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In this paper, the authors present an efficient procedure for optimal placement of poles in rational approximations by Müntz-Laguerre functions. The technique is formulated as the minimization of a quadratic criterion and the linear equations involved are efficiently expressed using the orthonormal basis functions. The presented technique has direct application in rational approximation and model order reduction of large-degree or infinite-dimensional systems.

Introduction

Rational orthogonal basis functions (OBF) are useful tools in the identification and modeling of linear dynamical systems and found numerous applications in control and signal processing [START_REF] Heuberger | Modelling and Identification with Rational Orthogonal Basis Functions[END_REF]. In approximation problems using OBF, one of the major difficulties is the choice of the poles defining the functions. Due to their simplicity, Laguerre basis functions are often used. They have a real multiple-order pole whose choice is of great importance for computing low-order and good quality models. Much work has been done on the subject and optimal methods [START_REF] Clowes | Choice of the time-scaling factor for linear system approximations using orthonormal Laguerre functions[END_REF][START_REF] King | Optimum pole positions for Laguerre function models[END_REF][START_REF] Schetzen | Asymptotic optimum Laguerre series[END_REF][START_REF] Wang | Optimal choice of time scaling factor for linear system approximations using Laguerre models[END_REF] or sub-optimal methods [START_REF] Fu | An optimum time scale for discrete Laguerre network[END_REF][START_REF] Tanguy | Optimum choice of free parameter in orthonormal approximations[END_REF][START_REF] Tanguy | Improved method for optimum choice of free parameter in orthogonal approximations[END_REF] have been proposed in literature.

However Laguerre functions are poorly suited to compact modeling of systems possessing several time constants or resonant characteristics. Two-parameter Kautz functions are more adequate for modeling such systems but their efficiency is also limited. Techniques for an optimal or a suboptimal choice of the twoparameter Kautz poles are respectively presented in [START_REF] Den Brinker | Optimality conditions for truncated Kautz series[END_REF] and [START_REF] Morvan | Pertinent parameters for Kautz approximation[END_REF].

Finally for an effective approximation with a limited number of functions, the use of a more general orthogonal basis is preferable. Among them, Müntz-Laguerre basis functions that result from orthogonalization of a set of complex exponentials, have interesting properties [START_REF] Akcay | Orthonormal basis functions for modeling continuous-time systems[END_REF]. Nevertheless few methods exist for properly choosing the poles in generalized OBF approximations. The conditions that the optimal poles of OBF models must satisfy have been investigated in [START_REF] Heuberger | Modelling and Identification with Rational Orthogonal Basis Functions[END_REF][START_REF] Oliveira E Silva | Stationary Conditions for the L 2 Error Surface of the Generalized Orthonormal Basis Functions Lattice Filter[END_REF] (in the discrete time case).

These conditions are of great theoretical interest but generally cannot be solved in practical cases. On the other hand, asymptotically optimal pole locations aim to increase the convergence rate of the norm of the approximation error [START_REF] Heuberger | Modelling and Identification with Rational Orthogonal Basis Functions[END_REF][START_REF] Van Den | System Identification with Generalized Orthonormal Basis Functions[END_REF]. In this method, the minimization problem involves several independent variables and is faced with local minima and a cost function that is usually not differentiable. A simplistic approach consists in choosing the poles in accordance with the underlying dynamics of the system [START_REF] Ninness | A unifying construction of orthonormal bases for system identification[END_REF].

Such heuristics are rarely satisfactory in practice.

In a modeling context, the optimal choice of Müntz-Laguerre parameters (poles) is closely related to the model order reduction (MOR) problem whose main objective is the computation of a low order denominator (or, in a state space representation, a low order state matrix) that can be used to efficiently approximate the original system. Most MOR methods require that the original model be in a rational form.

The major interest in the use of Müntz-Laguerre functions is that one can deal with original systems described by rational or irrational transfer functions and also by physical measurements in both time and frequency domains. The present paper does not focus on the actual computation of the Müntz-Laguerre expansion but it is important to note that effective technics exist such as the ones described in [START_REF] Heuberger | Modelling and Identification with Rational Orthogonal Basis Functions[END_REF][START_REF] Soumelidis | Representation and approximation of signals and systems using Generalized Kautz Functions[END_REF].

