N

N

h2 +?BM; 2 H@hBK2 a+?2/mHBM; M HvbBbD
6 MFaBM;?Qz- HBM SH Mi2+-aidT? M2 m#BMB- >
m/2H- C HBH "QmMF?Q#x - G m 2Mi G2K "+? M/- a?m

G m2Mi S mi2i- 2i HX

hQ +Bi2 i?Bb p2 " bBQM,

6° MF aBM;?Qz- H BM SH Mi2+- aiGT? M2 m#BMB- > B@L K h> M- oB
2 H@hBK2 a+?2/mHBM; M HvbBb rBi? *?2// "X N K2 G/BiBQM /2 HH1-
kyR8- 2MM2b-6" M+2X ? H@yRReeRje

> G A/, ? H@yRReeRje
?2iiTb,ff? HXmMBp@# 2biX7 f? H@yRReeRje
am#KBii2/ QM R3 a2T kyR8

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://hal.univ-brest.fr/hal-01166136
https://hal.archives-ouvertes.fr

Teaching Real-Time Scheduling Analysis with
Cheddar

Frank Singhoff!, Alain Plantec!, Stphane Rubint, Hai-Nam Tran!, Vincent Gaudet, Jalil Boukhobza!,
Laurent Lemarchand, Shuai Li!, Etienne Borde?, Laurent Pautef, Jerome Hugues,
Pierre Dissaux, Jerome Legrand*, Christian Fotsing’, Blandine Djika®

1Lab-STICC CNRS UMR 6285, UBO, UEB, 20 av Le Gorgeu, 29200 Brest, France
Email: rstname.lasthame@univ-brest.fr
2|nstitut Mines-Telecom, TELECOM ParisTech, LTClI CNRS UMR 5141, 46 rue Barrault, 75013 Paris, France
Email: rstname.lasthname@telecom-paristech.fr
SUniversié de Toulouse, ISAE, 10 Av. E. Belin, 31055 Toulouse Cedex 4, France
Email: jerome.hugues@isae.fr
4Ellidiss Technologies, 24 Quai de la Douane, 29200 Brest, France
Email: rstname.lasthame@ellidiss.com
SInstitut Universitaire de la &e, BP 3001, Douala, Cameroun

Email: rstname.lasthame@myiuc.com

Abstract—This article is a presentation of the Cheddar toolset. Scheduling simulation to assess schedulability consists in
Cheddar is a GPL open-source scheduling analysis tool. It has applying scheduling algorithms during a period of time in order
been designed and distributed to allow students to understand the to compute the schedule of the system. A designer can then
main concepts of the real-time scheduling theory. The tool is built check during this period of time if no deadline is missed. It is
around a simpli ed ADL (Architecture Description Language) g ally expected to compute such a schedule for a period of
devoted to real-time scheduling theory. Students can directly build time large enough in order to capture all possible states of the

their real-time systems models with this ADL and its associated t In thi " h iod of ti feasibilit
editor, however, it is expected that they use modeling tools to system. In this case, we call such period ot ime a teasibility

illustrate how scheduling analysis ts in an engineering process. interval [6].

In this article, we introduce the Cheddar ADL and the scheduling S | tools impl t th heduli Vi th
analysis features of Cheddar. We also present how Cheddar is everal lools impiement those scheduling analysis metn-

implemented and how it can be adapted to speci ¢ requirements. 0dS- MAST [7], Rapid-RMA [8], SymTa/S [9] and Cheddar [1]

Two examples of use of Cheddar are then described. Finally, in areé examples of them. Cheddar has been more speci cally
the annex of this article, teachers may nd a sample of hand-outs ~ designed to be devoted to students, in order to present them

that may be used to illustrate real-time scheduling theory with the main concepts of the real-time scheduling theory. In this
their students. article, we give a short overview of the analysis features
currently implemented into Cheddar.

l. INTRODUCTION All those scheduling analysis tools handle models of the
P[eal—time systems to verify. Architecture Description Lan-
Suages (or ADL in the sequel) can be used to express such
models. ADL are languages that allow designers to specify, for-
mally or not, the design of a system. Various ADLs have been
Real-time critical systems have to meet hard timing conproposed in the context of critical real-time systems. UML-
straints implied by their environment. Safety failures, includingMARTE [10], EAST ADL [11], Fractal [12] or AADL [13]
violation of timing constraints, could lead to life losses orare some of them.
environmental damages for this kind of systems [2]. Real-time . .
scheduling theory provides algebraic methods and algorithmg USually, those ADLs provide the abstraction of compo-
in order to perform timing constraint veri cations [3]. Real- NeNts, connections and deployments [14]. A component is an

time scheduling theory foundations were proposed in th&ntity modeling a part of the system. Many ADLs allow the
1970s [4] and have led to extensive researches [5] speci cation of both hardware parts and software parts of
' the system with dedicated kinds of components. Connections

This theory provides several ways to perform schedulingusually model relationships between components and nally,
analysis. Most of the time, scheduling analysis is achievedieployments specify how software components are deployed
either with feasibility tests or with scheduling simulations. on hardware components, i.e. how the resources of the system

