

Transcriptomic Response of Enterococcus faecalis V583 to Low Hydrogen Peroxide Levels.

Xue Yan, Aurélie Budin-Verneuil, Nicolas Verneuil, Michael S Gilmore,

Sébastien Artigaud, Yanick Auffray, Vianney Pichereau

▶ To cite this version:

Xue Yan, Aurélie Budin-Verneuil, Nicolas Verneuil, Michael S Gilmore, Sébastien Artigaud, et al.. Transcriptomic Response of Enterococcus faecalis V583 to Low Hydrogen Peroxide Levels.. Current Microbiology, 2014, 70 (2), pp.156-168. 10.1007/s00284-014-0691-8 . hal-01089248

HAL Id: hal-01089248 https://hal.univ-brest.fr/hal-01089248

Submitted on 5 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Transcriptomic response of *Enterococcus faecalis* V583 to low hydrogen peroxide levels

Yan Xue¹, Budin-Verneuil Aurelie¹, Verneuil Nicolas¹, Gilmore Michael S.², Artigaud Sebastien³, Auffray Yannick¹, Pichereau Vianney^{1, 3, *}

¹ Univ Caen Basse Normandie, Unite Rech Risques Microbiens U2RM, Equipe Stress Virulence, F-14032 Caen, France.

² Harvard Univ, Sch Med, Dept Ophthalmol, Boston, MA USA.

³ Univ Bretagne Occidentale UEB, Lab Sci Environm Marin LEMAR, Inst Univ Europeen Mer, IFREMER, IRD, UBO, CNRS, UMR 6539, F-29280 Plouzane, France.

* Corresponding author : Vianney Pichereau, email address : vianney.pichereau@univ-brest.fr

Abstract :

Enterococcus faecalis is a Gram-positive commensal bacterium inhabiting the gastrointestinal tracts of human and other mammals, but is also increasingly recognized as an opportunistic human pathogen. Oxidative stress is one of the major challenges encountered by enterococci, both in their natural environment and during infection. In this paper, we evaluated the transcriptomic response of E. faecalis to oxidative stress, and showed that transcript abundance was reduced for 93 genes and increased for 39 genes during growth in medium containing 1.75 mM H2O2. The presence of hydrogen peroxide affected several metabolic pathways, including a large decrease in ethanolamine utilization and methylglyoxal metabolism, and an increase in transcript abundance for several transport systems. In particular, four operons encoding iron transporters appeared highly induced. By contrast, in our experimental conditions, the expression of most of the genes known to be involved in the enterococcal response to oxidative stress, did not appear significantly altered.

45 **1. Introduction**

46 Enterococcus faecalis is a Lactic Acid Bacterium naturally inhabiting the gastrointestinal 47 tracts of humans and other mammals, and used as a constituent of some probiotic food 48 supplements [17,18,30]. However, E. faecalis also can cause life-threatening infections in 49 humans, especially in the hospital environment [35,46]. Oxidative stress is one of the major 50 challenges encountered by E. faecalis during its life cycle [23,34,50]. Nearly two decades of 51 research have revealed that this bacterium possesses genes encoding antioxidant enzymes such as *sodA* (Superoxide dismutase, [41]), *katA* (Catalase, [14]), *gor* (Glutathione reductase), 52 nox (NADH oxidase), trx (Thioredoxine reductase), dps (DNA-binding protein), msrA 53 54 (Peptide methionine-S-sulfoxide reductase) [39], npr (NADH peroxidase, [44]), ohr (Organic hydroperoxide resistance protein, [43]), ahpC (Alkyl hydroperoxide reductase, [57]), ahpF 55 56 (Peroxiredoxine reductase), and several transcriptional regulators involved in the oxidative 57 stress response, as hypR [55], perR, fur, zur [56], soxS [54].

Global experimental approaches that allow monitoring of gene and protein expression (i.e., transcriptomics and proteomics, respectively) in response to a particular environmental condition, constitute powerful tools to understand the metabolic and regulatory networks involved in stress adaptation on a genome-wide scale. To date, only one proteomic study examined changes in expression of 23 proteins in *E. faecalis* cells exposed to hydrogen peroxide (H₂O₂) [12]. In this paper, we report global changes in transcript abundance in *E. faecalis* V583 during growth in the presence of H₂O₂.

