset, a GPL
open-source scheduling analysis tool [1]. This tool addresses
the verification of real-time critical systems.

Real-time critical systems have to meet hard timing con-
straints implied by their environment. Safety failures, including
violation of timing constraints, could lead to life losses or
environmental damages for this kind of systems [2]. Real-time
scheduling theory provides algebraic methods and algorithms
in order to perform timing constraint verifications [3]. Real-
time scheduling theory foundations were proposed in the
1970s [4] and have led to extensive researches [5].

This theory provides several ways to perform scheduling
analysis. Most of the time, scheduling analysis is achieved
either with feasibility tests or with scheduling simulations.

A feasibility test is an analytical method which usually
allows designers to compute performance criteria in order to
assess if task deadlines will be met.

Scheduling simulation to assess schedulability consists in
applying scheduling algorithms during a period of time in order
to compute the schedule of the system. A designer can then
check during this period of time if no deadline is missed. It is
usually expected to compute such a schedule for a period of
time large enough in order to capture all possible states of the
system. In this case, we call such period of time a feasibility
interval [6].

Several tools implement those scheduling analysis meth-
ods. MAST [7], Rapid-RMA [8], SymTa/S [9] and Cheddar [1]
are examples of them. Cheddar has been more specifically
designed to be devoted to students, in order to present them
the main concepts of the real-time scheduling theory. In this
article, we give a short overview of the analysis features
currently implemented into Cheddar.

All those scheduling analysis tools handle models of the
real-time systems to verify. Architecture Description Lan-
guages (or ADL in the sequel) can be used to express such
models. ADL are languages that allow designers to specify, for-
mally or not, the design of a system. Various ADLs have been
proposed in the context of critical real-time systems. UML-
MARTE [10], EAST ADL [11], Fractal [12] or AADL [13]
are some of them.

Usually, those ADLs provide the abstraction of compo-
nents, connections and deployments [14]. A component is an
entity modeling a part of the system. Many ADLs allow the
specification of both hardware parts and software parts of
the system with dedicated kinds of components. Connections
usually model relationships between components and finally,
deployments specify how software components are deployed
on hardware components, i.e. how the resources of the system
are shared.

Cheddar is built around a simple ADL devoted to real-time
scheduling theory: Cheddar ADL. Students can directly build



their real-time system models with this ADL and its associated
editor. However, it is expected that they use specific modeling
tools and their related ADLs to illustrate how scheduling
analysis fits in an engineering process. In this article, we
introduce Cheddar ADL and we present its main concepts.

Model-Driven Engineering (MDE) [15] aims at facilitating
the specification and the implementation of specific languages,
systems and tools through the use of models.

Models that can be specified not only permit precise system
documentation but also serve as input for automatic or semi-
automatic production of the system and of its verification.
In the context of the Cheddar project, the MDE is inten-
sively used. Indeed, a significant part of Cheddar tools is
automatically generated. These tools can be used standalone
or integrated within tool-chains. Integrating our tools within
existing tool-chains also raises interoperability issues that
may be controled thanks to MDE processes. In this article,
we explain how MDE has been applied when implementing
Cheddar.

Finally, having a scheduling analysis tool and a model-
ing language are not enough to achieve scheduling analysis.
Putting scheduling analysis tools in the engineering process is
also a tedious task. In this article, we illustrate how scheduling
analysis tools can take place in a software engineering process
with two examples of use of Cheddar.

Then, in the rest of this article, we first introduce Cheddar
ADL. In section 3, a brief summary of the scheduling analysis
features of Cheddar is also presented. In section 4, we shortly
explain how the Cheddar tools can be automatically produced
thanks to a MDE process. Finally, two typical examples of use
of the Cheddar tools are exposed in section 5.

II. CHEDDAR ADL: A SPECIFIC ADL FOR SCHEDULING
ANALYSIS

In this section, we present Cheddar ADL, the ADL that we
have designed to model software and hardware architectures in
the specific perspective of scheduling analysis. The mainstream
ADLs such as AADL [16] and MARTE [17] are very powerful
to describe real-time systems and some experiments to apply
Cheddar on such standard ADLs have been done [18], [19].

However, for the purpose of scheduling validation, addi-
tional tools and tool-chains may be used. In fact, scheduling
verifications involve not only a subset of those mainstream
ADLs modeling capabilities but also require specific informa-
tion or computations.

Cheddar ADL and related tools are domain specific. Their
modeling and their implementation are the results of a Model
Driven Engineering (MDE) process tooled with a specific
infrastructure. Whereas the use of the MDE facilitates the
building of new releases of Cheddar ADL and of our existing
tools, it also facilitates the building of new tools.

In the sequel, we first define the concepts introduced by this
ADL. Then, we describe scheduling analysis that are expected
to be run on models expressed with Cheddar ADL.