. . _ . are shared.
A feasibility test is an analytical method which usually

allows designers to compute performance criteria in order to Cheddar is built around a simple ADL devoted to real-time
assess if task deadlines will be met. scheduling theory: Cheddar ADL. Students can directly build

This article is a presentation of the Cheddar toolset, a G
open-source scheduling analysis tool [1]. This tool address
the veri cation of real-time critical systems.

their real-time system models with this ADL and its associategerform scheduling analysis techniques that we usually present
editor. However, it is expected that they use speci ¢ modelingto students. Real-time systems are then modeled as a set of
tools and their related ADLs to illustrate how schedulingentities with various attributes. For example, the concept of
analysis ts in an engineering process. In this article, wetask is one of the main concepts and is de ned with classical
introduce Cheddar ADL and we present its main concepts. attributes such as deadline, period and capacity. An exhaustive
list of both entities and attributes is given in the Cheddar ADL

Model-Driven Engineering (MDE) [15] aims at facilitating user guide [20]

the speci cation and the implementation of speci ¢ languages,
systems and tools through the use of models. To support real-time scheduling theory core concepts, the
Models that can be speci ed not only permit precise syste Cheddar ADL implements two types of entities: hardware

; : ; n):omponents and software components. Hardware components
documentation but also serve as input for automatic or Semlr'epresent the resources provided by the environment. Software

automatic production of the system and of its veri cation. ; X
. . components model the resource requirements : they are de-
In the context of the Cheddar project, the MDE is mten-ployeol onto hardware components.

sively used. Indeed, a signicant part of Cheddar tools is
automatically generated. These tools can be used standalone
or integrated within tool-chains. Integrating our tools within
existing tool-chains also raises interoperability issues that
may be controled thanks to MDE processes. In this article,
we explain how MDE has been applied when implementing
Cheddar.

Finally, having a scheduling analysis tool and a model-
ing language are not enough to achieve scheduling analysis.
Putting scheduling analysis tools in the engineering process is
also a tedious task. In this article, we illustrate how scheduling
analysis tools can take place in a software engineering process
with two examples of use of Cheddar.

Then, in the rest of this article, we rst introduce Cheddar
ADL. In section 3, a brief summary of the scheduling analysis
features of Cheddar is also presented. In section 4, we shortly
explain how the Cheddar tools can be automatically produced
thanks to a MDE process. Finally, two typical examples of use
of the Cheddar tools are exposed in section 5.

Il. CHEDDAR ADL: A SPECIFICADL FOR SCHEDULING
ANALYSIS Fig. 1. Cheddar ADL main hardware components.

In this section, we present Cheddar ADL, the ADL thatwe Cheddar provides limited capabilities to model hardware
have designed to model software and hardware architectures dfmmponents_ Indeed, real-time scheduling theory usually as-
the speci ¢ perspective of scheduling analysis. The mainstrearsumes simple models of hardware. On the contrary, software
ADLs such as AADL [16] and MARTE [17] are very powerful parts of a system are modeled in a more detailed way.

to describe real-time systems and some experiments to apply N
Cheddar on such standard ADLs have been done [18], [19]. . AS shown in Figure 1, hardware components can be of
three kinds. (1)Core componentsnodel entities providing

However, for the purpose of scheduling validation, addi-a resource to sequentially run ows of control. (Eache
tional tools and tool-chains may be used. In fact, schedulingomponentsnodel memory caches related to one or several
veri cations involve not only a subset of those mainstreamcores. (3)Processors componentsre composed of sets of
ADLs modeling capabilities but also require speci ¢ informa- cores and caches.

tion or computations. .
P Software components can be deployed on either core or

Cheddar ADL and related tools are domain speci c. Theirprocessor components. Those deployments model two kinds of
modeling and their implementation are the results of a Modetomponent connections that allow designers to express either
Driven Engineering (MDE) process tooled with a specic global scheduling or partitioned scheduling [21]. The design
infrastructure. Whereas the use of the MDE facilitates theof the software part of a real-time system can be speci ed with
building of new releases of Cheddar ADL and of our existing ve component types. These component types are depicted by
tools, it also facilitates the building of new tools. Figure 2. (1) Address space componenisodel a group of
In the sequel, we rst de ne the concepts introduced by thig'esources that can be access_ed. They may be associated to
ADL. Then, we describe scheduling analysis that are expecte?in add]tess protection mechanls.m. {@pk componentsiodel
to be run on models expressed with Cheddar ADL. ows of control. They are statically connected to address

space components. (3Resource componenisay model any

Basically, the main concepts manipulated through Cheddadlata structure, shared by tasks or not, synchronized or not.
ADL come from the real-time scheduling theory. The only They may be accessed through classical priority inheritance
purpose of Cheddar ADL is to model the concepts required t@rotocols such as PCP [22]. They may model asynchronous

reaction wheels, magnetic torquers, thrusters, and solar array
and trim tab positioners.

