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In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic
methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs
(ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly
understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate
showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while
the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic Ar-
chaea were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel
electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrich-
ments revealed the presence of active methylotrophic Methanococcoides burtonii relatives and several new autotrophic Methano-

genium lineages, confirming the cooccurrence of Methanosarcinales and Methanomicrobiales methanogens with abundant
ANME populations in the sediments of the Sonora Margin cold seeps.

n cold seep ecosystems, sediments are colonized by various
dense microbial and sometimes macrofaunal populations,
forming a mosaic of patchy habitats on the seafloor (1, 2). The
metabolism of these organisms, based on chemosynthesis, is
mainly fueled by seep fluids, rich in reduced compounds and hy-
drocarbons, such as methane (3). Most of the methane is con-
sumed microbiologically by anaerobic and aerobic metha-
notrophic communities before reaching the water column,
forming an efficient biofilter (4). In marine sediments and typi-
cally in cold seep ecosystems, methanogenesis driven by archaeal
communities accumulates large amounts of methane, which can
be trapped in gas hydrates. Microbial populations involved in
methane production (methanogens) are phylogenetically affili-
ated with 7 orders within the phylum Euryarchaeota, which com-
prises the Methanosarcinales, Methanocellales, Methanomicrobia-
les, Methanococcales, Methanopyrales, Methanobacteriales (5), and
the recently described Methanoplasmatales (6), also known as
Methanomassiliicoccales (7). Furthermore, deeply branching un-
characterized orders have been recently detected (8). Enrichment
cultures from methane-rich environments, such as marine sedi-
ments, mangroves, animal guts, or wastewater bioreactors, previ-
ously showed that methanogens could use different substrates for
methane production under anaerobic conditions (9-18). In ma-
rine sediments, methylated compounds (e.g., methylamine, dim-
ethylamine, trimethylamine [TMA], methanol, dimethylamine-
sulfate, and dimethylsulfide), volatile fatty acids (formate and
acetate), bicarbonate, and, more recently, choline and glycine be-
taine (19, 20) have been identified as primary carbon substrates
for methanogenesis. These compounds can be metabolized
through three different specific methanogenic pathways: metha-
nogenesis from H,-CO,, aceticlastic methanogenesis, and methy-
lotrophic methanogenesis (21).
Located in the Guaymas Basin (Gulf of California), the Sonora
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Margin cold seep ecosystem is composed of various visible faunal
assemblages and white microbial mats (22-24). Sediments under-
lying the microbial mats and their periphery are characterized
by high methane concentrations (around 900 wM and 500 wM,
respectively) (23). The carbon isotopic signature of this methane
(8 PC-CH, = —63%0 to —90%o) suggests that significant
amounts of biogenic methane are produced by methanogenic
populations. However, in contrast to the adjacent high-tempera-
ture hydrothermal sediments of the Guaymas Basin, from which
several hyperthermophilic methanogens were isolated (25-27),
no methanogens were detected by microscopic and rRNA se-
quence surveys of recent Sonora Margin sediments (23). How-
ever, 16S rRNA gene sequences related to known methanogenic
lineages were detected only rarely in previous studies using clone
libraries (23) and 454 pyrosequencing (24). Furthermore, quan-
titative measurements using real-time quantitative PCR (qPCR)
with 16S rRNA gene primer sets specifically targeting putative
methanogenic groups suggested that Methanomicrobiales and
Methanococcales represented only a minority of the microbial
community (0.1 to 1% of the total archaeal 16S rRNA gene copy
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FIG 1 Sediment depth profiles of methane concentrations and methanogenesis rates. (A) White Mat 14. (B) Edge of White Mat 14. The relative proportions of
acetate, bicarbonate, and dimethylamine methanogenesis rates are represented in pie charts for each sediment section. The size of the pie chart is proportional
to the total methanogenesis rate. The methane concentrations are from Vigneron et al. (23).

number) in the shallow sediment layers (0 to 17 cm below seafloor
[embsf]) (23). In contrast, Methanosarcinales related to anaerobic
methanotrophs (ANME), previously found to be active and abun-
dant in these sediments (23), dominated throughout the shallow
sediments of the Sonora Margin (30 to 92% of the total archaeal
16S rRNA gene copy number). Thus, the activity and biodiversity
of methanogenic microbial populations remained unclear.