66 **2. Materials and methods**

67 2.1. Bacterial strains and growth conditions

In this work, we used *E. faecalis* V583 ery^S, an erythromycin sensitive derivative of the clinical isolate *E. faecalis* V583 [45]. Cells were cultivated with shaking in M17 medium supplemented with 0.5% (w/vol) glucose (GM17), supplemented with ± 1.75 mM H₂O₂2.2. *Microarray experiments*

V583 ery^S growth was monitored spectrophotometrically at 600 nm. When the culture 72 73 reached mid-exponential phase (Fig. 1), cells were harvested and total RNA was extracted, 74 purified, and residual DNA enzymatically removed as described previously [59]. Two 75 independent experiments were performed for each condition. cDNA preparation, fragmentation, labeling and hybridization were performed as described in the Affymetrix 76 77 manual ("GeneChip Expression Analysis Technical Manual: Procaryotic Target preparation" 78 P/N 702232 Rev 2). Washing and scanning were performed using a GeneChip® Fluidics 79 Station 450. The arrays were read at 570 nm with a resolution of 1.56 µm using an Affymetrix 80 GeneChip Scanner 3000 7G (Affymetrix). Results were analyzed and compared using the 81 GeneChip Operating Software (GCOS) version 1.4. Data were also analysed using R (version 82 3.0.0; R core team, 2013) and the Bioconductor software (version 2.12; [15]), to perform a 83 t-test with a Benjamini and Hochberg multiple testing correction cut-off of P <0.05 (data not 84 shown). In all, we considered differences in transcript abundance significant if by GCOS they 85 exhibited both a p-value below 0.05, and an absolute expression ratio significantly greater 86 than 2 fold.

87 2.3. Real-Time quantitative PCR

Real-Time qPCR was performed exactly as described by Giard et al. [16]. Specific primers 88 89 designed Primer3 software available were using the at the web site http://frodo.wi.mit.edu/cgibin/primer3/primer3_www.cgi (Table 1) with the following 90

91 parameters: amplicon length (99 to 101 bp), primer length (19 to 21 nucleotides), and primer 92 melting temperature (Tm from 59 to 61 °C). Total RNAs, treated with DNase I (GE 93 Healthcare) and purified using the DNA-free kit (Ambion), were reverse transcribed using the 94 Omniscript enzyme (Qiagen) and random hexamer primers according to the manufacturer's recommendations. RT qPCR was performed using the QuantiTect SYBR Green RT PCR kit 95 96 (Qiagen). Quantification of 23S rRNA transcript levels was used as an internal control. All 97 experiments were performed twice, and in duplicate with two different RNA samples, using 98 the BioRad iCycler iQ detection system (Bio-Rad Laboratories, Richmond, CA). The value 99 used for the comparison of genes expressions in stressed and unstressed cells was the number of PCR cycles required to reach the threshold cycle (C_T) . To relate the C_T value to the 100 101 abundance of an mRNA species, C_T was converted to "*n*-fold difference" by comparing 102 mRNA abundance in the control cells to that obtained with the H_2O_2 stressed cells. The *n*-fold 103 difference was calculated by the formula (n = 2^{-x}) when the $C_{T \text{ mutant}} < C_{T \text{ V583}}$ and (n = -2^{x}) when $C_{T \text{ mutant}} > C_{T \text{ V583}}$, with $\mathbf{x} = (C_{T \text{ mutant}} - C_{T \text{ V583}})$. 104

105

106 **3. Results and discussion**

107 *3.1. Growth of E. faecalis* V583 ery^S *under oxidative stress.*

108 E. faecalis cells were cultured in the presence of increasing concentrations of H_2O_2 , from 1.5 109 mM to 2 mM to identify a condition where H₂O₂ had a detectable effect on growth, but where 110 cells were also able to successfully respond to the challenge. Results presented in the Fig. 1 111 showed that the inhibitory effect of H₂O₂ was mainly observable on the duration of the Lag 112 phase, which increased from approx. 30 min to 3 h in the presence of 1.5 mM to 2 mM H_2O_2 . 113 We aimed at determining the effects of low doses of H₂O₂ on the global genes expression 114 profiles of exponentially growing *E. faecalis* cells, which were previously shown to display differences in stress tolerance [12]. Therefore, total RNAs were extracted from 115

116 mid-exponential growth phase cells (Fig. 1), and then processed for transcriptome analyses.

