
HAL Id: hal-01140107
https://hal.univ-brest.fr/hal-01140107

Submitted on 7 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal framework of recontextualization by means of
dependency graphs

Mickaël Kerboeuf, Paola Vallejo, Jean-Philippe Babau

To cite this version:
Mickaël Kerboeuf, Paola Vallejo, Jean-Philippe Babau. Formal framework of recontextualization
by means of dependency graphs. [Research Report] Lab-STICC_UBO_CACS_MOCS. 2015. �hal-
01140107�

https://hal.univ-brest.fr/hal-01140107
https://hal.archives-ouvertes.fr

Formal framework of recontextualization by means of

dependency graphs

Mickaël Kerboeuf Paola Vallejo Jean-Philippe Babau
University of Brest (France),
Lab-STICC, MOCS Team

{kerboeuf,vallejoco,babau}@univ-brest.fr

1 Model Graph

A model graph is a graph-based denotation of a model, i.e. a labeled graph composed of vertices
denoting instances and scalar values, and edges denoting references and attributes. Figure 1 defines
the name spaces corresponding to instances, scalar values, attributes and references. These name
spaces are alphabets, i.e. finite non empty sets of symbols.

I : instances S : scalar values A : attribute R : reference

Figure 1: ISAR: name spaces for model graphs

We call model and note m a triplet composed of a set of instances corresponding to vertices
noted V , and two sets of edges noted Ea and Er (see figure 2). The first set of edges denotes
attributes. It relates instances to scalar values through attribute names. The second one denotes
references. It relates instances to each other through reference names. We note m.V , m.Ea and
m.Er the V , Ea and Er components of a given model m.

m ,
(
V , Ea , Er

)
where

 V ⊆ I
Ea ⊆ V ×A× S
Er ⊆ V ×R× V

Figure 2: Model graph

As an illustration, figure 3 shows a model conforming to an Ecore metamodel together with
its corresponding graph-based representation. The metadata are willfully out of the scope of the
graph-based representation of models.

2 Migration specification

For a given model m, we call migration specification and note −→m a quadruplet composed of m and
of three sets noted Di, Da and Dr. These sets specify the instances, attributes and references of
m that are intended to be deleted (see figure 4). We note −→m .Di,

−→m .Da and −→m .Dr the Di, Da and
Dr components of a given migration specification −→m .

1

State
name : EString
ini : EBoolean

Transition Event
name : EString

Action
name : EString

exit
0..1

entry
0..1

inside
0..*

context
0..1

output
0..*

input
0..* trigger

1

action

0..1

source
1

target
1 t

0..1

t

0..1
sout
0..1

sin
0..1

next
0..1

prev
0..1

A
/entry a0 ; a1

B
/entry a2

C

inside
contextname = A

ini = true

:State

name = B
ini = true

:State
inside

context name = C
ini = true

:State

next
prevname = a0

:Action

name = Bname = A

name = a1

:Action

name = a2

:Action

sin

entry

sin

entry

s1 s2
context

inside

s3

AA

name

BB

name

CC

name

sa0

entry

sa2sa1
next

prev

a0a0

name

a1a1

name

a2a2

name

sin entry sin

context

inside

truetrueini ini

ini

Figure 3: Metamodel, conforming model, concrete syntax and semantics

−→m ,
(
m , Di , Da , Dr

)
where

 Di ⊆ m.V
Da ⊆ m.V ×A
Dr ⊆ m.V ×R

Figure 4: Migration specification

The migration specification is intended to be used together with the model to produce a
migrated model. This migration specification is computed from a Modif specification. A Modif
specification makes it possible to state the deletion of a class, an attribute or a reference (cor-
responding to Di, Da and Dr at the model level). See appendix A for more details about the
computation of a migration specification from a Modif specification.

3 Migration

We call migrator and note M the tool aiming at producing a migrated model from a migration
specification. It is defined in figure 5. It simply commits the deletion of instances and of features
(attributes and references) on the source model to produce a target model.

m′ = M(−→m)
m′.V = m.V \ −→m .Di

m′.Ea = m.Ea \ {(i, a, s) ∈ I ×A× S | i ∈ −→m .Di ∨ (i, a) ∈ −→m .Da}
m′.Er = m.Er \ {(i, r, i′) ∈ I ×R× I | i ∈ −→m .Di ∨ i′ ∈ −→m .Di ∨ (i, r) ∈ −→m .Dr}

Figure 5: Computation of a migrated model

As an illustration, we introduce in figure 6 a variant of the metamodel of figure 3 where actions
are not taken into account.