Basically, the main concepts manipulated through Cheddar
ADL come from the real-time scheduling theory. The only
purpose of Cheddar ADL is to model the concepts required to

perform scheduling analysis techniques that we usually present
to students. Real-time systems are then modeled as a set of
entities with various attributes. For example, the concept of
task is one of the main concepts and is defined with classical
attributes such as deadline, period and capacity. An exhaustive
list of both entities and attributes is given in the Cheddar ADL
user guide [20].

To support real-time scheduling theory core concepts, the
Cheddar ADL implements two types of entities: hardware
components and software components. Hardware components
represent the resources provided by the environment. Software
components model the resource requirements : they are de-
ployed onto hardware components.

Fig. 1. Cheddar ADL main hardware components.

Cheddar provides limited capabilities to model hardware
components. Indeed, real-time scheduling theory usually as-
sumes simple models of hardware. On the contrary, software
parts of a system are modeled in a more detailed way.

As shown in Figure 1, hardware components can be of
three kinds. (1) Core components model entities providing
a resource to sequentially run flows of control. (2) Cache
components model memory caches related to one or several
cores. (3) Processors components are composed of sets of
cores and caches.

Software components can be deployed on either core or
processor components. Those deployments model two kinds of
component connections that allow designers to express either
global scheduling or partitioned scheduling [21]. The design
of the software part of a real-time system can be specified with
five component types. These component types are depicted by
Figure 2. (1) Address space components model a group of
resources that can be accessed. They may be associated to
an address protection mechanism. (2) Task components model
flows of control. They are statically connected to address
space components. (3) Resource components may model any
data structure, shared by tasks or not, synchronized or not.
They may be accessed through classical priority inheritance
protocols such as PCP [22]. They may model asynchronous



Fig. 2. Cheddar ADL main software components.

communications between tasks located in the same address
space. Resource components are statically connected to ad-
dress space components. (4) Buffer components model queued
asynchronous data exchanges between tasks located in the
same address space. (5) Message components model queued
asynchronous data exchanges between tasks located in differ-
ent address spaces. Buffer, resource and message components
specify types of connection between components, i.e types of
dependencies between tasks.

<c o r e u n i t i d =” 16 ”>
<name>core1 </name>

<s c h e d u l e r t y p e >POSIX 1003 HIGHEST
PRIORITY FIRST PROTOCOL

</ s c h e d u l e r t y p e >
<p r e e m p t i v e t y p e>

PREEMPTIVE
</ p r e e m p t i v e t y p e > . . .

<mono core processor i d =” 17 ”>
<name>Soc Leon4 </name>
<c o r e r e f =” 16 ” / > . . .

<p e r i o d i c t a s k i d =” 19 ”>
<name>RW Data</name>
<cpu name>Soc Leon4 </ cpu name>
<c a p a c i t y >2</ c a p a c i t y >
<d e a d l i n e >200</ d e a d l i n e>
<p e r i o d >200</ p e r i o d> . . .

<s p o r a d i c t a s k i d =” 20 ”>
<name>Gyro Data </name> . . .

<p e r i o d i c t a s k i d =” 21 ”>
<name>DSS Data</name> . . .

Fig. 3. Example of a Cheddar ADL model for the AOCS system.

Figure 3 shows a simple model of a real-time system
specified with the Cheddar ADL. This is a model for the
scheduling analysis of an Attitude and Orbital Control System
(AOCS) of a spacecraft case study [23], [24]. An AOCS
maintains the spacecraft orbit and ensures the spacecraft is
oriented to achieve the expected functionality. This subsystem
consists of a set of redundant sensors and actuators such as
sun/star and earth sensors, gyroscopes, momentum wheels,

reaction wheels, magnetic torquers, thrusters, and solar array
and trim tab positioners.

This AOCS is composed of several tasks:

• RW Data Task: the Reaction Wheels (RW) actuator
controls the movement of the spacecraft.

• DSS Data Task: the Digital Sun Sensor (DSS) keeps
track of the spacecraft’s orientation in relation to the
position of the sun.

• Gyro Data Task: the Rate Gyro Sensor detects the
rotation of the spacecraft; this sensor data is sporadic
because normally it has a different clock rate so the
data can contain some jitter.

• Command Actuators Task: applies a set of com-
mands defined by the Control Law task to keep the
spacecraft in its orientation and pointing.

• Control Law Task: implements the basic control
laws and is therefore responsible for maintaining the
spacecraft orientation to a defined point.

• IRES Data Task: the InfraRed Earth Sensor (IRES)
scans a large field of view and then detects signals at
the Earth/Space transitions.