117 3.2. Transcriptome changes in response to H_2O_2 exposure.

118 Whole genome expression profiling of *E. faecalis* V583 was performed using affymetrix 119 chips, using total RNAs extracted from both unstressed- and stressed- (1.75 mM H₂O₂) 120 cultures at an OD_{600nm} of 0.6 (reached two and four hours after inoculation, respectively, Fig. 121 1). Comparative analysis showed that 132 genes were significantly differentially expressed in 122 response to 1.75 mM H₂O₂, considering a ratio threshold of two fold (Tables 2 and 3). We 123 selected 25 of the mostly deregulated genes, and subjected them to RT-qPCR (Table 4). It is noteworthy that we showed a very strong correlation ($r^2 = 0.86$) between the changes in genes 124 125 expression observed with the whole genome transcriptomic- and the qPCR- experimental 126 approaches.

127 Among the 132 genes for which transcript abundance changes significantly, 93 showed 128 reduction and 39 were found to be increased. We classified these 132 genes into 9 groups 129 according to the categories described in the comprehensive microbial resource of The Institute 130 of Genome Research (http://www.tigr.org/tigr-scripts/CMR2/CMRHomePage.spl/). Figure 2 131 shows the number of differentially regulated genes in each functional class. The main 132 observation is the large dominance of genes encoding proteins for which the function is 133 annotated as unknown (60), and the abundance of genes encoding (i) transport and binding 134 proteins (22 genes increased and 3 reduced), (ii) proteins involved in biosynthesis and 135 metabolism (4 increased and 24 reduced), and (iii) proteins involved in regulation and cell 136 signaling (8). Transcripts for only two genes annotated as involved in stress adaptation and 137 virulence were found to be changed.

138 *3.3. Classification of genes by their regulation patterns.*

139 Table 2 and Table 3 identify genes associated with increased and decreased levels of mRNA,

140 respectively, as a result of exposure to 1.75 mM H₂O₂. The most highly affected transcripts

141 are changed by about 10 fold. For example, the *ef3082-ef3085* operon encoding the 4 142 components of an iron compound ABC transport system, displayed increased transcript 143 abundance from 9 to 11 fold, while the greatest decreases all related to ethanolamine 144 metabolism, and displayed a reduction in transcript abundance reaching almost 12 fold.

To understand these changes in the global context of cellular metabolism, we searched for functional association networks using the STRING program ([13], available at http://string-db.org/). Results presented in Fig. 3 show that of the 132 genes for which significant transcript changes were observed, only 14 were disconnected from any node, and only 22 belonged to networks that included less than 4 partners (thus showing that 73% of the genes affected by H_2O_2 stress belonged to larger networks).

151 Gene ontology enrichment analyses showed that the main biological processes and molecular 152 functions associated with global transcriptional change, again were those related to metal ion 153 transport and ethanolamine metabolism P-values $< 10^{-5}$ for each).

154 *3.3.1. Metabolism*

155 Ethanolamine metabolism

156 Both microarray and real time q-PCR (Table 3 and Table 4) showed that H₂O₂ decreased the 157 the abundance of transcripts for 18 genes belonging to the eut operon involved in 158 ethanolamine metabolism. Ethanolamine (EA) is an abundant compound in the human intestinal tract [24,26] and in processed food [7], and can be used as a source of carbon, 159 160 nitrogen, and energy. However, growth of the V583 strain, and of RR17 (ef1633) a null 161 mutant of ef1633, showed that EA provided with CoB12 allowed E. faecalis to grow, albeit 162 poorly, only under anaerobic conditions, and the RR17 response regulator was required for 163 this effect. A promoter upstream of RR17 is induced by EA-CoB12 in anaerobiosis [38]. The 164 observation that most of the genes from EF1617 (eutQ) to EF1638 (eutP) were highly repressed by H_2O_2 in this study, could stem from a negative impact of H_2O_2 on either EA 165