Fig. 2. Cheddar ADL main software components.

communications between tasks located in the same address
space. Resource components are statically connected to ad-
dress space components. BYffer componentsodel queued
asynchronous data exchanges between tasks located in the
same address space. (@essage componentaodel queued
asynchronous data exchanges between tasks located in differ-

This AOCS is composed of several tasks:

RW Data Task: the Reaction Wheels (RW) actuator
controls the movement of the spacecraft.

DSS Data Task the Digital Sun Sensor (DSS) keeps
track of the spacecraft's orientation in relation to the
position of the sun.

Gyro Data Task: the Rate Gyro Sensor detects the
rotation of the spacecraft; this sensor data is sporadic
because normally it has a different clock rate so the
data can contain some jitter.

Command Actuators Task applies a set of com-
mands de ned by the Control Law task to keep the
spacecraft in its orientation and pointing.

Control Law Task: implements the basic control
laws and is therefore responsible for maintaining the
spacecraft orientation to a de ned point.

IRES Data Task the InfraRed Earth Sensor (IRES)
scans a large eld of view and then detects signals at
the Earth/Space transitions.

The software part of this example is composed of several

ent address spaces. Buffer, resource and message compongigsiodic and sporadic tasks. For example, taBk§ _Data
specify types of connection between components, i.e types eind DSS_Data are periodic whileGyro_Data is sporadic.

dependencies between tasks.

<core_unit id="_.16">
<name corel</name
<schedulertype>POSIX 1003 HIGHEST_
PRIORITY_FIRST PROTOCOL
</schedulertype>
<preemptivetype>
PREEMPTIVE
</preemptivetype> ...
<mono_core_processor id="_17">
<name Soc Leon4< /name

They are all de ned by their respective period, capacity and
deadline. The hardware part only models a processor (called
Soc Leond) including two cores (calledorel and core2).

IIl. A NALYSIS FEATURES PROVIDED BYCHEDDAR

From a Cheddar ADL model, real-time scheduling the-
ory provides various ways to perform scheduling analysis:
veri cations can be performed either with feasibility tests or
with scheduling simulations on the feasibility interval. Cheddar
implements classical methods of both veri cation techniques in
order to illustrate to the student how scheduling analysis can

<core ref="_16"/> ... be
<periodic_task id=".19">

<name RW_Data< /name

<cpu_name> Soc Leon4</cpu_name

<capacity>2</capacity>

<deadline>200</deadline

<period>200</period>
<sporadic_task id=".20">

<name Gyro_Data</name
<periodic_task id=".21">

<name DSS Data</name

Fig. 3. Example of a Cheddar ADL model for the AOCS system.

Figure 3 shows a simple model of a real-time system
speci ed with the Cheddar ADL. This is a model for the
scheduling analysis of an Attitude and Orbital Control System
(AOCS) of a spacecraft case study [23], [24]. An AOCS
maintains the spacecraft orbit and ensures the spacecraft is
oriented to achieve the expected functionality. This subsystem

consists of a set of redundant sensors and actuators such fag 4.

sun/star and earth sensors, gyroscopes, momentum wheels,

driven. In this section, we rst introduce feasibility tests

implemented into Cheddar and then, we present its scheduling
simulation features.

Scheduling analysis of the AOCS system by Cheddar.

A. Scheduling analysis with feasibility tests been implemented for the students. For example, a student
can design architecture models with PIP, ICPP, PCP or FIFO
shared resource protocols. During the design phase, he can
also experiment various priority assignment algorithms such as
Rate Monotonic [4], Deadline Monotonic [29], the Audsley's
algorithm [30] or one devoted to architectures with caches [31].

One of the very rst feasibility tests usually presented
to students is the Liu and Layland feasibility test for uni-
processor real-time systems [4] based on equation (1):

X c
U= G Q) From an architecture model, various performance criteria
Pi can be extracted from scheduling simulation: worst/best/aver-
age response time, probability distribution of response time,
This equation computes the processor utilization factomworst/best/average shared resource blocking time, number of
U. In the context of a xed priority preemptive scheduling context switch or preemption, deadlock, priority inversion or
policy with priorities assigned according to Rate Monotonic,speci ¢ properties de ned with a domain speci c language.

it U n@: 1) then the system, under the Liu and Furthermore, speci ¢ schedulers or task models can be also
Layland conditions, is schedulable, i.e. all tasks will meet theirS eci ed with tr{e %el of the Cheddar ADL. Those speci
deadline. For this type of architecture, this feasibility test is asghedulers allow useFr)s to extend the scheduling ana?ysis ca-
suf cient but not necessary schedulability condition. pability without a deep understanding of Cheddar design and
The Cheddar tool implements various feasibility tests.implementation. This feature allows users to quickly adapt the
Processor utilization feasibility tests can be applied on othescheduling veri cation tool to their needs (i.e. implementing a
scheduling policies. Furthermore, worst case response timgcheduling method which does not exist yet in Cheddar).
can be computed on periodic tasks, organized or not in

; ; ; In the sequel, we show how to implement such specic
linear/graph transactions [25]. Those worst case response time] X . ;
grap [25] P Qﬂedulers with Cheddar. Equation 2 speci es a Density value

i=1

can integrate delays related to shared resources (i.e. sharg . S .
resource blocking time [22]). Finally, few feasibility tests for Scheduler [32] which does not exist in the current implemen-
hierarchical architectures have also been implemented in ord&@tion of Cheddar.

to explain to students the main concepts of compositional

analysis [26].