In this study, we investigated the production of biogenic meth-
ane in the Sonora Margin cold seeps by analyzing major metabolic
pathways for methane production in marine environments. The
phylogenetic and metabolic diversity of methanogenic communi-
ties was explored using enrichment cultures and activity measure-
ments designed to target acetotrophic, hydrogenotrophic, and
methylotrophic methanogens.

MATERIALS AND METHODS

Sediment samples. Sediment samples were collected from Sonora Margin
cold seeps during the oceanographic cruise BIG (Ifremer) with the R.V.
L’Atalante and the D.S.V. Nautile in June 2010. Two different habitats
from the Vasconcelos site (27°35.577'N, 111°28.984"W), sampled in trip-
licate using 20-cm-long push cores (PC), were selected for enrichment
cultures and activity measurements: (i) an extended white microbial mat
(White Mat 14 [WM14]; PC1, PC2, and PC3), characterized by an average
methane concentration of 900 pM throughout the core (Fig. 1), and (ii)
the surrounding macrofauna (Edge of White Mat 14 [EWMI14]; PCe,
PC8, and PC11), characterized by an average methane concentration of
500 puM (Fig. 1) (23). Before each sampling, autonomous temperature
sensors (T-Rov; NKE Electronics, Hennebont, France) recorded in situ
temperatures around 3°C from the sediment surface down to 40 cmbsf on
each habitat. On board, the sediment cores were transferred in a cold
room immediately after retrieval and sectioned aseptically in 2-cm-thick
layers. For enrichment cultures, 6 cm? of each sediment layer was trans-
ferred into 50-ml vials containing 10 ml of sterile and anoxic artificial
seawater (DSMZ medium 246a). The vials were crimp sealed with butyl
rubber septum stoppers and aluminum crimp tops (Bellco Glass Inc.,
Vineland, NJ, USA) and then flushed with N, and stored at 4°C under a
200-kPaN,-CO, (80:20) gas atmosphere. For activity measurements, PC2
and PC6 were subsampled using triplicate mini-push cores. These mini-
push cores were hermetically sealed under an N, gas atmosphere in alu-
minum bags (Griiber-Folien, Germany) and stored at 4°C for processing
in the laboratory.
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Culture media for enrichment of methanogens. Two sediment cores
from each habitat (WM14 PC1 and PC3; EWM14 PC8 and PC11) were
used to inoculate independent duplicate enrichments. Methanogenic en-
richments were performed anaerobically in 50-ml vials. Medium 141
from DSMZ was used with slight modifications: organic substrates were
omitted, except yeast extract with a final concentration of 0.2 g liter .
The medium was prepared and sterilized under an 80% N, and 20% CO,
gas atmosphere. In order to enrich CO,-reducing, aceticlastic, and methy-
lotrophic methanogens, four separate enrichment media supplemented
with H,-CO, (80:20; 200 kPa), acetate (10 mM) under an H,-CO, or
N,-CO, gas atmosphere, and TMA (20 mM) were used. One milliliter of
sediment suspension from different sections (0 to 6 cmbsf, 6 to 10 cmbsf,
and 10 to 15 cmbsf) of each core was inoculated into 9 ml of medium (pH
7). The slurries were mixed and serially diluted to 10 . A total of 136
cultures were prepared, including uninoculated medium used as a nega-
tive control for each condition (Table 1). In order to enhance microbial
growth, all the cultures were incubated at 12°C, higher than the average in
situ temperature (3°C). The cultures were periodically checked (every
month) for methane production for 2 years. The methane concentrations
in the vial headspaces of the cultures were determined by using a micro
MTI M200 gas chromatograph (Spectralab, Markham, Canada)
equipped with an MS-5A capillary column and a Poraplot U capillary
column (Agilent Technologies, Santa Clara, CA, USA) via sterile needle.
The presence of putative methanogenic communities from methane-pro-
ducing enrichments was confirmed by epifluorescence microscopy
(model BX60, equipped with a U-RFL-T UV supply unit; Olympus, USA).
Enrichments were stopped when more than 50 UV-autofluorescent cells
per microscope field (magnification, X1,000) were detected. Renewal of
carbon and energy sources (200 kPa of H,-CO, or 10 mM acetate) was
anaerobically and sterilely carried out after 1 year of incubation.