2

State
name : EString
ini : EBoolean

Transition Event
name : EStringinside

0..*

context
0..1

output
0..*

input
0..* trigger

1source
1

target
1 t

0..1

Figure 6: Metamodel of statecharts without actions

We note m the model of figure 3. It is formally and explicitly defined by its components as follows:

m.V = {s1, s2, s3, sa0, sa1, sa2}
m.Ea = {(s1, name,A), (s2, name,B), (s3, name,C), (s1, ini, true), (s2, ini, true),

(s3, ini, true), (sa0, name, a0), (sa1, name, a1), (sa2, name, a2)}
m.Er = {(s1, inside, s2), (s2, inside, s3), (s3, contexte, s2), (s2, context, s1), (s1, entry, sa0),

(s2, entry, sa2), (sa2, sin, s2), (sa0, sin, s1), (sa0, next, sa1), (sa1, prev, sa0)}

We note −→m the migration specification of m to a model conforming to the metamodel of figure 6,
i.e. a model where actions have been deleted. This specification is formally and explicitly defined
by its components as follows:

−→m .Di = {sa0, sa1, sa2} −→m .Da = ∅ −→m .Dr = ∅

Once the migrator M is applied to the migration specification −→m , we obtain the migrated model
m′ depicted and formally defined by figure 7.

A

B

C

s1 s2
context

inside

s3

AA

name

BB

name

CC

name

context

inside

truetrueini ini

ini

m′ = M(−→m)
m′.V = {s1, s2, s3}
m′.Ea = {(s1, name,A), (s2, name,B), (s3, name,C), (s1, ini, true), (s2, ini, true), (s3, ini, true)}
m′.Er = {(s1, inside, s2), (s2, inside, s3), (s3, contexte, s2), (s2, context, s1)}

Figure 7: Concrete syntax and semantics of a migrated model without actions

4 Rewriting tools

In this paper, the focus is put on the reuse of rewriting tools. To begin with, this kind of tools has
to be specified within our semantic domain.

We call rewriting tool and note T the tool aiming at producing an output model from an input
model and conforming to the same metamodel. T can be taken for an endogenous model transfor-
mation. We note T(m) the output model produced by T from an input model m.

So far, we consider T as a black box. As a consequence, the action of T can only be specified
by the differences between a given input model and the corresponding output model. Within
our semantic domain, the action of T is therefore specified by means of deleted and added graph

3

elements for a given model m. This specification is formally stated in figure 8. As an illustration,
we introduce three simple examples of rewriting tools whose scope corresponds to the metamodel
of figure 6.

Deleted elements :

 Ti
D(m) = m.V \ T(m).V (deleted instances)

Ta
D(m) = m.Ea \ T(m).Ea (deleted attributes)

Tr
D(m) = m.Er \ T(m).Er (deleted references)

Added elements :

 Ti
A(m) = T(m).V \m.V (added instances)

Ta
A(m) = T(m).Ea \m.Ea (added attributes)

Tr
A(m) = T(m).Er \m.Er (added references)

Figure 8: Specification of a rewriting tool

4.1 Identity

We call identity and note Id the rewriting tool performing no actions. It applies to a statechart
conforming to the metamodel of figure 6 and it provides it unchanged as a result. This trivial
example will be useful later to underline the benefits of our approach.

We use m′ the model depicted by figure 7. By definition, Id(m′) = m′. The action of Id on m′

is therefore formally stated as follows:

Deleted elements :
{
IdiD(m′) = IdaD(m′) = IdrD(m′) = ∅ (no deleted elements)

Added elements :
{
IdiA(m′) = IdaA(m′) = IdrA(m′) = ∅ (no added elements)

4.2 Copy

We call copy and note Cp the rewriting tool performing a complete copy of an input model. It
applies to a statechart conforming to the metamodel of figure 6 and it provides a new model where
all the instances are new.

We use m′ the model depicted by figure 7 and we note m′′ = Cp(m′), the result of the copy.
The formal definition of m′′ and it’s graphical representation is given by figure 9.

A

B

C

s4 s5
context

inside

s6

AA

name

BB

name

CC

name

context

inside

truetrueini ini

ini

m′′ = Cp(m′)
m′′.V = {s4, s5, s6}
m′′.Ea = {(s4, name,A), (s5, name,B), (s6, name,C), (s4, ini, true), (s5, ini, true), (s6, ini, true)}
m′′.Er = {(s4, inside, s5), (s5, inside, s6), (s6, contexte, s5), (s5, context, s4)}

Figure 9: Copy of the model from figure 7

4

By definition, the action of Cp on m′ is formally stated as follows:

Deleted elements :

 CpiD(m′) = m′.V
CpaD(m′) = m′.Ea

CprD(m′) = m′.Er

Added elements :


CpiA(m′) = {s4, s5, s6}
CpaA(m′) = {(s4, name,A), (s5, name,B), (s6, name,C),

(s4, ini, true), (s5, ini, true), (s6, ini, true)}
CprA(m′) = {(s4, inside, s5), (s5, inside, s6), (s6, contexte, s5),

(s5, context, s4)}

4.3 Flattener

We call flattener and note Fl the rewriting tool performing a flattening of a hierarchical statechart
conforming to the metamodel of figure 6. It provides a new model where the superstates are deleted
and potentially replaced by one new state at least. We suppose we have no more information about
the algorithm implemented by the flattener.

