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Abstract

Vibrio tapetis causes the brown ring disease in the Japanese clam Ruditapes philippinarum while Vibrio aestuarianus is
associated with massive oyster mortalities. As extracellular proteins are often associated with the virulence of pathogenic
bacteria, we undertook a proteomic approach to characterize the secretomes of both vibrios. The extracellular proteins
(ECPs) of both species were fractionated by SEC-FPLC and in vitro assays were performed to measure the effects of each
fraction on hemocyte cellular parameters (phagocytosis and adhesion). Fractions showing a significant effect were
subjected to SDS-PAGE, and proteins were identified by nano LC-MS/MS. 45 proteins were identified for V. aestuarianus and
87 for V. tapetis. Most of them belonged to outer membrane or were periplasmic, including porins or adhesins that were
already described as virulence factors in other bacterial species. Others were transporter components, flagella proteins, or
proteins of unknown function (14 and 15 respectively). Interestingly, for V. aestuarianus, we noted the secretion of 3
extracellular enzymes including the Vam metalloprotease and two other enzymes (one putative lipase and one protease).
For V. tapetis, we identified five extracellular enymes, i.e. two different endochitinases, one protease, one lipase and an
adhesin. A comparison of both secretomes also showed that only the putative extracellular lipase was common to both
secretomes, underscoring the difference in pathogenicity mechanisms between these two species. Overall, these results
characterize for the first time the secretomes of these two marine pathogenic vibrios and constitute a useful working basis
to further analyze the contribution of specific proteins in the virulence mechanisms of these species.
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complex interactions between the physiological and/or genetic
status of the oysters, environmental factors, and one or more
infectious agents, among which the herpes virus, OsHV1 (7], and
Vibrio sp. [8]. Analyses of both moribund and healthy oyster
hemolymph revealed that Vibrio aestuarianus was the most
frequently disease-associated species [2] until 2008. Since then, a
more virulent pathogenic herpes virus OsHV1, genotype micro-
var, emerged, reducing the occurrence of V. aestuarianus while V.
splendidus strains are still frequently isolated [9].

The observed variable virulence of the isolates could be linked
to the varying toxicity of the bacterial extracellular products
(ECPs), allowing bacteria to escape the host immune defenses. In a
previous study, the ECPs of the pathogenic strain V. aestuarianus
01/32 were shown to cause lethality in C. gigas, as well as
morphological changes and immunosuppression in oyster hemo-

Introduction

Vibrios have frequently been associated with bivalve mortalities,
essentially at the larval stage but also in adults [1-4]. Since 1987,
several mortality events have been reported in clams (Ruditapes
philippinarum) in different sites of the French coastline. Before
death, clams go back to the sediment surface and display a brown
deposit on the inner surface of the valves, between the pallial line
and the edge of the shell [5]. This disease, named the Brown Ring
Disease (BRD), was also described in Spain and Portugal, and
affects both reared and wild clams. Bacteriological studies led to
the identification of a new bacterial species, Vibrio tapetis, capable
of reproducing the BRD in healthy animals [6].

In France, shellfish production is a well-established industry
mainly relying on the commercial farming of the Pacific oyster

(Crassostrea gigas). Annual mass summer mortalities of C. gigas
have been reported since 1980 on the French coast. Several studies
have demonstrated that these mortality outbreaks resulted from

PLOS ONE | www.plosone.org

cytes [10]. Further biochemical and genetic approaches evidenced
the major role of the Vam extracellular metalloprotease in the
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toxicity of V. aestuarianus ECPs and in the impairment of oyster
hemocyte functions [11].

As for V. tapetis, the causative agent of BRD in adult clams, the
pathogenicity process is not well established yet. As in the case of
V. aestuarianus, V. tapelis isolates display variable levels of
virulence [12]. This vibrio is known to decrease both hemocytes
viability and phagocytic activities in R. philippinarum [13].
In vitro experiments showed adhesion capability of V. tapetis to
the clam hemocytes and mantle cells [14], and its cytotoxic effects
after phagocytosis resulted in cell rounding with loss of filipods
[12].