and/or CoB12 in the medium, and reflects an important modulation of metabolism in enterococcal cells in response to oxidative stress. It is noteworthy that the Eut system was also shown to be negatively deregulated in (i) a microarray study of the Fsr system [5], and (ii) in *relA* mutants unable to produce (p)ppGpp [59,60] and unpublished data), showing that the regulation of the *Eut* operon is governed by many inputs. This new data adds to the understanding of the role of this system in the physiology of bacteria subjected to changing environments.

173 Methylglyoxal metabolism

174 The production of MG (methylglyoxal) in bacterial cells is maintained in balance with the 175 capacity for detoxification and protection against this toxic electrophile, which can react with 176 the nucleophilic centres of macromolecules such as DNA, RNA and proteins [4,11]. Table 3 177 and Table 4 show that the abundance of transcripts for 3 genes encoding glyoxalase family 178 proteins (among the 9 genes identified in the genome with related function) is significantly 179 reduced during the growth in the presence of H₂O₂. It should be noted that all other 180 glyoxalase genes, and the ef0939 gene encoding the methyl glyoxal synthase, were also 181 negatively impacted, but by differences < 2 fold (Table 5). This indicates an important role 182 for methylglyoxal metabolism under this stress. In enteric bacteria, three methylglyoxal 183 detoxification routes have been identified, *i.e.* the glutathione-dependent glyoxalase I-II 184 system [19], (ii) glutathione-independent glyoxalase III [31], and (iii) methylglyoxal 185 reductases and dehydrogenases [19,32]. The 5 glyoxalase genes for which mRNA abundance 186 decreased in the presence of H₂O₂ share sequence identity with genes of the glyoxalase I-II 187 system. Although methylglyoxal is considered as an extremely toxic electrophile, potentially 188 leading to the death of bacterial cell, several studies suggest that this compound is important 189 for bacterial homeostasis. Indeed, methylglyoxal is thought to be important in bacteria for 190 growth regulation, D-lactate production [8], the uncoupling of anabolism and catabolism [49], 191 the prevention of accumulation of phosphorylated intermediates [6,21], virulence [3], 192 programmed cell death [22,37], and oxidative stress [58]. Therefore, the reduction in the 193 abundance of transcripts encoding cellular glyoxalases suggests that tuning of methylglyoxal 194 intracellular content in H_2O_2 stressed cells is important in *E. faecalis* oxidative stress 195 adaptation.

196

3.3.2. Transport

197 Iron uptake

198 Table 2 and Table 4 show a notable increase in mRNA encoded by 10 genes belonging to 4 199 putative operons, with functions related to iron transport. Iron is an essential element for most 200 microbes, since many enzymes use iron as a cofactor [1]. During pathogenic processes, iron 201 acquisition systems are often found to be highly expressed to compensate for low iron 202 availability within the host [47]. Interestingly, the greatest increase in mRNA encoding an 203 iron transporter in our study (ef3082-3085), was also shown to be affected by growth in blood 204 [53]. Conversely, the expression of the *mntH* gene (ef1057), that was recently shown to be 205 strongly repressed in response to iron excess in E. faecalis OG1-RF [29], was not modified in 206 our experimental conditions. There is also an intimate relationship between iron metabolism 207 and oxidative stress. First, through the Fenton/Haber-Weiss reaction, iron can promote the 208 formation of hydroxyl radicals, which indiscriminately damage all cellular components [9,51]. 209 Second, iron acts as a co-factor for several enzymes, including some involved in oxidative 210 stress defence, such as KatA or Dps.