The software part of this example is composed of several
periodic and sporadic tasks. For example, tasks RW Data
and DSS Data are periodic while Gyro Data is sporadic.
They are all defined by their respective period, capacity and
deadline. The hardware part only models a processor (called
Soc Leon4) including two cores (called core1 and core2).

III. ANALYSIS FEATURES PROVIDED BY CHEDDAR

From a Cheddar ADL model, real-time scheduling the-
ory provides various ways to perform scheduling analysis:
verifications can be performed either with feasibility tests or
with scheduling simulations on the feasibility interval. Cheddar
implements classical methods of both verification techniques in
order to illustrate to the student how scheduling analysis can
be driven. In this section, we first introduce feasibility tests
implemented into Cheddar and then, we present its scheduling
simulation features.

Fig. 4. Scheduling analysis of the AOCS system by Cheddar.



A. Scheduling analysis with feasibility tests

One of the very first feasibility tests usually presented
to students is the Liu and Layland feasibility test for uni-
processor real-time systems [4] based on equation (1):

U =

n∑
i=1

Ci

Pi
(1)

This equation computes the processor utilization factor
U . In the context of a fixed priority preemptive scheduling
policy with priorities assigned according to Rate Monotonic,
if U ≤ n(̇2

1
n − 1) then the system, under the Liu and

Layland conditions, is schedulable, i.e. all tasks will meet their
deadline. For this type of architecture, this feasibility test is a
sufficient but not necessary schedulability condition.

The Cheddar tool implements various feasibility tests.
Processor utilization feasibility tests can be applied on other
scheduling policies. Furthermore, worst case response time
can be computed on periodic tasks, organized or not in
linear/graph transactions [25]. Those worst case response time
can integrate delays related to shared resources (i.e. shared
resource blocking time [22]). Finally, few feasibility tests for
hierarchical architectures have also been implemented in order
to explain to students the main concepts of compositional
analysis [26].

As an example, the AOCS system described in Figure 3 is
compliant with the feasibility test presented in [27]. Applying
this feasibility test leads to the result presented in Figure 4.

It is not possible to analyze all systems by feasibility
tests, and some theoretical results are often known as being
too pessimistic. That’s why additional techniques such as
simulation can help to increase the confidence the designer
has on his/her design. We discuss this issue in the sequel.

B. Scheduling analysis with simulations

Cheddar implements several classical scheduling algo-
rithms. Students may experiment classical schedulers such
as Rate Monotonic, Deadline Monotonic, EDF, LLF, MUF,
POSIX 1003 policies, both preemptive and non preemptive.
Those algorithms have been implemented in the context of
uniprocessor scheduling and also in the context of global
multiprocessor scheduling. Global scheduling is also illustrated
to the student by a specific global multiprocessor scheduling
(e.g. Proportionate Fair [28]) and two task migration policies.
The tool also implements non real-time policies (i.e. round-
robin and time sharing policies) allowing the students to
compare and understand specificities of real-time scheduling
policies. Furthermore, hierarchical scheduling is illustrated by
an implementation of the ARINC653 scheduling policies and
several classical aperiodic servers (deferable, sporadic, priority
exchange).

Scheduling simulations can be run for usual task models
such as periodic, aperiodic, sporadic, GMF tasks or task re-
leased according to a Poisson process. Tasks can be constrained
by dependencies related to shared resources, precedence or
communication task relationships. Tasks may also be organized
in linear or graph transactions. Again, classical policies have

been implemented for the students. For example, a student
can design architecture models with PIP, ICPP, PCP or FIFO
shared resource protocols. During the design phase, he can
also experiment various priority assignment algorithms such as
Rate Monotonic [4], Deadline Monotonic [29], the Audsley’s
algorithm [30] or one devoted to architectures with caches [31].

From an architecture model, various performance criteria
can be extracted from scheduling simulation: worst/best/aver-
age response time, probability distribution of response time,
worst/best/average shared resource blocking time, number of
context switch or preemption, deadlock, priority inversion or
specific properties defined with a domain specific language.

Furthermore, specific schedulers or task models can be also
specified with the help of the Cheddar ADL. Those specific
schedulers allow users to extend the scheduling analysis ca-
pability without a deep understanding of Cheddar design and
implementation. This feature allows users to quickly adapt the
scheduling verification tool to their needs (i.e. implementing a
scheduling method which does not exist yet in Cheddar).

In the sequel, we show how to implement such specific
schedulers with Cheddar. Equation 2 specifies a Density value
scheduler [32] which does not exist in the current implemen-
tation of Cheddar.

Priority(i) = V alue at time(i)/Computation time (2)

Figure 5 shows the implementation of this scheduler with
the Cheddar ADL and how such a user-defined scheduler
can be used to define a new processor type with our AOCS
example. With this architecture model, algorithm of Figure 5
is supposed to be stored in a separate file called aocs dvs.sc.