As an example, the AOCS system described in Figure 3 is Priority (i) = Value at time(i)=Computation time (2)

compliant with the feasibility test presented in [27]. Applying

this feasibility test leads to the result presented in Figure 4. Figure 5 shows the implementation of this scheduler with

the Cheddar ADL and how such a user-de n_ed scheduler

tests, and some theoretical results are often known as beirffg" P€ used to dene a new processor type with our AOCS
ample. With this architecture model, algorithm of Figure 5

too pessimistic. That's why additional techniques such a d to be stored | te lo calieds dvs:
simulation can help to increase the con dence the designe'? supposed fo be stored In a Separate Ie cadeds avs.sc

It is not possible to analyze all systems by feasibility

has on his/her design. We discuss this issue in the sequel. Basically, thepriority _section expresses how priorities
have to be computed at each unit of time during simulation
B. Scheduling analysis with simulations and election_section describes how to select the task to run

. _ _ when priorities have been computed: here, we select the task
Cheddar implements several classical scheduling algqzii the highestocs dvs priority priority
rithms. Students may experiment classical schedulers such - '

as Rate Monotonic, Deadline Monotonic, EDF, LLF, MUF,
POSIX 1003 policies, both preemptive and non preemptivg
Thpse algorithms hav_e been implemented in the context pf (tasks range) of integer;
uniprocessor scheduling and also in the context of global i integer;

multiprocessor scheduling. Global scheduling is also illustrategng section: ’

to the student by a speci c global multiprocessor scheduling
(e.g. Proportionate Fair [28]) and two task migration policieS.priority _section :

The tool also implements non real-time policies (i.e. round for i in tasksrange loop

robin and time sharing policies) allowing the students t aocs dvs_priority (i):=
compare and understand speci cities of real-time schedulin tasks.value (i)/ o
policies. Furthermore, hierarchical scheduling is illustrated b tasks.restof_capacity (i);
an implementation of the ARINC653 scheduling policies an
several classical aperiodic servers (deferable, sporadic, prior]
exchange).

. start_section :
" aocs dvs_priority : array

T8 Y

end loop;
nd section;

—

election_section :

Scheduling simulations can be run for usual task models return max_to_index(aocs dvs_priority);
such as periodic, aperiodic, sporadic, GMF tasks or task rggnd section;
leased according to a Poisson process. Tasks can be constrained
by dependencies related to shared resources, precedencerrs. Example of a Cheddar program modeling a Density value scheduler.
communication task relationships_ Tasks may also be organize‘ldhose statements are activated by an automaton during scheduling simulations.
in linear or graph transactions. Again, classical policies have

C. Conclusion P

In this section, we have presented the main analysis fea
tures implemented into Cheddar. Scheduling analysis can b
performed either with feasibility tests or scheduling simulation. o p] s
Some of the features of Cheddar have not been described her S
The tool also provides various methods to assign priorities or / -mﬁz

to perform partitioning. All those features are described in the :.*' 3456377
Cheddar user-guide [20]. '

However, using the Cheddar ADL alone remains dif cult
for architecture designers. Indeed, Cheddar ADL concepts ar
very close to real-time scheduling theory which may be not
usual concepts for architecture designers. Furthermore, as tr
real-time scheduling theory, the ability of Cheddar ADL to
model hardware and operating system parts is limited.

A4

2@-3,$4)-
64806 T
&HTEHHH([%I6

A#I%S3H1%5

F4#$9%8:()(&9%*
+-"8- [0
-8Y6H"&-10(

H5$%8-2@-

34#1%53,5)+-
6(/4&(%)-

BHT&H+#(/%I8,

3.#)+-
637)434#(/%/6

A41%59,&1:H#(0"-<)%/*T=+>

In practice, it is expected that architecture designers per s peswe —» risws > (errarisow —— > HHsre805)1

form the modeling activity with separate systems or software

engineering tools using standard modeling language such &%y. 6. The MDE process for the building of Cheddar.

AADL or MARTE. The Cheddar ADL used together with

mainstream languages can offer extended modeling and val-

idation capabilities. We discuss this issue in the next sectionghe meta-models entities implementation (i.e. corresponding

classes), a repository which is used to store and manage

IV. M ODEL-DRIVEN PROCESS OFCHEDDAR Cheddar ADL models internal representations and a Cheddar

) ~ ADL model exchange component.
New hardware elements and products continuously arise .)
and have to be taken into account during the veri cation of ~ The meta-workbench Platypus [34] is used to implement

real-time systems. As a consequence, ADL based tools th&#€ code generators. All our meta-models, domain rules and
are used for the early verication of real-time systems arecode generators are specied with the general purpose data
often speci ¢ tools and are often subject to changes. This ignodeling language EXPRESS [35].

typically the case of Cheddar ADL.