The induction by H_2O_2 of genes with functions in iron uptake was also observed in *Bacillus* subtilis, and could reflect an adaptive response to iron limitation [33]. Taken together, our results suggest that H_2O_2 -stressed cells encounter an intracellular iron limitation that could result from iron recruitment by certain oxidative defence proteins (*e.g.* catalase), necessitating increased transport capacity to meet the competing intracellular iron needs. 216 Stress related transporters

217 We observed in Table 2 and Table 3 that hydrogen peroxide resulted in increased abundance 218 of transcripts of kdpA, kdpB, kdpC, kdpD, encoding the high affinity ABC potassium transport 219 system Kdp, and ef0575-ef0576 (cationic ABC transporter). At the same time, H₂O₂ exposure 220 resulted in reduced levels of cadA (cadmium-translocating P-type ATPase), ef0986 (cation 221 transporter) and *nhaC* (Na⁺/H⁺ antiporter) mRNA. Select changes were verified by RT-qPCR 222 (Table 4). All bacterial kdp operons investigated so far are repressed during growth in media 223 of high external K^+ concentration ($[K^+]e$) [2]. Increased abundance of mRNA encoding the 224 *kdp* operon under our experimental condition, suggests that H_2O_2 led to an intracellular K⁺ limitation. Thus, the Kdp-ATPase is an efficient K^+ scavenging system that is expressed when 225 226 other K⁺ transporters cannot support cellular requirement for K⁺, which not only plays a vital role in bacterial osmotic adaptation [10,40] but is also important for pH regulation, gene 227 228 expression and activation of cellular enzymes [42]. The most notable deficiency observed in the *nhaC* deletion strain of *Bacillus firmus* was its poor growth at pH 7.5 and Na⁺ 229 230 concentrations up to 25 mM [20], suggesting its contribution in osmotic stress. The cadmium 231 cation is toxic to most microorganisms, probably by binding to essential respiratory proteins 232 [52] and through oxidative damage by production of reactive oxygen species [48]. One of the 233 best-characterized bacterial cadmium resistance mechanisms is determined by the 234 cadmium-transporting ATPase encoded by cadA found in Staphylococcus aureus [36] and 235 *Listeria monocytogenes* [27,28]. Various stresses (NaCl, heat, ethanol, acidity and alkalinity) 236 induced weak or strong H₂O₂ cross-protection in *E. faecalis* ATCC19433 [12]. Combined results suggest that the pre-treatment of H₂O₂ could increase the bacterial osmotolerance and 237 238 resistance to antibiotic, and decrease the bacterial resistance to cadmium.

239 *3.3.3. Genes involved in the adaptation to oxidative stress*

240 Expression of other genes clearly involved in the adaptation to oxidative stress did not

241 significantly change in GM17 medium supplemented with 1.75 mM H_2O_2 (Table 6). These genes may already be expressed at a high level in laboratory growth. Interestingly, although 242 243 not reaching the criteria used for significance in this study, the abundance of transcripts 244 encoding msrB (Peptide methionine-S- sulfoxide reductase [25]) was reduced 1.65 fold by H₂O₂. The repression of *msrB* in 2.5 mM H₂O₂ adaptation for 30 minutes and the resistance of 245 246 $\Delta msrB$ double crossing over mutant to the lethal challenge of 7 mM H₂O₂ for 6 hours 247 observed in E. faecalis, suggests that msrB contributes negatively to adaptation to oxidative stress [61]. It therefore was not surprising that when E. faecalis is facing the oxidative stress 248 249 of H₂O₂, a reduction in transcripts for *msrB* was observed.

250 3.4. Concluding remarks

251 Global changes in the abundance of mRNA for all genes in exponentially growing E. faecalis 252 cells, cultured in the presence of a low dose (1.75 mM) of H₂O₂, was measured. At this time 253 (4 h), E. faecalis had almost completely adapted as evinced by restoration of its growth rate 254 (Fig. 1). Analysis of changes in transcript abundance in response to this stress revealed that (i) 255 the expression of most of the well-known oxidative stress genes of E. faecalis was not 256 significantly altered, possibly because they already were highly expressed in rapid growth in 257 laboratory conditions, or because they may be regulated post-transcriptionally to minimize the 258 time delay associated with response to a potentially lethal condition. Among the responses we 259 did observe, we found that under H₂O₂ stress, E. faecalis restricted the metabolism of 260 ethanolamine, and limited the metabolism of methylglyoxal, but increased its use of transport 261 systems to satisfy the specific demand for essential metal ions, such as iron. Concomitantly, 262 we observed decreased expression of some genes known to contribute to adaptation to other 263 stresses (e.g. nhaC, cadA). Future work will aim at determining whether and how (i) 264 metabolic changes in ethanolamine and methylglyoxal metabolism, and iron transport, 265 impact the adaptation of *E. faecalis* to these specific conditions; and (ii) how changes in expression of genes clearly involved in the adaptation to other stresses affect cross adaptation.
It will also be of importance to determine the role of the 60 genes encoding hypothetical
proteins that were shown to be deregulated in these conditions.