Basically, the priority section expresses how priorities
have to be computed at each unit of time during simulation
and election section describes how to select the task to run
when priorities have been computed: here, we select the task
with the highest aocs dvs priority priority.

s t a r t s e c t i o n :
a o c s d v s p r i o r i t y : array

( t a s k s r a n g e ) of i n t e g e r ;
i : i n t e g e r ;

end s e c t i o n ;

p r i o r i t y s e c t i o n :
f o r i in t a s k s r a n g e loop

a o c s d v s p r i o r i t y ( i ) : =
t a s k s . v a l u e ( i ) /
t a s k s . r e s t o f c a p a c i t y ( i ) ;

end loop ;
end s e c t i o n ;

e l e c t i o n s e c t i o n :
re turn max to index ( a o c s d v s p r i o r i t y ) ;

end s e c t i o n ;

Fig. 5. Example of a Cheddar program modeling a Density value scheduler.
Those statements are activated by an automaton during scheduling simulations.



C. Conclusion

In this section, we have presented the main analysis fea-
tures implemented into Cheddar. Scheduling analysis can be
performed either with feasibility tests or scheduling simulation.
Some of the features of Cheddar have not been described here.
The tool also provides various methods to assign priorities or
to perform partitioning. All those features are described in the
Cheddar user-guide [20].

However, using the Cheddar ADL alone remains difficult
for architecture designers. Indeed, Cheddar ADL concepts are
very close to real-time scheduling theory which may be not
usual concepts for architecture designers. Furthermore, as the
real-time scheduling theory, the ability of Cheddar ADL to
model hardware and operating system parts is limited.

In practice, it is expected that architecture designers per-
form the modeling activity with separate systems or software
engineering tools using standard modeling language such as
AADL or MARTE. The Cheddar ADL used together with
mainstream languages can offer extended modeling and val-
idation capabilities. We discuss this issue in the next sections.

IV. MODEL-DRIVEN PROCESS OF CHEDDAR

New hardware elements and products continuously arise
and have to be taken into account during the verification of
real-time systems. As a consequence, ADL based tools that
are used for the early verification of real-time systems are
often specific tools and are often subject to changes. This is
typically the case of Cheddar ADL.

To help keep Cheddar up-to-date according to use-cases,
a model driven process is used to automatically build a part
of the tool. In this section, we describe how some parts of
Cheddar are automatically produced from its meta-models. We
first describe how the infrastructure of Cheddar is specified,
validated and automatically generated through the use of a
meta-workbench. Then we focus on a more specific generating
process regarding the automatic implementation of specific
schedulers.

A. The Cheddar building process

As it is depicted in Figure 6, Cheddar is also a target
system that must be specifically specified, validated and built
through the use of a meta-workbench. Figure 6 shows two
dashed ellipsis which represent two iterations:

1) The inner iteration ellipsis is for the early validation
of timing constraints of the target system through the
use of Cheddar.

2) The outer iteration ellipsis is for the specification,
the validation and the generation of Cheddar itself.
Here, the process is twofold. First, the validation of
the meta-specifications must be achieved [33]. The
meta-specifications are made of the Cheddar ADL
meta-model (see Figures 1 and 2), of the Cheddar
language meta-model and of code generators. Then
late validation is processed through the use of Ched-
dar as explained in point 1.

Thanks to the MDE, a part of Cheddar is automatically
generated from its meta-models. The generated part includes

Parsing Code generating Represents aspects of

Cheddar

Analyser

Code 

generator
Checker

Target 

systemMeta-models 

implementation

Editor

Cheddar

ADL meta-

models in

EXPRESS

Meta-Workbench (Platypus)

Analyser

Code 

generator

Checker

Meta-meta-

models 

implementation

Editor

Cheddar 

ADL model

Cheddar

code

Compiling

Target system 

validation 

iterations

Cheddar 

validation 

iterations

Cheddar

ADL model 

internal 

representation

Cheddar ADL 

meta-models 

internal 

representation

Fig. 6. The MDE process for the building of Cheddar.

the meta-models entities implementation (i.e. corresponding
classes), a repository which is used to store and manage
Cheddar ADL models internal representations and a Cheddar
ADL model exchange component.

The meta-workbench Platypus [34] is used to implement
the code generators. All our meta-models, domain rules and
code generators are specified with the general purpose data
modeling language EXPRESS [35].

B. Building a specific scheduler

As we briefly describe in section III-B, in order to run
simulations, Cheddar provides a set of real-time schedulers and
their analysis tools. Some schedulers are already present into
Cheddar. Cheddar being implemented in Ada, those schedulers
are also implemented in Ada.