Methanogenic-activity measurements. Potential rates of methano-
genesis were monitored on anaerobically stored subsamples using '*C-
radiolabeled substrates, 3 months postcruise, at Cardiff University,
United Kingdom. Subsamples were pooled in 42 cm? of sediment slurries,
corresponding to 7-cm-thick sediment layers (0 to 7 cm and 7 to 14 cm for
WM14 and 0 to 7 cm, 7 to 14 cm, and 14 to 21 cm for EWM14), and then
dispensed into 20-ml vials before injection of labeled substrates. Triplicate
vials were monitored with addition of radiotracers (['*C]bicarbonate [19
pl containing 74 kBq], ['*Clacetate [19 pl containing 397 kBq], and
[**C]dimethylamine [19 .l containing 176 kBq]) for each sediment sec-
tion. Additional vials were monitored without radiotracers as negative
controls. The vials were incubated at close to in situ temperatures (4°C)
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TABLE 1 Enrichment conditions and levels of dilution applied to samples

Methanogens in the Sonora Margin Sediments

Enrichment®
WM14 EWM14
PC3 PC4 PC8 PC11
Enrichment conditions Z1 72 Z3 Z1 72 Z3 Z1 72 Z3 Z1 z2 Dilution
Trimethylamines + + + + + + + + + 107!
+ + + + + + + + + + + 1072
+ + + + + + + + + + + 107°
Acetate 107!
1072
107?
H,-CO, + + + + + 107!
+ + + + + + + + + + + 1072
+ + + + + + + + + + + 107°
H,-CO, with acetate + + + + + + + + + + 107!
+ + + + + + + + + + + 1072
+ + + + + + + + + + + 107?

“ +, positive enrichment (methane production and detection of UV autofluorescent cells); empty cells, no methane accumulation in the headspace; Z1, 0 to 6 cmbsf; Z2, 6 to 10

cmbsf; Z3, 10 to 15 cmbsf.

with magnetic agitation. Activity measurements were terminated by ad-
dition of 1 M NaOH, and the vials were processed as described previously
(28). Methanogenesis rates were calculated based on the proportion of
labeled gas produced from the '*C substrate, the incubation period, an
assumed sediment porosity of 70%, and the measured cold pool size of the
substrate. Because the incubation conditions were not identical to the
original sediment conditions, the measured rates might differ from those
in situ.

RNA extraction, purification, and reverse transcription. Total RNA
from methane-producing enrichments was extracted and purified from 2
ml of enrichment culture using a Nucleospin RNA II kit (Macherey-Na-
gel, Diiren, Germany) according to the manufacturer’s recommenda-
tions. Absence of residual DNA was checked by PCRs before reverse tran-
scription. Total RNA was reverse transcribed using a Quanta qScript kit
(Quanta Bioscience, Gaithersburg, MD, USA) according to the manufac-
turer’s protocol.

PCR-DGGE of 16S rRNA. PCR-denaturing gradient gel electropho-
resis (DGGE) was used to monitor the archaeal diversity in positive en-
richments. Archaeal reverse-transcribed 16S rRNA was amplified by PCR
using the archaeal primers A8F (5'-CGG TTG ATC CTG CCG GA-3')
and A1492R (5'-GGC TAC CTT GTT ACG ACT T-3') (29). All PCRs
were carried out in a final volume of 25 pl using the GoTaq polymerase kit
(Promega, Madison, WI, USA) according to the manufacturer’s recom-
mendations. The PCR conditions were as follows: denaturation at 94°C
for 1 min, annealing at 49°C for 1 min 30 s, and extension at 72°C for 2 min
for 30 cycles. PCR amplicons were checked on agarose gels, and then, the
PCR products were reamplified with primers 340F (5'-CCC TAC GGG
GYG CAS CAG-3'), containing a GC clamp at the 5" end (30), and 519R
(5"-TTA CCG CGG CKG CTG-3") (31). PCRs were carried out as de-
scribed previously (14). Positive and negative controls were used in all
PCR amplifications.

DGGE was carried out as described previously (14). DGGE profiles
were analyzed using PyElph 1.4 software (32). At least one enrichment per
DGGE fingerprint pattern was selected for amplification, cloning, and
sequencing of the reverse-transcribed archaeal 16S rRNA.