269

270 Acknowledgements

X.Y. was the recipient of a doctoral fellowship from INRA (MICA Department) and the
Conseil Régional de Basse-Normandie, France. Microarray design, development and
production was supported by NIH grant AI083214 "Harvard-wide program on antibiotic
resistance." The authors deeply thank Annick Blandin and Marie-Jeanne Pigny for expert
technical assistance, and Christelle Thibault from IGBMC, Strasbourg (France), for DNA
chip hybridization.

278 **References**

- Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis.
 FEMS Microbiol Rev 27:215–237.
- [2] Ballal A, Basu B, Apte SK (2007) The Kdp-ATPase system and its regulation. J Biosci 32:559–568.
- [3] Baskaran S, Prasanna Rajan D, Balasubramanian KA (1989) Formation of
 methylglyoxal by bacteria isolated from human faeces. J Med Microbiol 28:211–215.
- [4] Booth IR, Ferguson G, Miller S, Li C, Gunasekera B, Kinghorn S (2003) Bacterial
 production of methylglyoxal: a survival strategy or death by misadventure? Biochem
 Soc Trans 31:1406–1408.
- [5] Bourgogne A, Hilsenbeck SG, Dunny GM, Murray BE (2006) Comparison of OG1RF
 and an isogenic *fsrB* deletion mutant by transcriptional analysis: the Fsr system of
 Enterococcus faecalis is more than the activator of gelatinase and serine protease. J
 Bacteriol 188:2875–2884.
- [6] Burke RM, Tempest DW (1990) Growth of *Bacillus stearothermophilus* on glycerol in
 chemostat culture: expression of an unusual phenotype. J Gen Microbiol
 136:1381–1385.
- [7] Collier PD, Cromie DDO, Davies AP (1991) Mechanism of formation of
 chloropropanols present in protein hydrolysates. J Am Oil Chem Soc 68:785–790.
- 297 [8] Cooper RA (1984) Metabolism of methylglyoxal in microorganisms. Annu Rev
 298 Microbiol 38:49–68.
- [9] Cornelis P, Wei Q, Andrews SC, Vinckx T (2011) Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 3:540–549.
- 301 [10] Epstein W (1986) Osmoregulation by potassium transport in *Escherichia coli*. FEMS
 302 Microbiol Lett 39:73–78.
- Ferguson GP, Tötemeyer S, MacLean MJ, Booth IR (1998) Methylglyoxal production in
 bacteria: suicide or survival? Arch Microbiol 170:209–218.
- Flahaut S, Laplace JM, Frère J, Auffray Y (1998) The oxidative stress response in
 Enterococcus faecalis: relationship between H₂O₂ tolerance and H₂O₂ stress proteins.
 Lett Appl Microbiol 26:259–264.
- Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. (2013)
 STRING v9.1: protein-protein interaction networks, with increased coverage and
 integration. Nucleic Acids Res 41:D808–815.
- [14] Frankenberg L, Brugna M, Hederstedt L (2002) *Enterococcus faecalis* Heme-Dependent
 Catalase. J Bacteriol 184:6351–6356.