It is recognized that the success of each step of the bacterial
virulence process depends on the orchestrated activity of several
specialized bacterial factors. In vibrios, such virulence factors have
been more identified in human pathogens such as V. cholerae, V.
parahaemolyticus and V. vulnificus [15-17] but also in V.
anguillarum, V. harveyi and other fish, crustacean and mollusk
pathogens [18]. Currently, the only virulence factor characterized
in V. aestuarianus is the secreted zinc metalloprotease, Vam, a
member of the thermolysin family [11]. No similar virulence factor
has been described to date in V. tapetis, but a metalloprotease
(Vsm), a homolog of Vam, was also identified as a major
determinant of the toxicity of V. splendidus ECPs [19]. All this
reinforced our objective to search for other secreted proteins
potentially involved in the virulence of these two marine vibrios.
So far only two vibrio secretomes have been described [20,21] and
the importance of the extracellular compartment on host pathogen
interaction led us to analyze more precisely the proteins of this
compartment in both vibrios.

Materials and Methods

1. Bacterial strains, growth and culture conditions

V. aestuarianus 07/115 was isolated from the hemolymph of an
oyster collected at Aber Benoit (Brittany, IFrance) in September
2007. It was identified by the sequencing of the 16S rRNA and
gyrB genes and was found to be highly virulent when injected in
adult oysters (Jean-Louis Nicolas, unpublished results). The V.
tapetis CECT4600 strain was isolated in Aber Benoit (France) in
Landeda (France) in 1995 from BRD diseased Manila clam
(Ruditapes philippinarum) [22]. These strains were respectively
grown in Difco marine broth 2216 (BD, Franklin Lakes, USA) and
Zobell broth (HiMedia Laboratories, Mumbai, India), or on Difco
marine agar and Zobell agar at 18°C.

2. Preparation of extracellular products (ECPs) and
fractionation by Size Exclusion Chromatography in Fast

Purification Liquid Chromatography (SEC-FPLC) mode
ECPs were produced by the cellophane overlay method as
previously described [10]. Total ECPs of V. aestuarianus and V.
tapetis culture supernatants were filtered through 0.22 pum filter
membranes and concentrated on an Amicon Ultra-4 membrane
with a 10,000 molecular weight cut-off (MWCO) (Millipore,
Billerica, MA, USA). The total protein content was quantified
using a DC protein assay (Bio-Rad, Hercules, CA, USA) with 96-
well micro-plates (Nunc) in a micro-plate reader (Bio-Tek Synergy
HT) and the KC4 v3 software comparing the results with a
calibration curve using standard proteins (Bovine Serum Albumin)
provided with the DC protein assay kit. Then, ECPs were
separated on an AKTAFPLC system (GE Healthcare, Piscataway,
NJ, USA) directed by the Unicorn 5.1 software. Aliquots
containing 1.4 mg of total proteins dissolved in mobile phase
(isocratic elution mode in PBS: 10 mM Phosphate Buffer pH 7.4,
137 mM NaCl, and 2.7 mM KCI) and filtered on a 0.22 um
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membrane was injected onto a Superdex S200 HR10/30 gel
filtration column from GE Healthcare (fractionation range of the
column: 10-600 kDa) at a flow rate of 1 ml/min. Absorbance was
monitored at 280 nm and 1 mL fractions were collected. The
protein concentration of each fraction was determined and
protease activity was assayed using azocasein as previously
described [10]. Fractionated ECPs were conserved at —80°C
until in vitro assays.

3. In vitro assays : hemocyte cellular parameters

The effects of the obtained fractions were measured on oyster or
clam hemocytes to assess the action of the ECPs on hemocyte
adherence and phagocytosis capacities. Fractions showing inhib-
itory or stimulatory effects were compared to the negative control
(FSSW: Filtered Sterile Sea Water). For both tests, ECPs of each
bacterial species were tested at 32 ug.mL ™" of proteins, following
previously described procedures [10]. Briefly, for phagocytosis
tests, a sub-sample (150 pl) of each hemolymph pool was
distributed into a 5 ml polystyrene tube (Falcon, B-D Biosciences,
San Jose, CA, USA), then underwent a two fold dilution with
FSSW and was maintained on ice. Each sub-sample was
subsequently combined with 30 ul of a fluorescent bead
(2.00 um in diameter, Fluoresbrite calibration grade, Polysciences,
USA) working suspension (2% of the commercial suspension in
FSSW, final concentration 1x10’ beads.mL_l), and incubated at
18°C for 120 min. The cells were then analyzed on a flow
cytometer (FACSCalibur, BD San Diego, USA). The results were
expressed as the percentage of hemocytes containing three beads
or more [10].