We use m′ the model depicted by figure 7 and we note m′′ = Fl(m′), the result of the flattener.
The formal definition of m′′ and it’s graphical representation is given by figure 10. We can note
that only one instance remains in the result.

 ABC s3

ABCABC

name

truetrue

ini m′′ = Fl(m′)
m′′.V = {s3}
m′′.Ea = {(s3, name,ABC), (s3, ini, true)}
m′′.Er = ∅

Figure 10: Flattening of the model from figure 7

By definition, the action of Fl on m′ is formally stated as follows:

Deleted elements :

 FliD(m′) = {s1, s2}
FlaD(m′) = m′.Ea \ {(s3, ini, true)}
FlrD(m′) = m′.Er

Added elements :

 FliA(m′) = ∅
FlaA(m′) = {(s3, name,ABC)}
FlrA(m′) = ∅

5 Reverse migration

We call reverse migrator and note R the tool aiming at undoing the migration operations that
have been applied to a given initial model m. Thus, R applies to a model which is supposed to
have been migrated and it produces a new model which corresponds as far as possible to the initial
model.

If the migration specification −→m associated to the initial model m is unknown, then the reverse
migration cannot be computed.

If the migration specification is known, and if the migrated model has not been modified, then
the reverse migration is already and trivially available:

R(M(−→m)) = m

5

We focus now on the more challenging problem of an initial model m which has been migrated
through a known migration specification −→m , and which has been later modified by a rewriting tool
T. We note m′ the model produced by the reverse migrator in this case:

R(T(M(−→m))) = m′ (reversed migrated model)

We aim at recovering as much as possible the initial model without undoing the action of T.

The first solution to this problem is a well known and rather obvious approach which consists
in considering a reverse migration as a normal case of migration. For a given migration operation,
if the corresponding reverse operation is available, then it is applied (e.g. renaming of attributes,
which is undone by the reverse renaming). If it is not available, then it can leads to a loss of data.
This is actually the case on which we focus here, and this is the reason why we only consider
deletion. As a result, nothing is supposed to be deleted nor added by this reverse migration:

R(T(M(−→m))) = M(
−−−−−−→
T(M(−→m))) where:

−−−−−−→
T(M(−→m)) = (T(M(−→m)), ∅, ∅, ∅)

The reverse migration is obtained from this migration specification according to the principles of
figure 5. By definition, it leads to identity :

R(T(M(−→m))) = M(
−−−−−−→
T(M(−→m))) = T(M(−→m))

To illustrate this first solution, we consider again the three examples of rewriting tools that
have been introduced in the previous section, namely identity (Id), copy (Cp), and flattener (Fl).
They apply to models conforming to the metamodel of figure 6. We aim at performing a reverse
migration of the model of figure 7 after its processing by identity, copy and flattener. The result
is a model which is supposed to conform to the metamodel of figure 3.

5.1 Identity

As mentioned in section 4.1, identity keeps the model M(−→m) of figure 7 unchanged. Thus, in this
case:

R(Id(M(−→m))) = Id(M(−→m)) = M(−→m) (model of figure 7)

As a result, the reverse migration leads to the model of figure 7 which corresponds to the model
of figure 3 without actions. Ideally, these actions should have been recovered but actually, they
are finally lost.

5.2 Copy

According to the definition of copy (cf. section 4.2), Cp(M(−→m)) leads to the model m′′ of figure 9,
and thus:

R(Cp(M(−→m))) = Cp(M(−→m)) = m′′ (model of figure 9)

The result of the reverse migration is a model which is equivalent to the model of figure 7 except
the instances have been recreated. As for identity, this resulting model corresponds to the model
of figure 3 without actions. Thus in this case as in the previous one, these actions should have
been recovered but actually they are lost.

5.3 Flattener

The result of flattener applied to the model of figure 3 is the model noted m′′ in figure 10 (cf.
section 4.3), and thus:

R(Fl(M(−→m))) = Fl(M(−→m)) = m′′ (model of figure 10)

The result of the reverse migration in this case contains a unique state named ABC and without
actions. Actually, this state has been modified by the flattener through the initial states named
A, B and C. These states had entry actions. These original actions are not taken into account by
the reverse migration and then, they cannot be recovered.

6

6 Recontextualization by keys

So far, the reverse migration does not enable the recovery of elements that are deleted by the
initial migration. We call initial context of a given model m the set of model elements from m that
are deleted by a migration specification −→m . By definition of migration specifications (see figure 4),
this initial context corresponds to −→m .Di ∪ −→m .Da ∪ −→m .Dr.

We call recontextualization the tool aiming at putting back the initial context of a given model
m in its reverse migrated version after the processing of a rewriting tool.