Methanogenic diversity based on 16S rRNA. 16S rRNA sequences
from reverse-transcribed RNA of positive enrichments selected after
DGGE were amplified using the A8F-A915R primers (33, 34). The PCR
conditions were as follows: 30 cycles of a denaturation step at 94°C for 40
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s, annealing at 57°C for 1 min 30 s, and extension at 72°C for 3 min. The
PCR products were purified on agarose gels and then cloned using a
TOPO XL PCR cloningkit (Invitrogen, San Diego, CA, USA) according to
the manufacturer’s protocols. Sequencing of the inserts was carried out by
GATC Biotech (Constance, Germany) using the M13 universal primers
(M13f, 5'-GTA AAA CGA CGG CCA GTG-3'; M13r, 5'-GGA AAC AGC
TAT GAC CAT G-3'). Sequences were analyzed using the NCBI BLAST
search program in GenBank (35) and aligned with the closest representa-
tive sequences using the Mafft program (36). The sequence data were
analyzed with the MEGA 4.0.2 program (37). Phylogenetic trees were
estimated by maximum-likelihood and neighbor-joining methods using
RAXML 7.2.8 (38) with GTRCAT approximation of the model and the
Kimura two-parameter correction matrix coupled to pairwise deletion
parameters, respectively. The robustness of the inferred topology was
tested by bootstrap resampling (1,000 replicates).

Nucleotide sequence accession numbers. The sequences from the
study were deposited in the EMBL database under the following accession
numbers: HG973458 to HG973475.

RESULTS

Potential activity measurements. Methanogenic activities were
54 to 29% higher in WM 14 sediments than in EWM14 sediments.
In both sediment cores, the total methanogenesis rate decreased
with depth (Fig. 1), but more rapidly throughout EWM14 sedi-
ments (80% decrease) than WM 14 sediments (63% decrease). In
WM 14 sediments, although methylotrophic methanogenesis sig-
nificantly decreased with depth (560 to 180 pmol cm™> day™'; ¢
test P value, 0.04), it consistently represented the major methano-
genesis processes (91 to 83% of the total methanogenesis). In con-
trast, although hydrogenotrophic methanogenesis was relatively
steady (36 to 49 pmol cm > day ™ '; ¢ test Pvalue, 0.58) throughout
WM14, it represented a higher proportion of the total methano-
genesis at depth (0 to 7 cmbsf, 8%; 7 to 14 cmbsf, 16%). However,
aceticlastic methanogenesis remained low (5 pmol cm > day ')
throughout WM14 sediments, representing 1% of the total
methanogenesis. In EWM14 sediments, although methylotrophic
methanogenesis also dominated methanogenic processes in the
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FIG 2 DGGE analysis of archaeal 16S rRNA diversity. (A) DGGE profiles for 20 samples represented by letters (A to T) in the dendrogram in panel B. The
different media are represented by symbols: dots, acetate/H,-CO,; stars, H,-CO,; diamonds, trimethylamines. (B) Dendrograms from cluster analysis of DGGE
profiles. The underlined samples were selected for analysis of the phylogenetic diversity of methanogens. Act, acetate; WM14a, WM14 PC3; WM 14b, WM14 PC4;
EWM14a, EWM14 PC8; EWM14b, EWM14 PC11; Z1, 0 to 6 cmbsf; Z2, 6 to 10 cmbsf; Z3, 10 to 15 cmbsf.

upper sediment section (98% of the total methanogenesis), it de-
creased markedly (analysis of variance [ANOVA] P value, 0.001)
with depth, representing only 48% of the total methanogenesis (7
pmol cm > day ') in sediments below 14 cmbsf. In contrast, hy-
drogenotrophic methanogenesis in EWM14 sediments remained
relatively constant (~8 pmol cm™ 3 day~ 1 ANOVA Pvalue, 0.87),
representing the major methanogenesis processes (50%) at the
bottom of the core. Aceticlastic methanogenesis was consistently
low throughout EWM14 sediments, with rates around 2 pmol
cm day ™" (2% of the total methanogenesis).