To estimate hemocyte adhesive capacity, the sub-samples
(100 pl) of each hemolymph pool were distributed into 24-well
microplates maintained on ice, as already described by Choquet ef
al. [12]. 100 pl of FSSW or ECPs was added in triplicate to each
sub-sample. After three hours of incubation at 18°C, the cells were
fixed by addition of 200 pl of a 6% formalin solution in FSSW.
The supernatants were then transferred to cytometry tubes. The
hemocyte number present in each supernatant was determined by
flow cytometry. The results are expressed as average of non-
adherent cells per ml i.e. an increase of the value compared to that
of the negative control shows a cytotoxic effect of the tested ECPs.

4, Proteins electrophoresis (SDS-PAGE)

The fractions showing a significant effect i vitro on hemocyte
phagocytosis or adherence were concentrated with Corning Spin-
X UF Concentrators (Corning, Lowell, MA, USA) with a 10 kDa
MWCO and applied on a Criterion precast acrylamide gradient
gel 8-16% in Tris-HCI (Biorad, Hercules, CA, USA). After
staining by Coomassie blue (Biosafe Coomassie, Biorad), the gel
bands were cut out manually and conserved at —20°C before
trypsin digestion.

5. Protein identification

5.1. In-gel digestions and peptides recovery. Excised gel
plugs were washed 3 times with water, 100 mM ammonium
bicarbonate and 100% acetonitrile successively. Cysteins were
reduced by a treatment with a 65 mM DTT solution for
15 minutes at 37°C followed by alkylation with 135 mM
iodoacetamide at room temperature in the dark. Gel plugs were
washed again with 100 mM ammonium bicarbonate/acetonitrile
(1:1), 100% acetonitrile, 100 mM ammonium bicarbonate and
100% acetonitrile successively before being dried. Gel pieces were
then re-swollen in a solution of trypsin (12.5 ng/uL in 50 mM
ammonium bicarbonate; Promega), and digestion was performed
overnight at 37°C. The resulting peptides were then extracted
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Figure 1. UV spectrum of total ECPs of V. aestuarianus and V. tapetis on a Superdex $S200 10/30 column. Eluted fractions were collected
with a flow of 1 mL/min. Fractions are numbered according to their elution time (top and bottom X-axes, respectively). Gel filtration profile was

expressed in milliabsorbance units (mAU).
doi:10.1371/journal.pone.0113097.g001

from the gel by sequential incubation in the following solutions:
acetonitrile (ACN)/HyO/ trifluoroacetic acid (TFA), 70:30:0.1 (v/
v/v), 100% ACN and ACN/H,O/TFA, 70:30:0.1 (v/v/v), and
extracts were eventually concentrated by evaporation to a final
volume of 30 pL.

5.2. Mass spectrometry (MS) analysis. Peptide mixtures
were separated on a nano-HPLC system (Ultimate 3000, Dionex,
Jouy-en-Josas, France), with an injection volume of 22 ulL: first,
they were concentrated into a reversed-phase C18-PepMap
trapping column (5 um, 300 A/300 ym id. x 5 mm, Dionex),
and were then eluted with a 75-min gradient of ACN (from 2 to
90%) in aqueous 0.05% formic acid, at a flow rate of 250 nL./min.
The nano-LC apparatus was coupled on-line with an Esquire
HCT Ultra PTM Discovery mass spectrometer (Bruker Daltonik,
GmbH, Bremen, Germany), equipped with a nanoflow ESI source
and an ion trap analyser (ITMS). The mass spectrometer was
operated in the positive ionization mode. The EsquireControl
software (Bruker Daltonik, GmbH) automatically alternated MS
and CID MS-MS acquisitions with the following criteria: up to
seven ions per MS scan with an intensity threshold of 30,000 and a
dynamic exclusion of 15 sec.