Specific schedulers or task models can be also imple-
mented. A specific scheduler can be written either in Ada or
with the Cheddar ADL (an example of a specific scheduler
is shown in Figure 5). Manually implementing a specific
scheduler in Ada is a tedious and error prone task. Using the
Cheddar ADL helps the designer as he has only to deal with
high-level and simpler concepts. As it is depicted in Figure 7,
with the Cheddar ADL, the process of implementing a specific
scheduler is made of three steps. (1) The scheduler is specified
by an automaton with the Cheddar ADL. Figure 5 shows a part
of such specification. (2) An interpreter of such automaton is
made available as a Cheddar tool. This interpreter is useful
to validate the specific scheduler. However, running specific
schedulers this way can be very time consuming. (3) In order
to speed up the running of a scheduler, the corresponding
Ada code can be automatically produced from the specification
of the scheduler written in the Cheddar ADL (the scheduler
automaton). The generated Ada code is integrated and a
new version of the Cheddar tools including the new specific
scheduler is then produced [36].

C. Conclusion

Supporting MDE with a comprehensive tool environment
is crucial, as many of the techniques promoted as necessary in



Cheddar

Scheduler generator

Scheduler 

automaton

(1)

Analyser

Code 

generator
(3)

Specific 

Scheduler

Interpreter

Checker

(2)

Parsing Code generating

Scheduler 

automaton 

internal 

representation

Fig. 7. The MDE process for the building of a specific scheduler.

MDE strongly depend on proper tool support [37]. Having a
well defined ADL helps in the building of a trusted real-time
system because it can serve as the core element for the tools
that are implemented in order to verify it. However, having
well defined ADL is just not enough. A complete and working
MDE environment must be used for the building of verification
tools. Moreover, reliable code generators must be specified and
interoperability between tools must be ensured.

The major difficulty lays in the specification of the meta-
models at the right abstraction level. Moreover, defining reli-
able specific meta-models is a long and costly task because
of the verification and the validation process that implies
tools building and adapting (specification of code generators,
refactoring of the analysis tools, ...). Another difficulty is the
integration of the generated code when Cheddar is embedded
in a tool chain. Indeed, it may be difficult to anticipate what are
the needs of the other tools. In the next section, we present two
examples of tool chains embedding Cheddar where integration
is achieved thanks to AADL.

V. INTEGRATION OF CHEDDAR IN AADL INSPECTOR
AND THE TASTE TOOL-CHAIN

As it has been explained in the previous sections, Cheddar
has been initially designed to be used as a standalone tool
for an academic usage. In that respect, it includes its own
Graphical User Interface to enter real-time models and display
the scheduling analysis results. Nevertheless, such a tool can
also be highly profitable for industry oriented environments
and modeling languages. This however requires a more mod-
ular usage of the tool and the development of additional
components to interface it to this new context. This is what
has been done to integrate Cheddar as an analysis plug-in of
the AADL Inspector tool, and of the Concurrency View editor
of the TASTE tool-chain (TASTE-CV).

In order to be able to use Cheddar as an analysis backend
while minimizing the interfacing issues, the Graphical User
Interface and some model input features have been separated
from the main scheduling analysis module. The result of this
engineering operation is a subset of Cheddar called Ched-
darKernel that can easily be integrated within a system or
software development environment. The containing tool must
thus provide new control and data interfaces with the user.

AADL Inspector (see Figure 8) is a model processing
framework that embeds a set of generic features to load real-
time models and convert them into the appropriate format to let

them be properly processed by various analysis or production
tools. Although AADL Inspector uses the AADL standard as
a base reference for its input models, it can also process UML
profiles such as SysML and MARTE or be coupled to graphical
editors such as the Stood tool. In the case of Cheddar, the input
model is converted into a corresponding representation in the
Cheddar ADL that has been presented before. Then, the results
of the analysis, either coming from the feasibility tests or the
simulation, are processed by the AADL Inspector Graphical
User Interface.

Fig. 8. AADLInspector embedding Cheddar.

AADL Inspector embeds other analysis plug-ins, and in
particular the Marzhin event-based simulation engine that
complements the timing analysis by adding a capability to
observe the behavior of non periodic systems. During the
SMART collaborative project [38], Cheddar has been used
as a reference tool to calibrate the Marzhin simulator. For
a set of input model test cases where the two tools could
provide a significant result, an automatic comparison of the
two simulation traces has been implemented for that purpose.

TASTE is a software development tool-chain that is devel-
oped by the European Space Agency and a team of subcon-
tractors [39]. TASTE supports a well defined design process
for embedded applications in the space domain. This process
includes modeling, verification, generation and testing phases
that are supported by dedicated tools. The scheduling analysis
phase is insured by the TASTE-CV tool which includes
Cheddar in a similar way as AADL Inspector does.