B. Building a speci ¢ scheduler
To help keep Cheddar up-to-date according to use-cases, gasp

a model driven process is used to automatically build a part As we briey describe in section IlI-B, in order to run

of the tool. In this section, we describe how some parts ofimulations, Cheddar provides a set of real-time schedulers and
Cheddar are automatically produced from its meta-models. Weheir analysis tools. Some schedulers are already present into
rst describe how the infrastructure of Cheddar is speci ed, Cheddar. Cheddar being implemented in Ada, those schedulers
validated and automatically generated through the use of are also implemented in Ada.

meta-workbench. Then we focus on a more speci ¢ generating
process regarding the automatic implementation of speci Gne
schedulers.

Speci ¢ schedulers or task models can be also imple-
nted. A specic scheduler can be written either in Ada or
with the Cheddar ADL (an example of a specic scheduler
- is shown in Figure 5). Manually implementing a specic
A. The Cheddar building process scheduler in Ada is a tedious and error prone task. Using the

As it is depicted in Figure 6, Cheddar is also a targetCheddar ADL helps the designer as he has only to deal with

system that must be speci cally speci ed, validated and builthigh-level and simpler concepts. As it is depicted in Figure 7,
through the use of a meta-workbench. Figure 6 shows twdith the Cheddar ADL, the process of implementing a speci ¢
dashed ellipsis which represent two iterations: scheduler is made of three steps. (1) The scheduler is speci ed

by an automaton with the Cheddar ADL. Figure 5 shows a part
1) The inner iteration ellipsis is for the early validation of such speci cation. (2) An interpreter of such automaton is
of timing constraints of the target system through themade available as a Cheddar tool. This interpreter is useful
use of Cheddar. to validate the specic scheduler. However, running specic
2) The outer iteration ellipsis is for the speci cation, schedulers this way can be very time consuming. (3) In order
the validation and the generation of Cheddar itself.to speed up the running of a scheduler, the corresponding
Here, the process is twofold. First, the validation of Ada code can be automatically produced from the speci cation
the meta-speci cations must be achieved [33]. Theof the scheduler written in the Cheddar ADL (the scheduler
meta-speci cations are made of the Cheddar ADLautomaton). The generated Ada code is integrated and a
meta-model (see Figures 1 and 2), of the Cheddanew version of the Cheddar tools including the new specic
language meta-model and of code generators. Thescheduler is then produced [36].
late validation is processed through the use of Ched-
dar as explained in point 1. C. Conclusion

Thanks to the MDE, a part of Cheddar is automatically Supporting MDE with a comprehensive tool environment
generated from its meta-models. The generated part includés crucial, as many of the techniques promoted as necessary in

them be properly processed by various analysis or production
o tools. Although AADL Inspector uses the AADL standard as

g a base reference for its input models, it can also process UML
091248 pro les such as SysML and MARTE or be coupled to graphical
sy editors such as the Stood tool. In the case of Cheddar, the input
s 2 43 %Ei (;1) model is converted into a corresponding representation in the
&”3&"2""% C esyne S Cheddar ADL that has been presented before. Then, the results
= =}—5 of the analysis, either coming from the feasibility tests or the
"““”‘“&*"'“&“"’im%& simulation, are processed by the AADL Inspector Graphical

User Interface.

— I'#$%& (= R

Fig. 7. The MDE process for the building of a speci ¢ scheduler.

MDE strongly depend on proper tool support [37]. Having a
well de ned ADL helps in the building of a trusted real-time
system because it can serve as the core element for the tools
that are implemented in order to verify it. However, having
well de ned ADL is just not enough. A complete and working
MDE environment must be used for the building of veri cation
tools. Moreover, reliable code generators must be speci ed and
interoperability between tools must be ensured.

The major dif culty lays in the speci cation of the meta-
models at the right abstraction level. Moreover, de ning reli-
able speci c meta-models is a long and costly task becausEig. 8. AADLInspector embedding Cheddar.
of the verication and the validation process that implies
tools building and adapting (speci cation of code generators,

refactoring of the analysis tools, ...). Another dif culty is the . : X : .
integration of the generated code when Cheddar is embeddé’é’l“rt'cular the Marzhin event-based simulation engine that

in a tool chain. Indeed, it may be dif cult to anticipate what are complem?hnts bthﬁ ti_mingf analysis .b3é. addintg a cagabilityt;o
the needs of the other tools. In the next section, we present mgbserve & Dbehavior of non periodic systems. During the

examples of tool chains embedding Cheddar where integratio MART collaborative proje_ct [38], Cheddar. hag been used
is achieved thanks to AADL. as a reference tool to calibrate the Marzhin simulator. For

a set of input model test cases where the two tools could
provide a signi cant result, an automatic comparison of the
two simulation traces has been implemented for that purpose.