5.3. Protein identification. The DataAnalysis 3.4 software
(Bruker Daltonik, GmbH) was used to create the peak lists from
raw data. For each acquisition, a maximum of 2,000 MS/MS
spectra were detected with an intensity threshold of 100,000 and
the charge state of precursor ions was automatically determined by
resolved-isotope deconvolution. The proteinScape 2.0 software
(Bruker Daltonik, GmbH) was used to submit the MS/MS data to
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the genomic V. aestuarianus 02/041 database (3693 CDS
sequences; 1125373 residues, unpublished results), the only V.
aestuarianus sequences available at that time. Peptide sequences
were found to be 100% identical to the identified proteins in the
database. Similarly, the MS/MS data for V. tapetis were
submitted to the V. tapetis CECT4600 database (5498 sequences;
1633991 residues, unpublished). Submission to randomized
versions of these databases (decoy) was used to determine the
false positive rate (FPR), defined as the number of validated decoy
hits/(number of validated target hits + number of decoy hits)*100,
using the Mascot algorithm (Mascot server v2.2.07; http://www.
matrixscience.com). Trypsin was selected as the cleaving enzyme
with one allowed missed cleavage. In addition, carbamidomethy-
lation of cysteins was set as fixed modifications and methionine
oxidation were considered as variable modifications. The mass
tolerance for parent and fragment ions was set to 0.6 and 0.5 Da,
respectively. Peptide identifications were accepted if the individual
ion Mascot scores were above 25 or the identity threshold (the ion
score is —10*log(P), where P is the probability that the observed
match is a random event, p-value<<0.05). In case of ambiguous
assignments (one compound fitting more than one peptide), the
peptide sequence with the highest score was retained. The
compilation of peptides identified to proteins was performed with
the ProteinExtractor algorithm [23], so that every protein reported
was identified by at least one peptide with a significant ion Mascot
score (above the identity threshold) that could not be mapped to a
higher-ranking protein already in the result list. This means that
the final protein lists contain only those proteins and protein
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Figure 2. Effect of V. aestuarianus 07/115 (right bars) and V. tapetis CECT 4600 (left bars) total ECPs on oyster and clam, respectively,
hemocyte phagocytosis capability (top panel) and hemocyte adhesion (bottom panel). Tests were carried out in triplicates as described in
M&M and the error bars correspond to SD. Incubation of hemocytes with sterile sea water (SSW) was used as a negative control.

doi:10.1371/journal.pone.0113097.g002

variants that could be distinguished directly by MS/MS. For every
protein reported in the identification lists, a combined protein
score (metascore) was calculated from the peptide scores with the
ProteinExtractor algorithm. Finally, protein identifications were
accepted if the False Positive Rate of the search was lower than
1%.

5.4. Bioinformatics. For each result of proteomic identifi-
cation, we used various softwares and algorithms to determine 1/a
score of identification; this score was given by the MASCOT
software, ii/the presence or not of a signal peptide and the
predicted position of the cleavage site; the algorithm SignalP 3.0
(probability>>0.93) was used except in the case of TolC for which
SignalP 4.01 was used instead (http://www.cbs.dtu.dk/services/
SignalP/) and iii/the subcellular localization using PsortB and

PLOS ONE | www.plosone.org

Psort Gram negative bacteria (http://psort.hgc.jp/form.html); in
case of ambiguity (score above threshold for two locations), the
highest score was chosen. Lipoproteins and their localisation (outer
membrane associated versus inner membrane associated) were
predicted using LipoPl1.0  (http://www.cbs.dtu.dk/services/
LipoP/). In general, lipoproteins are periplasmic but anchored
to one or the other membrane by their acyl moiety (indicated by
P/OM for instance). In most cases, they were associated with the
OM. In some cases, they could be associated with the OM and
facing outward.