These examples show that Cheddar can also be profitable
to bring the benefit of early scheduling analysis into industrial
development environments and processes. The next section de-
scribe another use of Cheddar in a code generation framework.

VI. RAMSES: AADL MODELS REFINEMENT AND
SCHEDULING ANALYSIS

RAMSES1 is a model-to-model transformation framework
where both input and output models are based on AADL [40].

In MDE, model transformations play an important role:
they formalize in reusable artefacts (i.e. model transformation
source code), the implementation of recurrent design patterns
(e.g. safety or security design patterns), design decisions (e.g.

1Refinement of AADL Models for Synthesis of Embedded Systems



deployment of software components on hardware compo-
nents), or model refinements (e.g. transformation steps towards
code generation). Model refinements were first implemented in
RAMSES in order to evaluate the impact of code generation
patterns on Non-Functional Properties (NFP) of a real-time
embedded system. Figure 9 gives an overview of RAMSES.
The execution of RAMSES starts with (i) an input model, (ii) a
selected platform (among platforms supported by RAMSES),
and (iii) a selected set of analysis methods. The current ver-
sion of RAMSES supports ARINC653 and OSEK compliant
platforms.

Choose	  targeted	  	  
pla.orm`	  
	  
Choose	  intermediate	  	  
analysis	  

Ini$al	  AADL	  models	  

RAMSES	  
model	  

refinement	  

Reduced	  seman+c	  gap	  

Non-‐func$onal	  requirements	  
(scheduling,	  safety,	  memory	  footprint,	  etc.)	  

Refined	  
AADL	  model	  

ANALYSE	  ANALYSIS	  

RAMSES	  
code	  

generator	   Automa$cally	  
generate	  code	  

Fig. 9. RAMSES Overview.

Then, RAMSES transforms the input model into a refined
model: abstract AADL elements such as remote connections,
modes, health-monitoring configuration, and local connections
are transformed into tasks and shared variables. This intermedi-
ate model is then used for both code generation, and analysis
of NFPs. In particular, we have shown in [41] how AADL
Inspector (as an interface to Cheddar) could be combined with
RAMSES in order to provide a model-based evaluation of tasks
response times while taking into account the timing overheads
due to code generation.

This approach has been experimented on a use case in-
spired from the railway domain. These experiments, based
on ARINC653 operating system, have shown that overhead
due to tasks and partitions communication was not negligible
and required updates on the scheduling analysis after code
generation.

From a technical viewpoint, integration of AADL Inspector
and RAMSES was quite easy since both tools rely on AADL:
a standardized ADL. As a consequence, AADL Inspector
could be used both for scheduling analysis on the input
model and on the refined models. However, scheduling analysis
of intermediate models produced by RAMSES required to
evaluate worst case execution times of the generated code. This
was done in RAMSES by analyzing the intermediate AADL
models and generating new AADL models for timing analysis.
Depending on the complexity of the behavior expressed in the
input model, this analysis can be computation demanding as
it requires to analyze several scheduling scenarii [41]. AADL
Inspector was then launched as a command line tool in order
to automate the computation of tasks worst case response time

in each scheduling scenario. Launching AADL Inspector with
its graphical interface was also practical in order to verify the
content of models used for analysis.

The approach implemented in RAMSES has also been ex-
perimented for the evaluation of other NFPs (such as memory
consumption, and reliability) and other model transformations
such as safety and security design patterns. This work is being
pursued towards the composition of model transformations,
either as transformation chains [42] or using higher order
transformations [43].

VII. CONCLUSION

In this article, we have introduced Cheddar, a scheduling
analysis tool that can be used to teach real-time scheduling
analysis. We have presented Cheddar ADL, the input language
of Cheddar allowing users to express the design of their real-
time systems to analyze. We have also presented some of
the analysis features of the tools: the tools implements the
main concept and analysis methods about real-time scheduling
that are usually part of real-time systems Master-level curricu-
lum [44]. We have given few details about Cheddar imple-
mentation and the use of a model driven approach for such a
purpose. Finally, we have shown how to integrate a scheduling
analysis tools as Cheddar in two software engineering tool-
sets. This may help students to understand how scheduling
analysis can take place in a software engineering process. To
complete this presentation, this article is extended by an annex
where teachers may find a sample of hand-outs they can use
to illustrate real-time scheduling theory with their students.

VIII. ACKNOWLEDGMENTS

Cheddar is supported by Ellidiss Technologies, Conseil
régional de Bretagne, Conseil général du Finistère, BMO,
EGIDE/Campus France PESSOA number 27380SA and Thales
TCS.

REFERENCES

[1] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar : a Flexible
Real-Time Scheduling Framework,” ACM SIGAda Ada Letters, ACM
Press, New York, USA, vol. 24, no. 4, pp. 1–8, Dec. 2004.