In a first approach, we use instances as keys to reconnect a reverse migrated model to its initial
context. We note Ck this tool:

Ck(R(T(M(−→m))) = m′ (recontextualized reversed migrated model)

Its action can be informally described as follows:

1. deleted instances are recovered

2. attributes of deleted instances are recovered

3. deleted attributes are recovered as far as their source instances still exist

4. references between two deleted instances are recovered

5. references from deleted instances targeting still existing instances are recovered

6. references from still existing instances targeting deleted instances are recovered

7. deleted references are recovered as far as their source and target instances still exist

More formally, the recontextualization by beys on graphs is specified by figure 11. To illustrate
this approach, we consider again the three examples of rewriting tools namely identity (Id), copy
(Cp), and flattener (Fl).

mr = R(T(M(−→m)) (reversed migrated model)
m′ = Ck(mr) (recontextualized reversed migrated model)

m′.V = mr.V ∪ −→m .Di

m′.Ea = mr.Ea ∪ {(i, a, s) ∈ m.Ea | i ∈ −→m .Di ∨ ((i, a) ∈ −→m .Da ∧ i ∈ mr.V)}
m′.Er = mr.Er ∪ {(i, r, i′) ∈ m.Er | (i, i′) ∈ m′.V 2 ∧ (i ∈ −→m .Di ∨ i′ ∈ −→m .Di ∨ (i, r) ∈ −→m .Dr)}

Figure 11: Computation of a recontextualized model by keys

6.1 Identity

As previously mentioned, identity keeps the input model unchanged and the reverse migration
leads to the model of figure 7 which corresponds to the model of figure 3 without actions:

mr = R(Id(M(−→m))) (model of figure 7)
m′ = Ck(mr) (recontextualized reversed migrated model)

By definition of the recontextualization by keys (see figure 11), m′ is defined as follows:

m′.V = mr.V ∪ {sa0, sa1, sa2}
m′.Ea = mr.Ea ∪ {(sa0, name, a0), (sa1, name, a1), (sa2, name, a2)}
m′.Er = mr.Er ∪ {(s1, entry, sa0), (s2, entry, sa2), (sa2, sin, s2), (sa0, sin, s1),

(sa0, next, sa1), (sa1, prev, sa0)}

7

The deleted actions are actually recovered and as expected, the recontextualized reversed migrated
model corresponds to the initial model of figure 3:

Ck(R(Id(M(−→m))) = m

This situation is depicted by figure 12. In this figure, the initial context appear in red and the
links between the reversed migrated model and the initial context appear in blue.

s1 s2
context

inside

s3

AA

name

BB

name

CC

name

sa0

entry

sa2sa1
next

prev

a0a0

name

a1a1

name

a2a2

name

sin entry sin

context

inside

truetrueini ini

ini

Figure 12: Recontextualization by keys of the model from figure 7

6.2 Copy

As previously mentioned, the copy of M(−→m) leads to the model of figure 9 which is equivalent to
the model of figure 7 except the instances have been recreated :

mr = R(Cp(M(−→m))) (model of figure 9)
m′ = Ck(mr) (recontextualized reversed migrated model)

As a consequence and by definition of the recontextualization by keys (see figure 11), the initial
context can be put back but not reconnected to the reversed migrated model. The resulting
model actually contains the recovered instances and the possible links between them (attributes
or references), but it does not contains reference links between the recovered instances and the
instances newly created by copy:

m′.V = mr.V ∪ {sa0, sa1, sa2}
m′.Ea = mr.Ea ∪ {(sa0, name, a0), (sa1, name, a1), (sa2, name, a2)}
m′.Er = mr.Er ∪ {(sa0, next, sa1), (sa1, prev, sa0)}

The deleted actions are actually recovered but they are not connected to states. This situation
is depicted by figure 13. In this case, the graph is not connected. Each connected component of
such graphs is the semantics of a sub-model conforming to the initial metamodel (of figure 3 in
this example), and which can be valid or not with regard to multiplicity or containment.

s4 s5
context

inside

s6

AA

name

BB

name

CC

name

sa0 sa2sa1
next

prev

a0a0

name

a1a1

name

a2a2

name

context

inside

truetrueini ini

ini

Figure 13: Recontextualization by keys of the model from figure 9

8

6.3 Flattener

The flattening of M(−→m) leads to the model of figure 10 which contains a unique state named ABC
and without actions:

mr = R(Fl(M(−→m))) (model of figure 10)
m′ = Ck(mr) (recontextualized reversed migrated model)