313 Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. (2004) [15] 314 Bioconductor: open software development for computational biology and 315 bioinformatics. Genome Biol 5:R80. 316 Giard JC, Riboulet E, Verneuil N, Sanguinetti M, Auffray Y, Hartke A (2006) [16] 317 Characterization of Ers, a PrfA-like regulator of Enterococcus faecalis. FEMS Immunol 318 Med Microbiol 46:410-418. 319 Giraffa G (2003) Functionality of enterococci in dairy products. Int J Food Microbiol [17] 320 88:215-222. 321 Hugas M, Garriga M, Aymerich MT (2003) Functionality of enterococci in meat [18] 322 products. Int J Food Microbiol 88:223-233. 323 [19] Inoue Y, Kimura A (1995) Methylglyoxal and regulation of its metabolism in 324 microorganisms. Adv Microb Physiol 37:177-227. 325 Ito M, Guffanti AA, Zemsky J, Ivey DM, Krulwich TA (1997) Role of the [20] 326 nhaC-encoded Na+/H+ antiporter of alkaliphilic Bacillus firmus OF4. J Bacteriol 327 179:3851-3857. 328 Kadner RJ, Murphy GP, Stephens CM (1992) Two mechanisms for growth inhibition by [21] 329 elevated transport of sugar phosphates in Escherichia coli. J Gen Microbiol 330 138:2007-2014. Kang Y, Edwards LG, Thornalley PJ (1996) Effect of methylglyoxal on human 331 [22] 332 leukaemia 60 cell growth: modification of DNA G1 growth arrest and induction of 333 apoptosis. Leuk Res 20:397-405. 334 [23] Klebanoff SJ (1980) Oxygen metabolism and the toxic properties of phagocytes. Ann 335 Intern Med 93:480-489. 336 [24] Kofoid E, Rappleye C, Stojiljkovic I, Roth J (1999) The 17-gene ethanolamine (eut) 337 operon of Salmonella typhimurium encodes five homologues of carboxysome shell 338 proteins. J Bacteriol 181:5317-5329. 339 [25] Laplace JM, Hartke A, Giard JC, Auffray Y (2000) Cloning, characterization and 340 expression of an Enterococcus faecalis gene responsive to heavy metals. Appl Microbiol 341 Biotechnol 53:685-689. 342 Lawhon SD, Frye JG, Suyemoto M, Porwollik S, McClelland M, Altier C (2003) Global [26] 343 regulation by CsrA in Salmonella typhimurium. Mol Microbiol 48:1633–1645. 344 Lebrun M, Audurier A, Cossart P (1994) Plasmid-borne cadmium resistance genes in [27] 345 Listeria monocytogenes are present on Tn5422, a novel transposon closely related to 346 Tn917. J Bacteriol 176:3049-3061. 347 Lebrun M, Loulergue J, Chaslus-Dancla E, Audurier A (1992) Plasmids in Listeria [28] 348 monocytogenes in relation to cadmium resistance. Appl Environ Microbiol 349 58:3183-3186.