[2] J. Stankovic, S. H. Son, J. Hansson et al., “Misconceptions about real-
time databases,” Computer, vol. 32, no. 6, pp. 29–36, 1999.

[3] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time
scheduling theory: A historical perspective,” Real-time systems, vol. 28,
no. 2-3, pp. 101–155, 2004.

[4] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environnment,” Journal of the Association for
Computing Machinery, vol. 20, no. 1, pp. 46–61, January 1973.

[5] J. Stankovic, M. Spuri, M. D. Natale, G. C. Buttazzo et al., “Implica-
tions of classical scheduling results for real-time systems,” Computer,
vol. 28, no. 6, pp. 16–25, 1995.

[6] L. Cucu and J. Goossens, “Feasibility intervals for fixed-priority real-
time scheduling on uniform multiprocessors,” in Emerging Technologies
and Factory Automation, 2006. ETFA’06. IEEE Conference on. IEEE,
2006, pp. 397–404.

[7] M. Harbour, J. Gutierrez, J. Drake, P. Martinez, and J. Palencia,
“Modeling distributed real-time systems with MAST 2,” Journal of
Systems Architecture, vol. 59, no. 6, pp. 331–340, Jun, 2013.

[8] T.-P. S. Inc., “Tri-pacific software inc. : RAPID-RMA,” 2014, http:
//www.tripac.com/rapid-rma.



[9] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the SymTA/s approach,” IEE
Proceedings - Computers and Digital Techniques, vol. 152, no. 2, p.
148, Mar, 2005.

[10] T. Frédéric, S. Gérard, and J. Delatour, “Towards an UML 2.0 profile
for real-time execution platform modeling.” Proceedings of the 18th
Euromicro Conference on Real-Time Systems (ECRTS 06), Work in
progress session, July 2006.

[11] V. Debruyne, F. Simonot-Lion, and Y. Trinquet, “EAST-ADL - An
architecture description language.” Book on Architecture Description
Languages, IFIP International Federation for Information Processing,
Springer Verlag, volume 176, 2005, pp. 181–195.

[12] P. Merle and J.-B. Stefani, “A formal specification of the Fractal
component model in Alloy.” INRIA Research Report 6721., November
2008.

[13] P. Feiler, B. Lewis, and S. Vestal, “The SAE AADL standard: A basis
for model-based architecture-driven embedded systems engineering,” in
Workshop on Model-Driven Embedded Systems, May 2003.

[14] N. Medvidovic and R. Taylor, “A classification and comparison frame-
work for software architecture description languages,” IEEE Transac-
tion on Software Engineering, vol. 26, no. 1, pp. 70–93, 2009.

[15] D. C. Schmidt, “Model-driven engineering,” IEEE Computer, vol. 39,
no. 2, February 2006.

[16] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language.
Addison-Wesley, 2012.

[17] M. OMG, “Modeling and analysis of real-time and embedded systems,”
Object Management Group, 2008.

[18] S. Li, F. Singhoff, S. Rubini, and M. Bourdellès, “Applicability of real-
time schedulability analysis on a software radio protocol,” ACM SIGAda
Ada Letters, vol. 32, no. 3, pp. 81–94, 2012-12.

[19] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Scheduling and
memory requirements analysis with aadl,” in ACM SIGAda Ada Letters,
vol. 25, no. 4. ACM, 2005, pp. 1–10.

[20] C. Fotsing, F. Singhoff, A. Plantec, V. Gaudel, S. Rubini, S. Li, H. N.
Tran, L. Lemarchand, P. Dissaux, and J. Legrand, “Cheddar architecture
description language,” Lab-STICC technical report., 2014.

[21] R. I. Davis and A. Burns, “A survey of hard real-time scheduling
for multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, pp.
35:1–35:44, Oct. 2011. [Online]. Available: http://doi.acm.org/10.1145/
1978802.1978814

[22] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance pro-
tocols: An approach to real-time synchronization,” Computers, IEEE
Transactions on, vol. 39, no. 9, pp. 1175–1185, 1990.

[23] K. Almeida, J. Craveiro, R. Pinto, and J. Rufino, “Spaceborne software:
typical spacecraft use-case and preliminary analysis of its timing re-
quirements,” in Technical Report READAPT Project TR-13-01, Lisbon,
Portugal, 2013.

[24] V. Gaudel, “Applicabilité des méthodes d’analyse et interopérabilité
des outils de développement pour systèmes embarqués temps-réel cri-
tiques,” Thèse de l’Université de Bretagne Occidentale, Brest, France,
Décembre 2014.