In the following sections an original method of pole selection for the Müntz-Laguerre functions is presented. It is based on the construction of a family of functions related to the original transfer function and on the minimization of a modified quadratic error criterion. An efficient method for computing the required gramian is also proposed. Gramians in general, have several useful properties [START_REF] Sreeram | On the properties of Gram matrix, V Sreeram[END_REF] that have often attracted the interest of researchers working in various fields of system theory.

The article is organized as follows: Section II introduces the Müntz-Laguerre functions and describes the proposed procedure for parameters optimization. Section III details some properties of the procedure.

Section IV illustrates the performance of the method with a variety of numerical examples and comparisons with existing methods. Some demonstrations are available in the appendices.

Proposed procedure

Background

Let the Hardy space 2

H consisting of all analytic and square-integrable functions in the open right halfplane with scalar product

( ) ( ) ò +¥ ¥ - = w w w p d i G i F G F 2 1 , , (1) 
and the norm H could be exactly represented with an infinite Müntz-Laguerre expansion as
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where the expansion coefficients n d are given by the inner products

n n F d F = , . (4) 
In practice series (3) is truncated ) have a great impact on the quality of the model. Nevertheless their optimal choice, minimizing the quadratic error norm, is a nonlinear problem that usually cannot be solved in a simple way.

Model definition and identification

Due to the nonlinearity of the problem, the major difficulty in rational approximation is to take the 'best' choice for the poles of the model. The original idea developed in this paper is to consider the following expression
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are the all-pass filters appearing in the expression of the Müntz-Laguerre functions (2),
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s F computed for a predefined set of parameters [ ] R a a a ,..., , 2 1 = a 
. It will be noticed that expression [START_REF] Tanguy | Optimum choice of free parameter in orthonormal approximations[END_REF] can be simplified by cancelling

out the common poles l a ( R l ,..., 2 , 1 =
). It then follows that the R poles of the transfer function ( )

s G are actually the R zeros of the denominator ( ) s Q . An interesting property of ( ) s G is that the numerator ( ) s P in (7) is defined so that ( ) ( ) l l a a F G = for R ,..., 1 = l (see demonstration in appendix A).
Therefore the first R expansion coefficients are identical for ( ) s F and its rational approximation ( )
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To obtain the best rational R-order model for ( )

s F we have to solve G F J q - = min for [ ] T R q q q 1 1 0 , , , - = L q
. Nevertheless this is also a nonlinear problem that cannot be easily solved. The difficulty is often circumvented by linearizing the problem as follows 5), [START_REF] Tanguy | Improved method for optimum choice of free parameter in orthogonal approximations[END_REF] and the definition (2) it is straightforward to verify that functions ( )
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and consequently belong to 2 H . Using [START_REF] Akcay | Orthonormal basis functions for modeling continuous-time systems[END_REF] the minimization problem [START_REF] Morvan | Pertinent parameters for Kautz approximation[END_REF] can therefore be recast as
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The solution of ( 13), if it exist, is obtained by solving the linear algebra problem b Γq -=

where Γ is a Gram matrix with elements
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The q vector solution of ( 14) then completely defines a rational model ( 7) for ( ) s F . The poles of ( ) s G can then be used to define an improved set of parameters for the original Müntz-Laguerre basis.

Discussion

Existence of a unique solution

If ( ) s F is a strictly proper transfer function in 2

H of degree R R ³ 0 then the solution of ( 13) is unique.