Methanogenic enrichments. After 2 years of incubation, pos-
itive methane production and growth of methanogens were re-
corded in 90 enrichments, representing 33 different substrate and
sample combinations (Table 1). Methane production or cell
growth was not detected in the negative controls. TMA, acetate
with H,-CO,, and H,-CO, were found to stimulate growth of
methanogenic communities from all WM14 (microbial mat) and
EWM14 (macrofauna) sediment layers. Methane production was
not detected with acetate as the sole carbon and electron donor for
both WM14 and EWM 14 sediments. Methanogens were detected
by epifluorescence microscopy by targeting the fluorescent coen-
zyme F420 (39). F420 is not restricted to methanogens, as it has
also been detected in anaerobic methanotrophic communities
and archaeal Marine Group 1 (40). However, UV autofluorescent
cells were detected only in enrichments where methane produc-
tion occurred, strongly suggesting that these UV-autofluorescent
cells were methanogens. UV-autofluorescent free coccoid-shaped
cells were widespread in the samples regardless of the enrichment
conditions. Unusual cell morphologies, such as long and thick
spiral UV-fluorescent cells, were detected only occasionally at the
beginning of the enrichment procedure in cultures amended with
H,-CO, (data not shown).
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Archaeal community structure. Forty representative enrich-
ments from all 33 different positive culture conditions were ana-
lyzed using RT-PCR-DGGE (Fig. 2A). The archaeal community
structures grouped in seven different clusters, mainly correlated
with the carbon substrates used (Fig. 2). In order to phylogeneti-
cally identify the active methanogens, 16S rRNA clone libraries
from 11 positive enrichment cultures were analyzed (underlined
in Fig. 2B). As the RT-PCR-DGGE profiles showed relatively lim-
ited archaeal diversity within the enrichments, only 10 clones
per library were sequenced. For each clone library, all 10 se-
quences were highly similar to each other (97% sequence sim-
ilarity). 16S rRNA sequences, amplified from enrichment cul-
tures with TMA, were closely related to Methanococcoides
burtonii and Methanococcoides alaskense (98% sequence similar-
ity), within the order Methanosarcinales. In contrast, sequences
obtained from enrichments with H,-CO, and acetate or with H,-
CO, as carbon and energy sources were mainly distantly related to
Methanogenium cariaci (96% sequence similarity) and could
therefore represent a new species of Methanogenium (Methanoge-
nium group 1) (Fig. 3). Sequences obtained from enrichment cul-
ture from WM14 (6 to 10 cmbsf) amended with acetate and H,-
CO, were closely related to M. cariaci (98% sequence similarity)
(Methanogenium group 2) (Fig. 3). However, enrichment culture
from EWM14 (6 to 10 cmbsf), also amended with H,-CO,, har-
bored a different methanogenic population, composed of se-
quences only very distantly related to Methanogenium marinum
(93% sequence similarity; Methanogenium group 3) (Fig. 3).

DISCUSSION

Methanogenic populations in the Sonora Margin sediments.
The methane isotopic ratio measured previously in these samples
suggested that methane in the Sonora Margin shallow sediments
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FIG 3 Neighbor-joining (NJ) phylogenetic tree of the archaeal 16S cDNA sequences amplified from selected enrichment cultures. Maximum-likelihood (ML)
topologies were similar. Bootstrap support values obtained for NJ/ML analyses are reported at the nodes (1,000 replicates). Sequences from this study are in
boldface. Highly similar sequences (>97% identical) from the same sample were clustered, but only one representative sequence is shown. The scale bar indicates

five substitutions per 100 nucleotides.