November 2014 | Volume 9 | Issue 11 | e113097


http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
http://psort.hgc.jp/form.html
http://www.cbs.dtu.dk/services/LipoP/
http://www.cbs.dtu.dk/services/LipoP/

% phagocytosis
[
o

o T IR

7

15 16 17 18
FPLC fractions of V. aestzariaus 07/115 E CPs

19 20 21 22

160000
140000
120000
100000
80000
60000
40000
20000
0

Non-adherent cells average per ml

>

)
J
2

AT NGNS

o

AN Ay
v Y

&
>
<

FPLC fractions of V. aestuarianus E CPs

Proteomic Analysis of Two Pathogenic Marine Vibrios Secretomes

% phagocytosis
— [ %] 138
A o A

w o

[=]

SSW 8 9 14 15 16 17 18 19 20 21
FPLC fractions of V. tapetis ECPs
30000 A

20000
10000
0 - i

S3W 8 9 14 15 16 17 18 19 20 21
FPLC fractions of V. tapetis ECPs

100000 -
90000
80000 A
70000
60000
50000
40000

Non-adherent cells averagep er ml
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and D) hemocyte phagocytosis capacity (A and B) and adhesion properties (C and D). Tests were carried out in triplicates as described in

Materials and Methods and the error bars correspond to SD.
doi:10.1371/journal.pone.0113097.g003

Results and Discussion

1. Preparation and fractionation of V. aestuarianus 07/115
and V. tapetis CECT4600 ECPs

The proteins from the extracellular compartment are of
particular interest for functional investigation of bacterial patho-
gen virulence, because they come into direct contact with host
tissues and are often effectors of pathogenicity. Several lines of
evidence highlight an important role of ECPs in the virulence of
pathogenic vibrios. For example, a previous study on V.
aestuarianus 01/032 showed that its ECPs displayed immuno-
suppressive activities on oyster hemocyte functions [10]. Similar
effects were described in V. tapetis, in which ECPs were shown to
significantly decrease adhesive- [12] and phagocytic- [13] activities
of clam hemocytes. However, although the biological activity of V.
aestuarianus ECPs has been associated with the secretion of the
zinc metalloprotease, Vam [11], few studies have been carried out
to date in V. tapetis and nothing is known about the molecular
components responsible for the biological activity of the V. tapetis
ECPs.

The extraction of secreted proteins was performed under
conditions known to induce virulence [11,12]. ECPs were
fractionated, their biological activity against hemocytes was
assayed, and their protein contents were analyzed, as described
in Materials and Methods.

In the case of V. aestuarianus, fractionation of total ECPs gave
four major peaks (Fig. 1). A first symmetrical peak cluted in the
void volume of the column, suggesting that it was composed of a
mixture of protein aggregates or complexes larger than 600 kDa.

PLOS ONE | www.plosone.org

Three poorly resolved additional peaks eluted at 16, 18 and
22 minutes, respectively. The elution diagram obtained with V.
lapetis ECPs comprised a first peak also eluting in the void volume,
and a second broad peak, lower in absorbance than the three
peaks of V. aestuarianus, but exactly superimposed. The fractions
were recovered every minute and numbered according to the
elution time. Determination of fraction protein contents allowed us
to select a set of fractions (8, 9, 16 to 23 for V. aestuarianus ECPs
and 8, 9, 14 to 21 for V. tapetis ECPs) showing a minimal
concentration of 0,3 mg/ml of protein, to carry out further
analyses.

2. Effects of V. aestuarianus and V. tapetis ECPs on
phagocytosis and adherence activities of oyster and clam
hemocytes respectively

We first assayed the activities of unfractionated ECPs. In both
cases, the biological parameters assayed were hemocyte adhesion
and phagocytosis. We found that V. aestuarianus ECPs induced a
decrease of phagocytosis and adherence properties of oyster
hemocytes as shown in Fig. 2. This result is in keeping with
previous results obtained by Labreuche et al. [10]. Similarly, V.
tapetis ECPs triggered a decrease of hemocytes adherence as
previously described [12]. However, V. tapetis total ECPs did not
impact the phagocytic ability of clam hemocytes, contrary to what
was found by Allam and Ford [13] who previously described a
decrease in phagocytosis after treatment by bacterial supernatants
obtained from liquid cultures. This discrepancy may be due to the
different conditions used to prepare the ECPs (liquid culture versus
cellophane overlay on plate).