To show that, one can use a proof by contradiction. Suppose that the subset of functions { }

1 1 0 1 , , , - -= W R R E E E L
are linearly dependent and allow more than one solutions in [START_REF] Van Den | System Identification with Generalized Orthonormal Basis Functions[END_REF]. It follows from the hypothesis that a non-null vector

[ ] T R q q q 1 1 0 , , , - = L q exists such that ( ) 0 1 0 = å - = R k k k s E q . Substituting ( ) s E k
with the definition [START_REF] Akcay | Orthonormal basis functions for modeling continuous-time systems[END_REF] and rearranging this equation yields an R-1 order rational expression for ( )

s F , i.e. ( ) ( ) ( ) ( ) å å - = - - = - = 1 0 1 1 1 1 R k k k R k k k k s Z q s F s Z q s F , which contradicts the hypothesis that ( ) s F is a transfer function of degree R R ³ 0 ■

Computational aspect

One of the main advantages of the technique is that it was mathematically designed to exploit the properties of the Müntz-Laguerre basis making the required computations numerically efficient. From [START_REF] Wang | Optimal choice of time scaling factor for linear system approximations using Laguerre models[END_REF] and the definition of the Müntz-Laguerre functions (2) one can write
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Taking into account that ( ) ( )
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, [START_REF] Sreeram | On the properties of Gram matrix, V Sreeram[END_REF] it follows that the definition [START_REF] Akcay | Orthonormal basis functions for modeling continuous-time systems[END_REF] allows to derive
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s E k functions can be computed recursively from ( ) ( ) s F s E = 0 .
Note that relation ( 17) is a generalization of the technique already presented by some of the authors in [START_REF] Amghayrir | Laguerre-Gram Reduced-Order Modeling[END_REF] in a context of model order reduction of 'single parameter' Laguerre expansions. The same relation [START_REF] Knockaert | On orthonormal Müntz-Laguerre filters[END_REF] is also exploited in [START_REF] Mi | A fast adaptive model reduction method based on Takenaka-Malmquist systems[END_REF] to derive rational models using a different approach.

With a view to compute the inner products . Also note the relation already given by [START_REF] Oliveira E Silva | Stationary Conditions for the L 2 Error Surface of the Generalized Orthonormal Basis Functions Lattice Filter[END_REF] allowing the computation of the functions' energies using the expansion coefficients.

Only the poles of ( )

s F appear in the minimization problem [START_REF] Van Den | System Identification with Generalized Orthonormal Basis Functions[END_REF] Suppose that [START_REF] Akcay | Orthonormal basis functions for modeling continuous-time systems[END_REF], with (2) in mind, allows to derive
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Hence, one can conclude that recursive relation [START_REF] Knockaert | On orthonormal Müntz-Laguerre filters[END_REF] preserves the poles or natural frequencies of the original function

( ) ( ) s F s E = 0 .
Moreover, from approximation theory and the Bessel inequality it follows that the minimum value for the criterion [START_REF] Morvan | Pertinent parameters for Kautz approximation[END_REF], or [START_REF] Van Den | System Identification with Generalized Orthonormal Basis Functions[END_REF], is less than the R-order optimal Müntz-Laguerre model computed for the initial set of parameters a i.e.
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Stability

The stability of the resulting rational transfer function ( ) s G has not been analytically proved yet. A large number of numerical tests consistently yielding stable models tends to show this property exists. Despite investigations by the authors, the subject is still open. Note that for the special case of single parameter Laguerre functions, i.e.

R Î = a a l

, the stability of ( ) s G was already proven in [START_REF] Amghayrir | Laguerre-Gram Reduced-Order Modeling[END_REF].

The use of Müntz-Laguerre functions instead of Laguerre functions allows a greater flexibility in the set of initial parameters a but, more important the procedure can be iterated to slightly improve the rational approximation (9).

Iterative algorithm

An iterative procedure could be established to refine the rational model ( ) 

Rational model with real impulse response

In numerous applications the rational model must have a real impulse response. To guarantee this property one must start with a vector of Müntz-Laguerre parameters a composed of real or pairs of complex conjugate values. Once the minimization problem ( 13) is solved for q , only the real parts of the error term [START_REF] Van Den | System Identification with Generalized Orthonormal Basis Functions[END_REF] or equivalently in [START_REF] Morvan | Pertinent parameters for Kautz approximation[END_REF] is then considered to derive ( ) s G using [START_REF] Tanguy | Optimum choice of free parameter in orthonormal approximations[END_REF]. Note that in this particular case one may consider using the Kautz basis to implement the algorithm with minimal modifications.