was mainly of biogenic origin (41). Furthermore, our results show
that at least 91% of the biogenic methane in surface (0 to 7 cmbsf)
sediments was produced by methylotrophic methanogenesis, sug-
gesting that among the tested substrates, methylated amines were
the main methane precursors in these sediments. Occurrence of
methylotrophic methanogenesis throughout the sediments was
supported by detection of 16S rRNA sequences related to M. bur-
tonii and M. alaskense in enrichment cultures amended with trim-
ethylamine. These methylotrophic methanogens that can generate
methane by disproportionation of methylated amines appear to
be widespread in cold seep environments (14, 42). However, these
environments might harbor only low abundances of Methanocco-
coidetes lineages, as related sequences were rarely directly detected
without previous methanogenic enrichments (43—45) or specific
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functional-gene amplifications (46—49). Enrichment steps are
generally required for the detection and identification of Metha-
nococcoides lineages in cold seep sediments (13, 14,42, 50, 51). The
presence and activity of these methanogens in these sulfate-rich
sediments (22 to 5 mM sulfate) (23), as observed previously in
other marine sediments (14, 47, 50, 52, 53), were probably a con-
sequence of utilization of noncompetitive methanogenic sub-
strates, such as methylamines (17, 19, 54). Methylated amines
were presumably available in the surface sediments of WM14 and
EWM14, as marine invertebrates, observed in high densities over
these sediments, can accumulate large amounts of osmolytes (e.g.,
betaine and trimethylamine N-oxide) and choline (widespread in
cell membranes) in their tissues that can be subsequently released
in the sediments and degraded to smaller methylated amines (e.g.,
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FIG 4 Hypothetical model (not to scale) of microbial methane cycling in the Sonora Margin cold seep sediments. Each microbial group is characterized by a
specific function: group 1, methylotrophic methanogenesis by Methanococcoides lineages directly from surface organism inputs or after primary degradation by
various bacteria (Desulfovibrio, Desulfobacterium, and Desulfuromonas) previously detected in environmental samples (60); group 2, hydrogenotrophic metha-
nogenesis by Methanogenium lineages after organic-matter degradation by fermentative bacteria (Firmicutes) previously detected in environmental samples (24,
60); group 3, methane production by the deepest methanogenic communities detected in the deepest (1 to 9 mbsf) sediments of the Sonora Margin cold seeps
(46) and other, potentially unidentified methanogens; group 4, potential methanogenesis activity of ANME communities (68, 70). SRB, sulfate-reducing

bacterium.

TMA, N,N-dimethylglycine, and N,N-dimethylethanolamine)
(Fig. 4) (55). For example, TMA concentrations in marine sedi-
ments were previously shown to be related to the abundance of
benthic invertebrates (56). Furthermore, degradation of choline
and betaine to TMA has been reported for the deltaproteobacterial
lineages Desulfovibrio (57), Desulfobacterium (58), and Desulfu-
romonas (59), detected previously by a 16S rRNA survey in the
Sonora Margin sediments (60). However, it has recently been
demonstrated that Methanococcoides species can also directly uti-
lize choline and betaine to produce methane and therefore bypass
the need for the bacterial-degradation step (Fig. 4) (19, 61).
Hence, the use of invertebrate-derived substrates might explain
the widespread occurrence of Methanococcoides in organic-rich
marine environments, such as cold seeps (14, 42, 44, 45), tidal flats
(47,53, 62), whale fall (63), and mangrove sediments (64), usually
colonized by benthic invertebrates. These results also support
studies showing cooccurrence of sulfate reduction and methyl-
otrophic methanogenesis in marine sediments (17, 65).

In contrast to methylotrophic methanogenesis, hydrog-
enotrophic methanogenesis rates were below those measured
previously in seep and nonseep marine sediments (<0.4 to 30
nmol cm > day ™' [28]) but were similar to hydrogenotrophic
methanogenesis rates measured in the Amsterdam and Merca-
tor mud volcanoes (42, 66). Although methylotrophic metha-
nogenesis dominated in surface sediments, the proportion of
hydrogenotrophic methanogenesis increased with depth, rep-
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resenting up to 50% of the methane production at the bottom
of the EWM14 core. In these organic-rich sediments, hydrogen
could be produced by fermentation of organic matter by het-
erotrophic bacteria (49), such as members of the phylum Fir-
micutes (Fig. 4), previously detected in significant proportions in
these environmental samples (24, 60). The presence of active hy-
drogenotrophic methanogenesis in these sediments was also sup-
ported by the growth of methanogens in enrichment cultures
amended with H,-CO,. All the 16S rRNA sequences detected in
these enrichments were affiliated with the genus Methanogenium
(order Methanomicrobiales) and were detected previously using
qPCR in the original environmental samples (23). The character-
ized Methanogenium strains are psychrophilic to thermophilic
methanogens (0 to 62°C), mainly isolated from marine sediments,
and can use formate or H,-CQO, as a substrate. Three distinct lin-
eages of Methanogenium were identified (groups 1, 2, and 3 [Fig.
3]) in these enrichment cultures of Sonora Margin cold seep sed-
iments. Sequences affiliated with Methanogenium group 1 were
detected from all enrichments amended with H,-CO, and formed
a distinct phylogenetic group that might represent a new lineage.
A second group (Methanogenium group 2), closely related to M.
cariaci (98% sequence similarity) strains previously identified in
other cold seep sediments (13, 44, 67), was detected only in en-
richments from sediments underlying the white mat amended
with acetate and H,-CO,. A third group of sequences (Methano-
genium group 3) distantly related to M. marinum (93% sequence
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similarity) was detected in only two enrichment cultures amended
with acetate and H,-CO, from EWM 14 sediments (6 to 10 cmbsf)
and could also represent a new genus within the order Methano-
microbiales. Similarly, different putative H,-CO,-utilizing Metha-
nomicrobiales lineages related to Methanocorpusculum, Metha-
noculleus, and Methanomicrobium were also detected previously
in the neighboring hot hydrothermal sediments of the Guaymas
Basin (49). Methanomicrobiales were the only hydrogenotrophic
methanogens detected in these shallow sediments, suggesting that
members of this order could be responsible for most of the hy-
drogenotrophic methanogenesis in Sonora Margin sediments.