November 2014 | Volume 9 | Issue 11 | e113097
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The different FPLC fractions of ECPs previously obtained were
then similarly tested for biological activity towards oysters (V.
aestuarianus)- and clam (V. tapetis)- hemocytes. The results
presented in Fig. 3 showed that all the assayed fractions obtained
from V. aestuarianus decreased the adhesive capacities of oyster
hemocytes, with an increase of non-adherent hemocytes ranging
from a factor 1.8 (fraction 16) to 2.5 (fraction 20). The only
extracellular virulence factor described to date for V. aestuarianus
is the Vam metalloprotease, which causes aggregation and the loss
of pseudopods of oyster hemocytes [11]. Only the fractions 16 and
17 contained an azocaseinase activity (data not shown), suggesting
that Vam is not responsible for this loss of adhesion and that V.
aestuarianus 07/115 extracellular products, in particular in
fraction 20, contain additional factors playing a role in adherence
decreasing.

However, although total V. aestuarianus ECPs decreased the
phagocytic activity of hemocytes (Fig. 2), none of the V.
aestuarianus ECP fractions affected the oyster hemocyte phago-
cytic activity (Fig. 3A). This result suggests that phagocytosis
inhibition by ECPs may involve the joined activity of several
factors that have been eluted in separate fractions.

In the case of V. tapetis ECPs (Fig. 3B), a reduction in clam
hemocyte phagocytosis capacity was recovered in fractions 19-20
21, in accordance with previously published results [13]. This
suggests that an inhibitor of this activity is present in the total V.
tapetis ECPs, which was separated during fractionation. As in the
case of V. aestuarianus, all the recovered fractions displayed an
effect on hemocyte adhesion, but with more variations amongst
fractions. For example, fraction 14 triggered in excess of a 4-fold
increase in non-adherent hemocytes whereas fraction 8 had only a
2-fold effect (Fig. 3D).

In summary, our results indicate that both V. lapetis and V.
aestuarianus ECPs have major effects on hemocyte properties
including loss of adherence and inhibition of phagocytosis,
especially in the case of V. tapetis. In the case of V. aestuarianus,
inhibition of adhesion is independent of Vam, and is maximal in
fraction 20. In the case of V. lapetis, we could partly separate
adhesion inhibition activity (maximal in fraction 14) and
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phagocytosis inhibition activity (maximal in fractions 19-21). In
contrast, the observed phagocytosis inhibition in V. aestuarianus
was lost upon fractionation, suggesting that it requires several
factors acting in a complementary way while with V. tapetis, it was
detected only after fractionation, suggesting the presence of an
inhibitor in total ECPs.

3. Proteomic analysis of the two secretomes

Fractions combining both a significant effect n vitro on
hemocytes, and sufficient protein amounts were further charac-
terized by proteomic analysis. Accordingly, fractions 8 and 16 to
23 for V. aestuarianus and 9, 14 to 17 and 19 to 21 for V. tapetis
were subjected to SDS-PAGE for further protein identification by
nano LC-MS/MS. Several fractions (18 to 22 for V. aestuarianus
and 19, 20, 21 for V. tapetis) did not show any band after
Coomassie Blue staining, but were directly trypsinolyzed and
analyzed by liquid chromatography tandem mass spectrometry
(LC-MS/MS) starting from a total protein content of 5 pg. As
shown in Fig. 4, active fractions from both bacteria contained
multiple proteins. In order to identify them, 16 and 43 distinct
bands were excised for V. aestuarianus and V. tapetis, respectively,
and analyzed by mass spectrometry, as described in Materials and
Methods. Using the known proteome from both species, our
proteomic analysis of V. aestuarianus and V. tapetis secretomes led
to the unambiguous identification of 45 and 87 proteins,
respectively (Tables 1 and 2). Only five proteins in the ECPs of
V. tapetis and none in the V. aestuarianus secretome were
predicted to be cytoplasmic, emphasizing the quality of our
protocol and the absence of cell lysis.

98% and 70% of the proteins in the V. aestuarianus and V.
lapetis secretomes, respectively, were predicted to have a signal
peptide (see Materials and Methods for the algorithms used),
indicating that they are periplasmic or outer membrane compo-
nents (see Tables 1 & 2). Most of the proteins appeared to be
normal components of the outer membrane and the periplasmic
space, suggesting that they were released in the medium most
probably as membrane vesicles, as was previously described for
other bacteria [24]. In accordance with this hypothesis, 98% of the
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proteins in the case of V. aestuarianus and 78% in this of V. tapetis
came from the FPLC fractions eluted in the column void volume,
corresponding to materials larger than 600 kDa. Proteomic
composition of these fractions appears to reflect mostly the native
composition of the bacterial envelope, with no obvious specific
enrichment. However, it is also possible that some of this material
correspond to aggregates rather than vesicles.