å = R k k k E q 0 in

Numerical examples

Several examples available in literature were selected in order to illustrate the algorithm. They were already used as a benchmark in two previous papers providing an overview of model order reduction [START_REF] Yan | An approximate approach to H2 optimal model reduction[END_REF], [START_REF] Gugercin | H2 model reduction for large scale linear dynamical systems[END_REF]. Table I collects the results of this analysis and allows a comparison in terms of relative quadratic errors F G F -. The modeled systems are System 1: the fourth-order transfer function in [23, ex. 6.1] System 2: the seventh-order transfer function from [START_REF] Lepschy | Rational L2 approximation: A non-gradient algorithm[END_REF] System 3: the fourth-order transfer function in [25, ex. 1] System 4: the second-order transfer function in [25, ex. 2] The techniques used to derive the different lower orders are MLM: the Müntz-Laguerre Model obtained via the algorithm presented above.

IRKA: the iterative rational Krylov algorithm [START_REF] Gugercin | H2 model reduction for large scale linear dynamical systems[END_REF] GFM: the gradient flow method [START_REF] Yan | An approximate approach to H2 optimal model reduction[END_REF] OPM: the orthogonal projection method [START_REF] Hyland | The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton and Moore[END_REF] BTM: Balanced truncation method LPMV: the algorithm proposed in [START_REF] Lepschy | Rational L2 approximation: A non-gradient algorithm[END_REF] SMM: the algorithm proposed in [START_REF] Spanos | A new algorithm for L2 optimal model reduction[END_REF] GRSM: the algorithm based on the impulse-response Gramian of the reciprocal system [START_REF] Sreeram | On the computation of the Gram matrix in time domain and its application[END_REF] We note that in terms of relative quadratic error, the proposed method yields results either identical or very close to some of the best MOR techniques already available. Furthermore the initialization is trivial. In all cases identical starting parameters were used, i.e.

( )

1 0 = = a a l l " .
The number of iterations required to achieve convergence varies from 2 to 5 for any of the considered systems and the total number of Müntz-Laguerre functions used in the procedure was N = 20 in all cases. Moreover the procedure only requires elementary arithmetic operations and a low order matrix inversion. It follows that the computational cost required to evaluate the inner products in (B.4) and of the method in general tends to be low.

Few methods exist for a proper choice of Müntz-Laguerre parameters. One of the more elaborated is asymptotical optimal pole locations method that aims to decrease the exponential convergence factor of the norm of the approximation error [START_REF] Heuberger | Modelling and Identification with Rational Orthogonal Basis Functions[END_REF][START_REF] Van Den | System Identification with Generalized Orthonormal Basis Functions[END_REF]. We have applied this method to choose the poles of a Müntz-Laguerre model for the system 1, the relative quadratic errors for model orders R ranging from 3 down to 1 are respectively given by 9.84e-03, 4.23e-01 and 9.17e-01. These results show the inaccuracy of this technics when very low order models are sought-for. Moreover, the knowledge of the poles of the original function are required and, due to the non-differentiability in some search regions of the cost function considered by this method, its minimization must be done numerically. The second example deals with an infinite dimensional function. This is a far more complex issue.

Classical MOR methods that only apply to rational original models are not suitable in this case. Müntz-Laguerre functions constitute an efficient tool in computing a rational approximation. With the algorithm described in the present paper, both the issue of parameter selection and the issue of subsequently deriving a low order model are solved. The considered system is a distributed RC-circuit whose irrational transfer function is [START_REF] Johnson | A high-q distributed-lumped-active network configuration with zero real-part pole sensitivity[END_REF], [START_REF] Amghayrir | Laguerre-Gram Reduced-Order Modeling[END_REF] ( ) ( )

RCs RCs s F sinh 1 1 + = , with RC = 1. An 4 = R
order model was purchase for this transfer function. Figure 1 shows that the choice of the initial parameters has little impact on the convergence which is in any case fast. A relative quadratic error of 02

- 1.25e = - F G F
is achieved in all cases regardless of the initial guess. Figure 2 shows that the optimization technique works well for various values of N and furthermore the method converges to the same result. One also noticed that even with a mediocre initial approximation (

R N 2 =

) the resulting model is accurate and therefore the optimization precision turns out to be effective. 