Acetate has been previously proposed as a significant substrate
for methanogenesis in the hydrothermal sediments of the Guay-
mas Basin (49). However, rates of acetate methanogenesis in these
cold seep sediments were very low (1/20 of H,-CO, methanogen-
esis), as they were below the typical rates measured in these envi-
ronments (28). Moreover, no methanogens were enriched with
acetate as a sole carbon and energy source, although aceticlastic
methanogens related to Methanosarcina baltica were previously
detected in these sediments using different enrichment conditions
(incubation temperature, 25°C) (20). Putative mesophilic aceti-
clastic methanogens were not detected, as opposed to the hydro-
thermal sediments of the basin (49), suggesting that aceticlastic
methanogens in the Sonora Margin were at low abundance and
therefore difficult to enrich. Aceticlastic methanogens in these
sediments could also be outcompeted for acetate by sulfate-reduc-
ing communities detected previously (60) and associated with
high sulfate concentrations (68).

Have we caught them all? In this study of shallow sediments of
the Sonora Margin using culture-based approaches, four different
methanogenic lineages were identified, whereas only one was de-
tected from the same environmental samples, using culture-inde-
pendent methods. This suggests that enrichment cultures can
lower the detection limits of methanogens in these environments
(14, 42). Moreover, detection of lineages affiliated with Methano-
sarcinales and Methanomicrobiales is consistent with previous cul-
ture-independent surveys of archaeal communities associated
with the Sonora Margin shallow sediments (23, 24). Contrary to
results from qPCR and pyrosequencing studies, the sizes of the
amplicons in this culture-dependent study allowed phylogenetic
identification and characterization of the methanogen commu-
nity. However, members of the order Methanococcales were pre-
viously quantified in abundance similar to that of the Methanomi-
crobiales (21). Mesophilic species of the Methanococcales are
known to be extremely sensitive to osmotic changes (26) and have
also been detected in low proportion in the hydrothermal sedi-
ments of the Guaymas Basin (49). Hence, the lack of Methanococ-
cales lineages in our enrichment cultures might be due to the sam-
ple depressurization during the core recovery or to unsuitable
culture conditions (e.g., temperature and time of incubation).
Thus, despite the identification of several methanogen lineages, all
the lineages might not have been detected.

Several studies showed that Sonora Margin sediments harbor
high concentrations of ANME lineages (1, 2, and 3) distributed
throughout the upper 20 cm of sediments (23, 24, 60). Commonly
proposed as methane oxidizers, some ANME lineages might also
produce methane (68-70) and be physiologically versatile (23,
68). Despite their abundance in the environmental samples,
ANME aggregates disappeared rapidly in the cultures, and no
ANME sequences were detected from these methane-producing
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enrichments. This might suggest that ANME were not methane
producers under our culture conditions. However, we could not
exclude the possibility that ANME lineages could use alternative
methanogenic substrates, such as methanol, as recently proposed
(68).

Together, these results indicated that the high methane con-
centrations measured in the Sonora Margin cold seeps are par-
tially produced in the shallow sediments by active methanogens
dominated by methylotrophic Methanococoidetes, whereas the
proportion of CO,-reducing methanogens related to Methanoge-
nium increased with sediment depth (Fig. 4). Aceticlastic meth-
anogens represented a minority of the methanogen community.
However, the methanogenic contributions of other shallow, un-
cultured microorganisms and ANME lineages using different sub-
strates, as well as deeply buried microorganisms, remain to be
explored.
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