The only instance s3 was in the initial model. Its name has been changed and by definition of the
recontextualization by keys (see figure 11), this change is not undone. The initial instances s1 and
s2 have been deleted by the flattener and they are obviously not recovered by the recontextual-
ization. Actually, as in the case of copy, the resulting model only contains the recovered instances
corresponding to actions. However it does not contains reference links between the recovered
instances and the remaining instance s3:

m′.V = mr.V ∪ {sa0, sa1, sa2}
m′.Ea = mr.Ea ∪ {(sa0, name, a0), (sa1, name, a1), (sa2, name, a2)}
m′.Er = mr.Er ∪ {(sa0, next, sa1), (sa1, prev, sa0)}

As in the previous case, it leads to a graph which is not connected. This result is depicted by
figure 14.

sa0 sa2sa1
next

prev

a0a0

name

a1a1

name

a2a2

name

s3

ABCABC

name

truetrue

ini

Figure 14: Recontextualization by keys of the model from figure 10

7 Recontextualization by graphs

So far the rewriting tool T is considered as a black box and as a consequence, its action can only
be specified by the differences between a given input model and the corresponding output model.

In order to improve the recontextualization of a reverse migrated model, T is considered now
as a grey box where the computation functions are not known but where the computation depen-
dencies are known. For that purpose, for a given input model m, we suppose now that the tool T

G(T,m) , T(m).V → P(m.V) (edges from output instances to input instances)

Figure 15: Dependency graph

provides the resulting model T(m) together with a dependency graph noted G(T,m). For a given
instance i of T(m), this graph makes it explicit the instances of m that have been used to create or
update i. It is formally defined in figure 15 by means of a total function over the output instances
(T(m).V) to parts of the input instances. Thus, G(T,m)(i) provides the (possibly empty) set of
input instances that are used to compute i.

9

The use of dependency graphs enhances the recontextualization. Indeed, the links between the
reverse migrated model and it initial context can be created not only over the remaining instances,
but also over new instances through the instances that have been used to compute them.

In this second approach, we note Cg the tool using instances as vertices of dependency graphs
to reconnect a recontextualized reverse migrated model to its initial context. Its actions complete
the actions performed by Ck (i.e. recontextualization by keys). It applies to a model together
with a dependency graph:

Cg

(
Ck(R(T(M(−→m))) , G(T,M(−→m))

)
= m′ (enhanced recontextualized reversed migrated model)

The actions performed by Cg can be informally described as follows:

1. deleted attributes of a non-deleted instance A which has been afterwards deleted by the tool
are put on each instance B computed from A (according to the dependency graph, B depends
on A)

2. references relating a deleted instance X and a non-deleted instance A which has been after-
wards deleted by the tool are put between the recovered instance X and each instance B
computed from A (according to the dependency graph B depends on A)

3. deleted references relating a non-deleted instance A1 and a non-deleted instance A2 which
has been afterwards deleted by the tool are put between the remaining instance A1 and each
instance B computed from A2 (according to the dependency graph B depends on A2)

4. deleted references relating the non-deleted instances A1 and A2, afterwards both deleted by
the tool are put between each instance B1 computed from A1 and each instance B2 computed
from A2 (according to the dependency graph B1 depends on A1 and B2 depends on A2)

More formally, the recontextualization by a dependency graph is specified by figure 16. To illus-
trate this approach, we consider again the three examples of rewriting tools namely identity (Id),
copy (Cp), and flattener (Fl).

mk = Ck(R(T(M(−→m))) (recontextualized reversed migrated model)
g = G(T,M(−→m)) (dependency graph)

m′ = Cg(mk, g) (enhanced recontextualized reversed migrated model)
m′.V = mk.V
m′.Ea = mk.Ea ∪ {(i, a, s) ∈ T(M(−→m)).V ×A× S |

∃i′ ∈ g(i) \ T(M(−→m)).V, (i′, a, s) ∈ m.Ea ∧ (i′, a) ∈ −→m .Da}
m′.Er = mk.Er ∪ {(i1, r, i2) ∈ mk.V ×R×mk.V |

∃i′1 ∈ g(i1) \mk.V, (i′1, r, i2) ∈ m.Er ∧ ((i′1, r) ∈ −→m .Dr ∨ i2 ∈ −→m .Di)}
∨ ∃i′2 ∈ g(i2) \mk.V, (i1, r, i

′
2) ∈ m.Er ∧ ((i1, r) ∈ −→m .Dr ∨ i1 ∈ −→m .Di)}

∨ ∃(i′1, i′2) ∈ (g(i1) \mk.V)× (g(i2) \mk.V), (i′1, r, i
′
2) ∈ m.Er ∧ (i′1, r) ∈ −→m .Dr}

Figure 16: Computation of a recontextualized model by a dependency graph

7.1 Identity

We consider the initial model m of figure 3, and the migrated model M(−→m) of figure 7 corresponding
to the initial model without actions. The application of identity to this migrated model leads to
the same model, without any change. The recontextualized model by keys is depicted by figure 12.