The identified proteins were classified according to their
biological functions (Tables 1 and 2) 1/Structural components,
envelope biosynthesis and quality control, stress response, 2/
energetic metabolism, 3/transporter components, 4/iron acquisi-
tion (except in V. aestuarianus), 5/catabolism, including chitin
utilization, 6/motility, flagellar genes, 5/extracellular proteins, 6/
unknown function.

Predicted
localization***

oM
oM

Signal
peptide
cleavage
site **
18-19
20-21
19-20

4. ldentification of known and potential virulence factors
in the vibrio secretomes

The only extracellular virulence factor characterized to date in
V. aestuarianus is the secreted zinc metalloprotease, Vam, which
was shown to cause lethality of C. gigas oysters [11]. This protein
was clearly identified and found to be quantitatively dominant in
two active soluble fractions (16 and 17) in our study. More
mnterestingly, we also identified a second extracellular protease in
the V. aestuarianus secretome which we named Vpp (for Vam
processing protease). Vpp is a homologue of Epp, a secreted
protease which processes the secreted metalloprotease EmpA in
Vibrio anguillarum [25], EmpA being a homologue of Vam.
Hence, Vpp might be the Vam processing enzyme. Vpp is also a
homologue of PrtV of V. cholerae. In V. cholerae, PrtV was found
to play a role in resistance to grazing by natural predator, outside
the host, rather than in pathogenicity to humans [26]. Further
studies should clarify the role of Vpp in V. aestuarianus, especially
as fraction 8 that contains Vpp was found to decrease oysters
hemocyte adherence.

Up to now, no secreted virulence factors have been described in
V. tapetis. The only virulence factor characterized to date is the
inner membrane protein DjIA, which was shown to be required for
cytotoxicity towards clam hemocytes [27]. In contrast to V.
aestuarianus, no metalloprotease was found in the V. flapetis
secretome, suggesting different virulence mechanisms between the
two species. However, two serine proteases (i.e. KM596588 and
KM596661) carrying a signal peptide (Table 2) have been
identified in two different fractions. As secreted serine protease
was already shown to be involved in the virulence of several
pathogenic bacteria [28], these two proteins could also play a role
in the pathogenesis of V. tapetis.

The secretomes of both vibrio species contained an extracellular
triacylglycerol lipase (Table 1). This protein belongs to the same
family as the phospholipase Plal, a secreted virulence factor of
Aeromonas hydrophila [29] and Cef, a toxin with cell elongation
activity produced by Vibrio hollisae, which causes diarrhea in
humans [30]. Phospholipases can act as potent membrane
destructors and can manipulate host signalling pathways [31].

Another protein of interest is KM596634, identified in fraction
16 of the V. tapetis secretome, which contains the signatures of
RTX toxins and autotransporters. Autotransporters are bacterial
virulence factors that contain an N-terminal extracellular ("pas-
senger") domain and a C-terminal B barrel ("B") domain that
anchors the protein to the outer membrane. Upon autocleavage,
the passenger domain is secreted. RTX (Repeat in toxins) toxins
are virulence factors containing glycine- and aspartate-rich repeats
binding Ca(2+) ions [32]. Such proteins were shown as virulence
factors in other vibrio species [33,34].

FPLC
fraction

coverage
41

7

12

Nr of
peptides

Score*
356
137

63

MW (kDa)

29
35
20

Genbank
accession Nr
KM588628
KM588629

KM588627
PsortB and Psort Gram negative bacteria. Lipoproteins and their localisation were predicted using LipoP1.0 (see details in materials and methods, bioinformatics). (OM: outer membrane, IM: inner membrane, P: periplasmic, E:

extracellular).