Conclusion

An efficient procedure for an optimization of the Müntz-Laguerre functions in rational approximations has been presented. The Müntz-Laguerre parameters are obtained by the minimization of a quadratic error criterion based on the linearization of the original optimization problem. The properties of the basis functions are carefully exploited in order to make the overall algorithm computationally efficient.

Illustrative examples have been shown in order to demonstrate the procedure. A particularly interesting field of application is the modeling of infinite-dimensional systems, but the results presented in this paper may prove useful in any application using rational orthogonal bases. 
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This equality implies that the proposed method retains the moments of ( ) ) may be used and a useful procedure [START_REF] Soumelidis | Representation and approximation of signals and systems using Generalized Kautz Functions[END_REF] based on the FFT algorithm can then be employed to compute the Müntz-Laguerre spectrum of 

  truncated series (5) defines a k-order rational approximation for ( )

  in[START_REF] Ninness | A unifying construction of orthonormal bases for system identification[END_REF], it is useful to consider the Müntzetc. (see Appendix B for the relationships). Therefore the inner products required in (14) can be practically computed by
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 4 Construct the Gram matrix using (B.2) to (B.4) then solve[START_REF] Ninness | A unifying construction of orthonormal bases for system identification[END_REF] and construct is not crucial and has mainly an impact on the rate of convergence of the algorithm. In practice (3) will be truncated at an order N and R N >> is a good choice. The algorithm yields R poles. A larger set of Müntz-Laguerre parameters may be obtained by a periodic repetition of the latter with points are illustrated by examples in section IV.
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 12 Fig. 1: Evolution of the relative errors for different sets of initial parameters (N = 48)

F

  and ( ) s G possess the same moments around the expansion points l a ( prove that, normalize ( )s Gas given in (7) by multiplying the denominator and the numerator by ( ) s Z R , then substitute ( ) their definition (5),[START_REF] Tanguy | Improved method for optimum choice of free parameter in orthogonal approximations[END_REF] and reorganize the summation at the numerator, it follows

1 ).

 1 and consequently the R-first Müntz-Laguerre coefficients spectrum of ( ) property of Müntz-Laguerre functions and the recursive property of functions The second part of (17) has no pole in the complex left half-plane and therefore has a null contribution in (B.1). The scalar product in (B.1) is given by evaluated using Cauchy's residue theorem. It yields

  and the sum (B.1) is computed over a finite interval, i.e

Table 1 :

 1 Comparison of relative errors

	System Lower	MLM	IRKA	GFM	OPM	BTM	LPMV	SMM	GRSM
		order R							
	1	3	1.3048e-3 1.3047e-3 1.3107e-3 1.3047e-3 1.3107e-3			6.55e-3
		2	3.9449e-2 3.9290e-2 3.9299e-2 3.9290e-2 3.9378e-2			4.51e-2
		1	4.4527e-1 4.2683e-1 4.2709e-1 4.2683e-1 4.3212e-1			5.05e-1
	2	6	5.817e-5 5.817e-5 5.817e-5 5.817e-5 5.822e-5 2.864e-4		2.23e-3
		5	2.132e-3 2.132e-3 2.132e-3 Divergent 2.452e-3 2.132e-3		1.55e-2
		4	8.202e-3 8.199e-3 8.199e-3 8.199e-3 8.266e-3 8.199e-3		2.45e-2
		3	1.175e-1 1.171e-1 1.171e-1 Divergent 2.384e-1 1.171e-1		3.37e-2
	3	3	5.74e-2	5.74e-2	5.98e-2	5.74e-2	5.99e-2		5.74e-2	4.05e-1
		2	2.527e-1 2.443e-1 2.443e-1 Divergent 3.332e-1		2.443e-1 3.11e-1
		1	5.259e-1 4.818e-1 4.818e-1 4.818e-1 4.848e-1		4.818e-1 5.58e-1
	4	1	9.85e-2	9.85e-2	9.85e-2	9.85e-2 9.949e-1		9.85e-2	>1
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