[25] S. Li, F. Singhoff, S. Rubini, and M. Bourdelles, “Extending schedu-
lability tests of tree-shaped transactions for tdma radio protocols,” in
Emerging Technology and Factory Automation (ETFA), 2014 IEEE.
IEEE, 2014, pp. 1–8.

[26] A. Easwaran, I. Lee, O. Sokolsky, and S. Vestal, “A compositional
scheduling framework for digital avionics systems,” in Embedded and
Real-Time Computing Systems and Applications, 2009. RTCSA’09. 15th
IEEE International Conference on. IEEE, 2009, pp. 371–380.

[27] M. Joseph and P. Pandya, “Finding response times in a real-time
system,” The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[28] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah, “A categorization of real-time multiprocessor scheduling
problems and algorithms,” Handbook on scheduling algorithms, meth-
ods, and models, pp. 30–1, 2004.

[29] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “real-
time scheduling: the deadline-monotonic approach,” in in Proc. IEEE
Workshop on Real-Time Operating Systems and Software, 1991, pp.
133–137.

[30] N. Audsley, “Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times,” Real-Time Systems, 1991.

[31] H.-N. Tran, F. Singhoff, S. Rubini, and J. Boukhobza, “Address-
ing cache related preemption delay in fixed priority assignment,” in
Proceedings of the 2015 IEEE Emerging Technology and Factory
Automation, ETFA 2015, Luxembourg, September, 2015, 2015.

[32] S. A. Aldarmi and A. Burns, “Dynamic value-density for scheduling
real-time systems,” in In Proceedings 11th Euromicro Conference on
Real-Time Systems, 1999, pp. 270–277.

[33] A. Plantec, “Faciliter la vérification et la validation de méta modèles
dans le cadre de l’ingénierie dirigée par les modèles : une approche
agile outillée et orientée données,” HDR de l’Université de Bretagne
Occidentale, Brest, France, Novembre 2012.

[34] A. Plantec and V. Ribaud, “PLATYPUS: A STEP-based Integration
Framework,” in 14th Interdisciplinary Information Management Talks
(IDIMT-2006), September 2006, pp. 261–274.

[35] I. T. N. WD, EXPRESS Language Reference Manual, 1997.
[36] F. Singhoff and A. Plantec, “Towards user-level extensibility of an

Ada library: an experiment with cheddar,” in Proceedings of the 12th
international conference on Reliable software technologies, ser. Ada-
Europe’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 180–191.

[37] P. Mohagheghi and V. Dehlen, “Where is the proof? - a review of
experiences from applying mde in industry,” in Proceedings of the
4th European conference on Model Driven Architecture: Foundations
and Applications, ser. ECMDA-FA ’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 432–443. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-69100-6\ 31

[38] P. Dissaux, O. Marc, S. Rubini, C. Fotsing, V. Gaudel, F. Singhoff,
A. Plantec, V. Nguyen-Hong, and H.-N. Tran, “The smart project: Multi-
agent scheduling simulation of real-time architectures,” in Embedded
Real Time Software and Systems, 2014.

[39] E. Conquet, M. Perrotin, P. Dissaux, T. Tsiodras, and J. Hugues,
“The taste toolset: turning human designed heterogeneous systems into
computer built homogeneous software.” 5th European Congress ERTSS
Embedded Real Time Software and System. Toulouse, France., May
2010.

[40] F. Cadoret, E. Borde, S. Gardoll, and L. Pautet, “Design patterns for
rule-based refinement of safety critical embedded systems models,” in
17th International Conference on Engineering of Complex Computer
Systems (ICECCS), 2012, July 2012, pp. 67–76.

[41] E. Borde, S. Rahmoun, F. Cadoret, L. Pautet, F. Singhoff, and P. Dis-
saux, “Architecture models refinement for fine grain timing analysis of
embedded systems,” in 25th IEEE International Symposium on Rapid
System Prototyping (RSP), 2014, Oct 2014, pp. 44–50.

[42] C. Castellanos, T. Vergnaud, E. Borde, T. Derive, and L. Pautet, “Auto-
matic production of transformation chains using structural constraints on
output models,” in Proceedings of the 40th Euromicro Conference series
on Software Engineering and Advanced Applications, ser. SEAA’14,
2014.

[43] G. Loniewski, E. Borde, D. Blouin, and E. Insfran, “An automated
approach for architectural model transformations,” in 22nd International
Conference on Information Systems Development (ISD2013), Sevilla
Spain, Sep. 2013.

[44] P. Caspi, A. Sangiovanni-Vincentelli, L. Almeida, A. Benveniste,
B. Bouyssounouse, G. Buttazzo, I. Crnkovic, W. Damm, J. Engblom,
G. Folher et al., “Guidelines for a graduate curriculum on embedded
software and systems,” pp. 587–611, 2005.


