P. S. Heuberger, P. M. Van-den-hof, and B. Wahlberg, Modelling and Identification with Rational Orthogonal Basis Functions, 2005.
DOI : 10.1007/1-84628-178-4

G. J. Clowes, Choice of the time-scaling factor for linear system approximations using orthonormal Laguerre functions, IEEE Transactions on Automatic Control, vol.10, issue.4, pp.487-489, 1965.
DOI : 10.1109/TAC.1965.1098202

J. J. King, T. O-'canainn, and T. , Optimum pole positions for Laguerre-function models, Electronics Letters, vol.5, issue.23, pp.601-602, 1969.
DOI : 10.1049/el:19690448

M. Schetzen, Asymptotic optimum Laguerre series, IEEE Transactions on Circuit Theory, vol.18, issue.5, pp.493-500, 1971.
DOI : 10.1109/TCT.1971.1083325

L. Wang and W. R. Cluett, Optimal choice of time-scaling factor for linear system approximations using Laguerre models, IEEE Transactions on Automatic Control, vol.39, issue.7, pp.1463-1467, 1994.
DOI : 10.1109/9.299635

Y. Fu and G. A. Dumont, An optimum time scale for discrete Laguerre network, IEEE Transactions on Automatic Control, vol.38, issue.6, pp.934-938, 1993.
DOI : 10.1109/9.222305

N. Tanguy, P. Vilbé, and L. C. Calvez, Optimum choice of free parameter in orthonormal approximations, IEEE Transactions on Automatic Control, vol.40, issue.10, pp.1811-1813, 1995.
DOI : 10.1109/9.467666

URL : https://hal.archives-ouvertes.fr/hal-00439477

N. Tanguy, R. Morvan, P. Vilbé, and L. C. Calvez, Improved method for optimum choice of free parameter in orthogonal approximations, IEEE Transactions on Signal Processing, vol.47, issue.9, pp.2576-2579, 1999.
DOI : 10.1109/78.782210

URL : https://hal.archives-ouvertes.fr/hal-00488095

A. C. Den-brinker, F. P. Benders, T. A. Oliveira, and . Silva, Optimality conditions for truncated Kautz series, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.43, issue.2, pp.117-122, 1996.
DOI : 10.1109/82.486458

R. Morvan, N. Tanguy, P. Vilbé, and L. C. Calvez, Pertinent parameters for Kautz approximation, Electronics Letters, vol.36, issue.8, pp.769-771, 2000.
DOI : 10.1049/el:20000581

URL : https://hal.archives-ouvertes.fr/hal-00488085

H. Akcay and B. Ninness, Orthonormal basis functions for modelling continuous-time systems, Signal Processing, vol.77, issue.3, pp.261-274, 1999.
DOI : 10.1016/S0165-1684(99)00039-0

T. Oliveira and . Silva, Stationary Conditions for the L 2 Error Surface of the Generalized Orthonormal Basis Functions Lattice Filter, Signal Processing, vol.56, issue.3, pp.233-253, 1997.

P. M. Van-den-hof, P. S. Heuberger, and J. Bokor, System Identification with Generalized Orthonormal Basis Functions, Automatica, issue.12, pp.31-1821, 1995.

B. Ninness and F. Gustafsson, A unifying construction of orthonormal bases for system identification, IEEE Transactions on Automatic Control, vol.42, issue.4, pp.515-521, 1997.
DOI : 10.1109/9.566661

A. Soumelidis, J. Bokor, and F. Schipp, Representation and approximation of signals and systems using generalized Kautz functions, Proceedings of the 36th IEEE Conference on Decision and Control, 1997.
DOI : 10.1109/CDC.1997.652449

V. Sreeram and P. Agathoklis, On the properties of Gram matrix, V Sreeram, P Agathoklis ? IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, pp.41-234, 1994.

L. Knockaert, On orthonormal Muntz-Laguerre filters, IEEE Transactions on Signal Processing, vol.49, issue.4, pp.790-793, 2001.
DOI : 10.1109/78.912923

M. M. Crum, On the theorems of Müntz and Szász, J. Lond. Math. Soc, pp.31-433, 1956.

A. Amghayrir, N. Tanguy, P. Bréhonnet, P. Vilbé, and L. C. Calvez, Laguerre-Gram reduced-order modeling, IEEE Transactions on Automatic Control, vol.50, issue.9, pp.1432-1435, 2005.
DOI : 10.1109/TAC.2005.854653

URL : https://hal.archives-ouvertes.fr/hal-00424216

W. Mi, T. Qian, and F. Wan, A fast adaptive model reduction method based on Takenaka???Malmquist systems, Systems & Control Letters, vol.61, issue.1, pp.61-223, 2012.
DOI : 10.1016/j.sysconle.2011.10.016

W. Yan and J. Lam, An approximate approach to H2 optimal model reduction, IEEE Trans. on Automatic Control, pp.44-1341, 1999.

S. Gugercin, C. Beattie, and A. C. , $\mathcal{H}_2$ Model Reduction for Large-Scale Linear Dynamical Systems, SIAM Journal on Matrix Analysis and Applications, vol.30, issue.2, pp.609-638, 2008.
DOI : 10.1137/060666123

D. C. Hyland and D. S. Bernstein, The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton, and Moore, IEEE Transactions on Automatic Control, vol.30, issue.12, pp.30-1201, 1985.
DOI : 10.1109/TAC.1985.1103865

A. Lepschy, G. A. Mian, G. Pinato, and U. Viaro, Rational L2 approximation: A non-gradient algorithm, Proceedings of the 30th IEEE Conference on Decision and Control, pp.2321-2323, 1991.

J. T. Spanos, M. H. Milman, and D. L. Mingori, A new algorithm for L2 optimal model reduction, Automatica, vol.28, issue.5, pp.28-897, 1992.
DOI : 10.1016/0005-1098(92)90143-4

V. Sreeram and P. Agathoklis, On the computation of the Gram matrix in time domain and its application, IEEE Transactions on Automatic Control, vol.38, issue.10, pp.1516-1520, 1993.
DOI : 10.1109/9.241566

S. P. Johnson and L. P. Huelsman, A high-Q distributed-lumped-active network configuration with zero real-part pole sensitivity, Proc. IEEE, pp.491-492, 1970.
DOI : 10.1109/PROC.1970.7668