10

We suppose that the dependency graph of identity is defined as follows. It simply states that each
instance is computed (without any change) from and only from itself:

G(Id,M(−→m)) : Id(M(−→m)).V → P(M(−→m).V)
s1 7→ {s1}
s2 7→ {s2}
s3 7→ {s3}

By definition of the recontextualization by dependency graphs (fig. 16), we have:

m′ = Cg

(
Ck(R(Id(M(−→m))) , G(Id,M(−→m))

)
m′.V = Ck(R(Id(M(−→m))).V
m′.Ea = Ck(R(Id(M(−→m))).Ea ∪ ∅
m′.Er = Ck(R(Id(M(−→m))).Er ∪ ∅

And thus : m′ = Ck(R(Id(M(−→m))). In the case of identity, the recontextualized model by depen-
dency graph brings nothing compared to the recontextualized model by keys. This situation is
depicted by figure 17.

s1 s2
context

inside

s3

AA

name

BB

name

CC

name

sa0

entry

sa2sa1
next

prev

a0a0

name

a1a1

name

a2a2

name

sin entry sin

context

inside

truetrueini ini

inis1

s2

s3

Dependency

graph

s1 s2
context

inside

s3

AA

name

BB

name

CC

name

sa0

entry

sa2sa1
next

prev

a0a0

name

a1a1

name

a2a2

name

sin entry sin

context

inside

truetrueini ini

ini

Figure 17: Recontextualization by graph of the model from figure 7

7.2 Copy

We consider again the initial model m of figure 3, and the migrated model M(−→m) of figure 7
corresponding to the initial model without actions. The application of copy to this migrated model
leads to an equivalent model where instances have been recreated. In this case, the dependency
graph is defined as follows. It simply maps new instances to the corresponding initial instances:

G(Cp,M(−→m)) : Cp(M(−→m)).V → P(M(−→m).V)
s4 7→ {s1}
s5 7→ {s2}
s6 7→ {s3}

By definition of the recontextualization by dependency graphs (fig. 16), we have:

m′ = Cg

(
Ck(R(Cp(M(−→m))) , G(Cp,M(−→m))

)
m′.V = Ck(R(Cp(M(−→m))).V
m′.Ea = Ck(R(Cp(M(−→m))).Ea ∪ ∅
m′.Er = Ck(R(Cp(M(−→m))).Er ∪ {(s4, entry, sa0), (s5, entry, sa2), (sa2, sin, s5), (sa0, sin, s4)}

Thanks to this mapping, entry actions can be connected to new instances as far as they are a copy
of a deleted instance which was connected to actions before the migration. Finally, an equivalent
model of the initial model is actually recovered. This situation is depicted by figure 18.

11

s4 s5
context

inside

s6

AA

name

BB

name

CC

name

sa0 sa2sa1
next

prev

a0a0

name

a1a1

name

a2a2

name

context

inside

truetrueini ini

inis4

s5

s6

Dependency

graph

s4 s5
context

inside

s6

AA

name

BB

name

CC

name

sa0

entry

sa2sa1
next

prev

a0a0

name

a1a1

name

a2a2

name

sin entry sin

context

inside

truetrueini ini

inis1

s2

s3

Figure 18: Recontextualization by graph of the model from figure 9

7.3 Flattener

We consider again the initial model m of figure 3, and the migrated model M(−→m) of figure 7
corresponding to the initial model without actions. The application of flatten to this migrated
model leads to the model of figure 10 which contains a unique state named ABC and without
actions. As an illustration in this case, we suppose that the dependency graph is defined as follows.
The flat state corresponds to a collapsed sequence of nested states. Thus, the remaining state was
already a simple state before the flattening and it has been updated by all the super-states to
which it belonged:

G(Fl,M(−→m)) : Fl(M(−→m)).V → P(M(−→m).V)
s3 7→ {s1, s2, s3}

By definition of the recontextualization by dependency graphs (fig. 16), we have:

m′ = Cg

(
Ck(R(Fl(M(−→m))) , G(Fl,M(−→m))

)
m′.V = Ck(R(Fl(M(−→m))).V
m′.Ea = Ck(R(Fl(M(−→m))).Ea ∪ ∅
m′.Er = Ck(R(Fl(M(−→m))).Er ∪ {(s3, entry, sa0), (s3, entry, sa2), (sa2, sin, s3), (sa0, sin, s3)}

Thanks to this mapping, entry actions can be connected to the remaining instance s3. However,
the resulting graph does not corresponds to a valid model with regard to the initial metamodel
(see figure 3). Indeed, the model we obtain contains two entry actions whereas at most one is
expected. This situation is depicted by figure 19.