AADL Inspector embeds other analysis plug-ins, and in

V. [INTEGRATION OFCHEDDAR IN AADL | NSPECTOR
AND THE TASTE TOOL-CHAIN

. TASTE is a software development tool-chain that is devel-
As it has been explained in the previous sections, Cheddgy,eq by the European Space Agency and a team of subcon-

has been initially designed to be used as a standalone t0g,qors [39]. TASTE supports a well de ned design process
for an academic usage. In that respect, it includes itS OWRy empedded applications in the space domain. This process
Graphical User Interface to enter real-time models and display, .|, des modeling, veri cation, generation and testing phases

the scheduling analysis results. Nevertheless, such a tool ¢t are supported by dedicated tools. The scheduling analysis
also be highly pro table for industry oriented environments yace is insured by the TASTE-CV tool which includes

and modeling languages. This however requires a more Moheddar in a similar way as AADL Inspector does.
ular usage of the tool and the development of additional

components to interface it to this new context. This is what These examples show that Cheddar can also be pro table
has been done to integrate Cheddar as an analysis plug-in &f bring the bene t of early scheduling analysis into industrial
the AADL Inspector tool, and of the Concurrency View editor development environments and processes. The next section de-
of the TASTE tool-chain (TASTE-CV). scribe another use of Cheddar in a code generation framework.

In order to be able to use Cheddar as an analysis backend
while minimizing the interfacing issues, the Graphical User
Interface and some model input features have been separated

from the main scheduling analysis module. The result of this RAMSES is a model-to-model transformation framework

engineering operation is a subset of Cheddar called Chedvhere both input and output models are based on AADL [40].
darKernel that can easily be integrated within a system or _) _
software development environment. The containing tool must ! MDE, model transformations play an important role:

thus provide new control and data interfaces with the user. they formalize in reusable artefacts (i.e. model transformation
source code), the implementation of recurrent design patterns

AADL Inspector (see Figure 8) is a model processingge.g_ safety or security design patterns), design decisions (e.g.
framework that embeds a set of generic features to load real-

time models and convert them into the appropriate format to let *Re nement of AADL Models for Synthesis of Embedded Systems

VI. RAMSES: AADL MODELS REFINEMENT AND
SCHEDULING ANALYSIS

deployment of software components on hardware compoin each scheduling scenario. Launching AADL Inspector with
nents), or model re nements (e.g. transformation steps towardiss graphical interface was also practical in order to verify the
code generation). Model re nements were rst implemented incontent of models used for analysis.

RAMSES in order to evaluate the impact of code generation . .
patterns on Non-Functional Properties (NFP) of a real-time | € approach implemented in RAMSES has also been ex-

embedded system. Figure 9 gives an overview of RAMSESPerimented for the evaluation of other NFPs (such as memory
The execution of RAMSES starts with (i) an input model, (ii) a consumption, and reliability) and other model transformations

such as safety and security design patterns. This work is being
selecygd platform (among platforms supported by RAMSES)IQursued towards the composition of model transformations,

sion of RAMSES supports ARINC653 and OSEK complianteither as transformation chains [42] or using higher order
platforms. transformations [43].

VII.

In this article, we have introduced Cheddar, a scheduling
analysis tool that can be used to teach real-time scheduling
analysis. We have presented Cheddar ADL, the input language
of Cheddar allowing users to express the design of their real-
time systems to analyze. We have also presented some of
the analysis features of the tools: the tools implements the
main concept and analysis methods about real-time scheduling
that are usually part of real-time systems Master-level curricu-
lum [44]. We have given few details about Cheddar imple-
mentation and the use of a model driven approach for such a
purpose. Finally, we have shown how to integrate a scheduling
analysis tools as Cheddar in two software engineering tool-
sets. This may help students to understand how scheduling
analysis can take place in a software engineering process. To
complete this presentation, this article is extended by an annex
where teachers may nd a sample of hand-outs they can use
to illustrate real-time scheduling theory with their students.

CONCLUSION

Fig. 9. RAMSES Overview.

Then, RAMSES transforms the input model into a re ned
model: abstract AADL elements such as remote connections,
modes, health-monitoring con guration, and local connections) o))
are transformed into tasks and shared variables. This intermedi- Cheddar is supported by Ellidiss Technologies, Conseil
ate model is then used for both code generation, and analysi§gional de Bretagne, Conseiewgral du Finisere, BMO,
Inspector (as an interface to Cheddar) could be combined withCS.

RAMSES in order to provide a model-based evaluation of tasks

VIII. A CKNOWLEDGMENTS

response times while taking into account the timing overheads
due to code generation. 0]

This approach has been experimented on a use case in-
spired from the railway domain. These experiments, based
on ARINCG653 operating system, have shown that overhead?]
due to tasks and partitions communication was not negligible
and required updates on the scheduling analysis after cod
generation.