* score given by the MASCOT software, ** as given by the algorithm SignalP 3.0 and some lipoproteins where putative SignalPeptidasell cleavage sites were detected by LipoP 1.0, *** algorithm used for subcellular localization:

Conserved outer membrane protein of unknown

Conserved outer membrane protein of unknown
function

Conserved exported protein of unknown
function

function
doi:10.1371/journal.pone.0113097.t001

Table 1. Cont.
Protein function
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Finally, it should be noted that, contrary to V. aestuarianus, the
V. tapelis secretome contains one receptor (GbpA) and several
chitinases, underscoring the role of chitin as a carbon source in the
environment. Besides, chitinases have already be shown to be
bacterial virulence factors, eg in Listeria monocylogenes [35], and
Legionella pneumophila [36]. Chitin is also a component of the
shell organic matrix, and V. tapetis as a pathogen forms biofilms
on the inner surface of the shell, typically at the level of the pallial
line at the growing edge of the shell [37]. Hence, chitin use may be
especially relevant to V. tapetis pathogenicity.

5. Proteins common to the V. aestuarianus and V. tapetis
secretomes

Finally, the sequence of each secretome protein of a given
species was compared in silico (using blastP) to the full proteome of
the other species, allowing us to identify 21 common proteins. The
results are presented in Table 3. The only potential virulence
factor is the putative extracellular lipase (Plal) already mentioned
above. The other proteins corresponded to normal components of
the envelope in gamma proteobacteria, and/or in the Vibrio
genus.
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Table 3. Proteins found in both the V. aestuarianus and V. tapetis secretomes (based on Blast of each secretome against the other).
V. aestuarianus
V. tapetis Genbank
Genbank accession
accession Nr Protein name/function Nr
KM596604 Putative TRAP-type transport system KM588612
KM596594 LptD KM588604
KM596600 TolC KM588615
KM596589 Putative lipoprotein LpoA, activator KM588605
of penicillin binding protein 1A
KM596596 TorA KM588608
KM596586 Tsp KM588600
KM596603 AapJ KM588611
KM596585 Periplasmic component of the KM588602
Tol-Pal system, YbgF-like
KM596635 Conserved lipoprotein of unknown function KM588621
KM596592 Nipl KM588607
KM596582 OmpU KM588597
KM596638 Conserved lipoprotein of unknown function KM588619
KM596583 BamA (YaeT) KM588599
KM596640 Conserved outer membrane KM588626
protein of unknown function
KM596642 Putative outer membrane KM588625
protein of unknown function
KM596650 LamB KM588632
KM596647 Lpp KM588630
KM596662 Putative extracellular lipase KM588638
KM596652 Long-chain fatty acid outer KM588616
membrane porin FadL
KM596646 OmpA KM588598
KM596641 Conserved outer membrane protein KM588628
of unknown function
doi:10.1371/journal.pone.0113097.t003

Conclusion

Extracellular products, especially secreted proteins, enter in
direct contact with the host cells, and play a major role in the
virulence of pathogenic bacteria. As a consequence, secretomic
approaches are of particular relevance to identify the proteins
involved in the infection process, and several studies have been
carried out for different pathogens in recent years [38—41]. It
should be noted that to date, only two secretomes of vibrios have
been reported in the literature, i.e. those of V. coralliilyticus [20]
and V. cholerae [42].

In this paper, we characterized the extracellular proteome of V.
aestuarianus and V. tapelis, two vibrio species pathogenic to
mollusks, as a first step towards the identification of new potential
virulence factors. Although the extracellular products from both
species were shown to be involved in bacterial virulence, only one
extracellular virulence factor has been characterized to date, in the
case of V. aestuarianus, the Vam zinc metalloprotease [11].

This protein appeared as a major component of the V.
aestuarianus secretome. However, we showed that a metallopro-
tease-free fraction (fraction 8) also displayed biological activity to
hemocytes, thus suggesting the occurrence of other potential
virulence factors in this species.
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As the V. tapetis secretome does not contain any metallopro-
tease, the virulence mechanisms in this species are necessarily
different from those in V. aestuarianus. In addition, we showed
here that several chromatographic fractions of ECPs displayed
biological activity towards oyster- and clam-hemocytes, for V.
aestuarianus and V. tapetis, respectively, indicating that other
factors are also responsible for the biological effects on hemocytes.

Overall, we could identify 44 and 87 different proteins in the
active fractions of the V. aestuarianus and V. tapetis secretomes.
Our data constitute the first valuable resource to further
mvestigate the virulence factors of these two marine pathogen
vibrios. Future works will aim at assessing the actual role of specific
secreted proteins in the virulence.
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