sa0 sa2sa1
next

prev

a0a0

name

a1a1

name

a2a2

name

s3

Dependency

graph

s1

s2

s3

ABCABC

name

truetrue

ini

sa0 sa2sa1
next

prev

a0a0

name

a1a1

name

a2a2

name

s3

ABCABC

name

truetrue

ini

entry
sin

entry sin

ABC
/ entry a0 ; a1
/ entry a2

Figure 19: Recontextualization by graph of the model from figure 10

At this point, an update of the recontextualized model is needed in order to make it conform
to the initial metamodel. This update requires domain specific knowledge and is therefore out of
the scope of automatic recontextualization. In this example, action a2 clearly needs to be added
to the first sequence of actions a0 ; a1. By this way, there is only one entry action associated

12

to the unique state ABC. As a result, we obtain a flattened version of the initial statecharts
including entry actions whereas the reused flattener does not take them into account. This last
transformation rely on the usual operational semantics of statecharts. It is illustrated by figure 20.

sa0 sa2sa1
next

prev

a0a0

name

a1a1

name

a2a2

name

s3

ABCABC

name

truetrue

ini

entry
sin

ABC
/ entry a0 ; a1 ; a2

sa0 sa2sa1
next

prev

a0a0

name

a1a1

name

a2a2

name

s3

ABCABC

name

truetrue

ini

entry
sin

entry sin
manual update

next

prev

Figure 20: Transformation to a valid model with regard to the initial metamodel

8 Properties

The recontextualization by graphs is intended to extend the recontextualization by keys. The
recontextualization by graphs (and therefore especially by keys) must not undo the modifications
performed by the rewriting tool. These two properties can be verified within the formal framework
of our semantic domain.

8.1 Recontextualization by graphs extends recontextualization by keys

Let m be a given model, −→m a migration specification and T a rewriting tool. Let G(T,M(−→m)) be
a dependency graph over T(M(−→m)).

An edge of G(T,M(−→m)) relating an instance i to itself has no added value. Indeed, this edge
states that i is an instance of the result which was already in the input of T, and which value
depends (obviously) on itself.

We say that G(T,M(−→m)) is semantically empty if all its edges have no added values. More
formally, by definition:

G(T,M(−→m)) is semantically empty , ∀i ∈ T(M(−→m)).V, G(T,M(−→m))(i) ⊆ {i}

Property 1 If G(T,M(−→m)) is semantically empty, then the recontextualization by graphs corre-
sponds to the recontextualization by keys: Cg

(
Ck(R(T(M(−→m))) , G(T,M(−→m))

)
= Ck(R(T(M(−→m)))

Proof Let mk = Ck(R(T(M(−→m))) be the recontextualized reversed migrated model by keys. Let
g = G(T,M(−→m)) be a semantically empty dependency graph. Let m′ = Cg(mk, g) be the enhanced
recontextualized model by g. By definition of Cg (fig. 16), we have:

m′.V = mk.V

By definition of Cg, we also have:

m′.Ea = mk.Ea ∪ {(i, a, s) ∈ T(M(−→m)).V ×A× S |
∃i′ ∈ g(i) \ T(M(−→m)).V, (i′, a, s) ∈ m.Ea ∧ (i′, a) ∈ −→m .Da}

13

By definition of a semantically empty graph, ∀i ∈ T(M(−→m)).V, g(i) ⊆ {i}. Thus we have:

∀i ∈ T(M(−→m)).V, g(i) \ T(M(−→m)).V = ∅

And then we have:

m′.Ea = mk.Ea ∪ {(i, a, s) ∈ T(M(−→m)).V ×A× S | ∃i′ ∈ g(i) \ T(M(−→m)).V, . . . }
= mk.Ea ∪ {(i, a, s) ∈ T(M(−→m)).V ×A× S | ∃i′ ∈ ∅, . . . }
= mk.Ea ∪ ∅
= mk.Ea

By definition of Cg, we finally have:

m′.Er = mk.Er ∪ {(i1, r, i2) ∈ mk.V ×R×mk.V |
∃i′1 ∈ g(i1) \mk.V, (i′1, r, i2) ∈ m.Er ∧ ((i′1, r) ∈ −→m .Dr ∨ i2 ∈ −→m .Di)}

∨ ∃i′2 ∈ g(i2) \mk.V, (i1, r, i
′
2) ∈ m.Er ∧ ((i1, r) ∈ −→m .Dr ∨ i1 ∈ −→m .Di)}

∨ ∃(i′1, i′2) ∈ (g(i1) \mk.V)× (g(i2) \mk.V), (i′1, r, i
′
2) ∈ m.Er ∧ (i′1, r) ∈ −→m .Dr}

For the same reason and by definition of semantically empty graphs, if i1 ∈ mk.V , then g(i1) ⊆
{i1} ⊆ mk.V and if i2 ∈ mk.V , then g(i2) ⊆ {i2} ⊆ mk.V . And thus g(i1) \ mk.V = ∅ and
g(i2) \mk.V = ∅. Hence:

m′.Er = mk.Er ∪ {(i1, r, i2) ∈ mk.V ×R×mk.V |∃i′1 ∈ ∅, · · · ∨ ∃i′2 ∈ ∅, · · · ∨ ∃(i′1, i′2) ∈ ∅2, . . . }
= mk.Er ∪ ∅
= mk.Er

The three components of m′ and mk coincide and thus we actually have m′ = mk. �

8.2 Recontextualization does not undo the rewriting

As mentioned in section 4, the action of a rewriting tool T is specified by the differences between
a given input model and the corresponding output model. This specification is formally stated in
figure 8 by deleted elements Ti

D(m),Ta
D(m),Tr

D(m) and added elements Ti
A(m),Ta

A(m),Tr
A(m).