From a technical viewpoint, integration of AADL Inspector
and RAMSES was quite easy since both tools rely on AADL: 4l
a standardized ADL. As a consequence, AADL Inspector
could be used both for scheduling analysis on the input[s]
model and on the re ned models. However, scheduling analysis
of intermediate models produced by RAMSES required to
evaluate worst case execution times of the generated code. This]
was done in RAMSES by analyzing the intermediate AADL
models and generating new AADL models for timing analysis.
Depending on the complexity of the behavior expressed in the
input model, this analysis can be computation demanding .y
it requires to analyze several scheduling scenarii [41]. AADL
Inspector was then launched as a command line tool in ordefg;
to automate the computation of tasks worst case response time

REFERENCES

F. Singhoff, J. Legrand, L. Nana, and L. Marc‘Cheddar : a Flexible
Real-Time Scheduling FrameworkRCM SIGAda Ada Letters, ACM
Press, New York, USAol. 24, no. 4, pp. 1-8, Dec. 2004.

J. Stankovic, S. H. Son, J. Hanssenal.,, “Misconceptions about real-
time databasesComputer vol. 32, no. 6, pp. 29-36, 1999.

L. Sha, T. Abdelzaher, K.-EArzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time
scheduling theory: A historical perspectivReal-time systemsol. 28,

no. 2-3, pp. 101-155, 2004.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environnmengdurnal of the Association for
Computing Machineryvol. 20, no. 1, pp. 4661, January 1973.

J. Stankovic, M. Spuri, M. D. Natale, G. C. Buttazebal, “Implica-
tions of classical scheduling results for real-time syster@®mputer
vol. 28, no. 6, pp. 16-25, 1995.

L. Cucu and J. Goossens, “Feasibility intervals for xed-priority real-
time scheduling on uniform multiprocessors,"'Bmerging Technologies
and Factory Automation, 2006. ETFA'06. IEEE Conference dEEE,
2006, pp. 397-404.

M. Harbour, J. Gutierrez, J. Drake, P. Martinez, and J. Palencia,
“Modeling distributed real-time systems with MAST 2Journal of
Systems Architectureol. 59, no. 6, pp. 331-340, Jun, 2013.

T.-P. S. Inc., “Tri-paci ¢ software inc. : RAPID-RMA,” 2014, http:
/lwww.tripac.com/rapid-rma.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,[30]
“System level performance analysis - the SymTA/s approatBE
Proceedings - Computers and Digital Techniguesl. 152, no. 2, p.
148, Mar, 2005.

T. Fréceric, S. Gerard, and J. Delatour, “Towards an UML 2.0 pro le

for real-time execution platform modeling.” Proceedings of the 18th
Euromicro Conference on Real-Time Systems (ECRTS 06), Work in[32]
progress session, July 2006.

V. Debruyne, F. Simonot-Lion, and Y. Trinquet, “EAST-ADL - An
architecture description language.” Book on Architecture Description[33]
Languages, IFIP International Federation for Information Processing,
Springer Verlag, volume 176, 2005, pp. 181-195.

P. Merle and J.-B. Stefani, “A formal specication of the Fractal
component model in Alloy.” INRIA Research Report 6721., November [34]
2008.

P. Feiler, B. Lewis, and S. Vestal, “The SAE AADL standard: A basis
for model-based architecture-driven embedded systems engineering,” i[35]
Workshop on Model-Driven Embedded Systeleay 2003. [36]

N. Medvidovic and R. Taylor, “A classi cation and comparison frame-
work for software architecture description languageéEEE Transac-
tion on Software Engineeringol. 26, no. 1, pp. 70-93, 2009.

D. C. Schmidt, “Model-driven engineeringlEEE Computervol. 39,
no. 2, February 2006.

P. H. Feiler and D. P. Gluchylodel-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language
Addison-Wesley, 2012.

M. OMG, “Modeling and analysis of real-time and embedded systems,”
Object Management Groy2008.

S. Li, F. Singhoff, S. Rubini, and M. Bourdel, “Applicability of real-
time schedulability analysis on a software radio protocdCM SIGAda
Ada Lettersvol. 32, no. 3, pp. 81-94, 2012-12.

F. Singhoff, J. Legrand, L. Nana, and L. Marc“Scheduling and
memory requirements analysis with aadl,’ACM SIGAda Ada Letters
vol. 25, no. 4. ACM, 2005, pp. 1-10.

C. Fotsing, F. Singhoff, A. Plantec, V. Gaudel, S. Rubini, S. Li, H. N.
Tran, L. Lemarchand, P. Dissaux, and J. Legrand, “Cheddar architecture
description language[’ab-STICC technical report2014.

R. I. Davis and A. Burns, “A survey of hard real-time scheduling

for multiprocessor systemsACM Comput. Sury.vol. 43, no. 4, pp.
35:1-35:44, Oct. 2011. [Online]. Available: http://doi.acm.org/10.1145/
1978802.1978814 [41]

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance pro-
tocols: An approach to real-time synchronizatio@bmputers, IEEE
Transactions onvol. 39, no. 9, pp. 1175-1185, 1990.

K. Almeida, J. Craveiro, R. Pinto, and J. Ru no, “Spaceborne software:[42]
typical spacecraft use-case and preliminary analysis of its timing re-
quirements,” inTechnical Report READAPT Project TR-13-Qisbon,
Portugal, 2013.