The recontextualization aims at resetting the initial context on the result of T without undo-
ing its specific actions. Thus, the model elements that have been added by the tool must not be
deleted by the recontextualization, and the the model elements that have been deleted by the tool
must not be recovered by the recontextualization.

This property holds under the following condition which means that the instances that are
created by the tool (Ti

A(M(−→m))) have new names with regard to instances of the initial context.

Ti
A(M(−→m)) ∩m.V = ∅

This condition can be easily satisfied by a renaming of the instances created by the tool (thanks
to a kind of post-processor).

Property 2 Let m be a given model and T a rewriting tool. Let m′ be the recontextualized reversed
migrated model by graphs: m′ = Cg

(
Ck(R(T(M(−→m))) , G(T,M(−→m))

)
. Then we have:

(1) deleted elements are not added:

Ti
D(M(−→m)) ∩ m′.V = ∅ ∧ Ta

D(M(−→m)) ∩ m′.Ea = ∅ ∧ Tr
D(M(−→m)) ∩ m′.Er = ∅

(2) added elements are not removed:

Ti
A(M(−→m)) ⊆ m′.V ∧ Ta

A(M(−→m)) ⊆ m′.Ea ∧ Tr
A(M(−→m)) ⊆ m′.Er

14

Proof sketch The second point is trivial since neither Ck nor Cg remove anything from the
model T(M(−→m)) resulting from T (cf. figures 11 and 16).

About the first point, we consider the elements that are added by Ck, and then by Cg. By
definition of Ck and Ti

D, knowing that R is identity and that M(−→m).V = m.V \ −→m .Di we have:

m′.V = Ck(R(T(M(−→m))).V Ti
D(M(−→m)) = M(−→m).V \ T(M(−→m)).V

= R(T(M(−→m)).V ∪ −→m .Di = (m.V \ −→m .Di) \ T(M(−→m)).V
= T(M(−→m)).V ∪ −→m .Di

An thus we have:

Ti
D(M(−→m)) ∩m′.V =

(
(m.V \ −→m .Di) \ T(M(−→m)).V

)
∩
(
T(M(−→m)).V ∪ −→m .Di

)
=

(
m.V \ (−→m .Di ∪ T(M(−→m)).V)

)
∩
(
T(M(−→m)).V ∪ −→m .Di

)
= ∅

The proofs of Ta
D(M(−→m))∩m′.Ea = ∅ and of Tr

D(M(−→m))∩m′.Er = ∅ follow the same principles. By
definition of M(−→m).Ea and of M(−→m).Ea (cf. figure 5), T does not takes as input any edge (attribute
or reference) which is deleted (−→m .Da or −→m .Dr), or whose source and/or target is deleted (−→m .Di).
T cannot delete such unavailable edges. Now by definition of Ck and Cg (cf. figures 11 and 16) the
only added edges are taken from −→m .Da and −→m .Dr, or they are related to a deleted instance from
−→m .Di. �

A Modif

A.1 Modif operators

Among the metamodel refactoring operators that are available in Modif, we focus on delete. It
applies to classes, attributes and references. Its scope and parameters are defined in table 1.

Operator Scope Parameters

delete class class: c
delete attribute class: c; name: a
delete reference class: c; name: r

Table 1: Modif operators: scope and parameters

A.2 Modif specification

We note C the name space for classes. This name space is only relevant at the metamodel level.
We call Modif specification and note modif a possibly empty sequence of operators noted op (see
figure 21).

modif ,
(
op1 , . . . , opn

)
where ∀i ∈ {1, . . . , n}, opi ∈

 {delete} × C
∪ {delete} × C × A
∪ {delete} × C ×R

Figure 21: Modif specification

A Modif specification depends on a given metamodel and is defined by a sequence of Modif
operators. It is intended to be used:

15

• together with the metamodel to produce a refactored metamodel

• together with the metamodel and a conforming model to produce a migration specification

A.3 Generation of migration specifications

We suppose we have a metamodel noted mm, a conforming model noted m and a valid Modif
specification noted modif. The scope of modif is mm.

We call migration generator and note GM the tool aiming at producing a valid migration
specification from mm, m and modif:

GM(modif,mm,m) = −→m

This generator compile the sequence of operator calls in modif to produce the resulting migration
specification.

16