V. Gaudel, “Applicabilie des nethodes d'analyse et interebilite
des outils de @veloppement pour symnes embards temps#el cri-
tiques,” These de I'Universié de Bretagne Occidentale, Brest, France
Décembre 2014.

S. Li, F. Singhoff, S. Rubini, and M. Bourdelles, “Extending schedu-
lability tests of tree-shaped transactions for tdma radio protocols,” in
Emerging Technology and Factory Automation (ETFA), 2014 |EEE
IEEE, 2014, pp. 1-8.

A. Easwaran, |. Lee, O. Sokolsky, and S. Vestal, “A compositional
scheduling framework for digital avionics systems,”"Embedded and
Real-Time Computing Systems and Applications, 2009. RTCSA'09. 15th
IEEE International Conference on IEEE, 2009, pp. 371-380.

M. Joseph and P. Pandya, “Finding response times in a real-time
system,”"The Computer Journalol. 29, no. 5, pp. 390-395, 1986.

J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah, “A categorization of real-time multiprocessor scheduling
problems and algorithmsPMandbook on scheduling algorithms, meth-
ods, and mode)pp. 30-1, 2004.

N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “real-
time scheduling: the deadline-monotonic approach,fnirProc. IEEE
Workshop on Real-Time Operating Systems and Soffwi®@1, pp.
133-137.

(31]

[37]

(38]

(39]

[43]

(44]

N. Audsley, “Optimal priority assignment and feasibility of static
priority tasks with arbitrary start timesReal-Time System4991.

H.-N. Tran, F. Singhoff, S. Rubini, and J. Boukhobza, “Address-
ing cache related preemption delay in xed priority assignment,” in
Proceedings of the 2015 IEEE Emerging Technology and Factory
Automation, ETFA 2015, Luxembourg, September, 200%5.

S. A. Aldarmi and A. Burns, “Dynamic value-density for scheduling
real-time systems,” inn Proceedings 11th Euromicro Conference on
Real-Time System4999, pp. 270-277.

A. Plantec, “Faciliter la @ri cation et la validation de rata moales
dans le cadre de lirgnierie dirigce par les maeles : une approche
agile outilee et orierte donies,” HDR de I'Universié de Bretagne
Occidentale, Brest, FrangeNovembre 2012.

A. Plantec and V. Ribaud, “PLATYPUS: A STEP-based Integration
Framework,” in14th Interdisciplinary Information Management Talks
(IDIMT-2006), September 2006, pp. 261-274.

I. T. N. WD, EXPRESS Language Reference Mana8b7.

F. Singhoff and A. Plantec, “Towards user-level extensibility of an
Ada library: an experiment with cheddar,” roceedings of the 12th
international conference on Reliable software technologges. Ada-
Europe'07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 180-191.

P. Mohagheghi and V. Dehlen, “Where is the proof? - a review of
experiences from applying mde in industry,” Proceedings of the
4th European conference on Model Driven Architecture: Foundations
and Applicationsser. ECMDA-FA '08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 432-443. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-69100r631

P. Dissaux, O. Marc, S. Rubini, C. Fotsing, V. Gaudel, F. Singhoff,
A. Plantec, V. Nguyen-Hong, and H.-N. Tran, “The smart project: Multi-
agent scheduling simulation of real-time architectures,Embedded
Real Time Software and Systeri®14.

E. Conquet, M. Perrotin, P. Dissaux, T. Tsiodras, and J. Hugues,
“The taste toolset: turning human designed heterogeneous systems into
computer built homogeneous softwarbth European Congress ERTSS
Embedded Real Time Software and System. Toulouse, Fravieg.
2010.

F. Cadoret, E. Borde, S. Gardoll, and L. Pautet, “Design patterns for
rule-based re nement of safety critical embedded systems models,” in
17th International Conference on Engineering of Complex Computer
Systems (ICECCS), 2012uly 2012, pp. 67-76.

E. Borde, S. Rahmoun, F. Cadoret, L. Pautet, F. Singhoff, and P. Dis-
saux, “Architecture models re nement for ne grain timing analysis of
embedded systems,” ig5th IEEE International Symposium on Rapid
System Prototyping (RSP), 201@ct 2014, pp. 44-50.

C. Castellanos, T. Vergnaud, E. Borde, T. Derive, and L. Pautet, “Auto-
matic production of transformation chains using structural constraints on
output models,” inProceedings of the 40th Euromicro Conference series
on Software Engineering and Advanced Applicatiossr. SEAA14,
2014.

G. Loniewski, E. Borde, D. Blouin, and E. Insfran, “An automated
approach for architectural model transformations22md International
Conference on Information Systems Development (ISD2®sjilla
Spain, Sep. 2013.

P. Caspi, A. Sangiovanni-Vincentelli, L. Almeida, A. Benveniste,
B. Bouyssounouse, G. Buttazzo, |. Crnkovic, W. Damm, J. Engblom,
G. Folheret al, “Guidelines for a graduate curriculum on embedded
software and systems,” pp. 587-611, 2005.