350 351	[29]	López G, Latorre M, Reyes-Jara A, Cambiazo V, González M (2012) Transcriptomic response of <i>Enterococcus faecalis</i> to iron excess. Biometals 25:737–747.
352 353	[30]	Mercenier A, Pavan S, Pot B (2003) Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr Pharm Des 9:175–191.
354 355 356	[31]	Misra K, Banerjee AB, Ray S, Ray M (1995) Glyoxalase III from <i>Escherichia coli</i> : a single novel enzyme for the conversion of methylglyoxal into D-lactate without reduced glutathione. Biochem J 305:999–1003.
357 358 359	[32]	Misra K, Banerjee AB, Ray S, Ray M (1996) Reduction of methylglyoxal in <i>Escherichia coli</i> K12 by an aldehyde reductase and alcohol dehydrogenase. Mol Cell Biochem 156:117–124.
360 361 362	[33]	Mostertz J, Scharf C, Hecker M, Homuth G (2004) Transcriptome and proteome analysis of <i>Bacillus subtilis</i> gene expression in response to superoxide and peroxide stress. Microbiology 150:497–512.
363 364	[34]	Nathan CF (1983) Mechanisms of macrophage antimicrobial activity. Trans R Soc Trop Med Hyg 77:620–630.
365 366	[35]	Noskin GA, Till M, Patterson BK, Clarke JT, Warren JR (1991) High-level gentamicin resistance in <i>Enterococcus faecalis</i> bacteremia. J Infect Dis 164:1212–1215.
367 368 369	[36]	Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from <i>Staphylococcus aureus</i> plasmid pI258 <i>cadA</i> gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci USA 86:3544–3548.
370 371 372	[37]	Okado A, Kawasaki Y, Hasuike Y, Takahashi M, Teshima T, Fujii J, et al. (1996) Induction of apoptotic cell death by methylglyoxal and 3-deoxyglucosone in macrophage-derived cell lines. Biochem Biophys Res Commun 225:219–224.
373 374	[38]	del Papa MF, Perego M (2008) Ethanolamine activates a sensor histidine kinase regulating its utilization in <i>Enterococcus faecalis</i> . J Bacteriol 190:7147–7156.
375 376 377	[39]	Paulsen IT, Banerjei L, Myers GSA, Nelson KE, Seshadri R, Read TD, et al. (2003) Role of mobile DNA in the evolution of vancomycin-resistant <i>Enterococcus faecalis</i> . Science 299:2071–2074.
378 379	[40]	Pichereau V, Hartke A, Auffray Y (2000) Starvation and osmotic stress induced multiresistances. Influence of extracellular compounds. Int J Food Microbiol 55:19–25.
380 381 382	[41]	Poyart C, Quesnes G, Trieu-Cuot P (2000) Sequencing the gene encoding manganese-dependent superoxide dismutase for rapid species identification of <i>enterococci</i> . J Clin Microbiol 38:415–418.
383 384 385	[42]	Prince WS, Villarejo MR (1990) Osmotic control of <i>proU</i> transcription is mediated through direct action of potassium glutamate on the transcription complex. J Biol Chem 265:17673–17679.

386 387 388	[43]	Rincé A, Giard JC, Pichereau V, Flahaut S, Auffray Y (2001) Identification and characterization of gsp65, an organic hydroperoxide resistance (ohr) gene encoding a general stress protein in <i>Enterococcus faecalis</i> . J Bacteriol 183:1482–1488.
389 390 391	[44]	Ross RP, Claiborne A (1991) Cloning, sequence and overexpression of NADH peroxidase from <i>Streptococcus faecalis</i> 10C1. Structural relationship with the flavoprotein disulfide reductases. J Mol Biol 221:857–871.
392 393 394	[45]	Sahm DF, Kissinger J, Gilmore MS, Murray PR, Mulder R, Solliday J, et al. (1989) <i>In vitro</i> susceptibility studies of vancomycin-resistant <i>Enterococcus faecalis</i> . Antimicrob Agents Chemother 33:1588–1591.
395 396	[46]	Schaberg DR, Culver DH, Gaynes RP (1991) Major trends in the microbial etiology of nosocomial infection. Am J Med 91:72S–75S.
397 398	[47]	Skaar EP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6:e1000949.
399 400	[48]	Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336.
401 402	[49]	Tempest DW, Neijssel OM (1984) The status of YATP and maintenance energy as biologically interpretable phenomena. Annu Rev Microbiol 38:459–486.
403 404	[50]	Thomas EL, Lehrer RI, Rest RF (1988) Human neutrophil antimicrobial activity. Rev Infect Dis 10 Suppl:S450–456.
405	[51]	Touati D (2000) Iron and oxidative stress in bacteria. Arch Biochem Biophys 373:1-6.
406 407	[52]	Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41:91–128.
408 409 410	[53]	Vebø HC, Snipen L, Nes IF, Brede DA (2009) The transcriptome of the nosocomial pathogen <i>Enterococcus faecalis</i> V583 reveals adaptive responses to growth in blood. PLoS One 4:e7660.
411 412	[54]	Verneuil N, Le Breton Y, Hartke A, Auffray Y, Giard JC (2004) Identification of a new oxidative stress transcriptional regulator in <i>Enterococcus faecalis</i> . Lait 84:69–76.
413 414 415	[55]	Verneuil N, Rincé A, Sanguinetti M, Auffray Y, Hartke A, Giard JC (2005) Implication of <i>hypR</i> in the virulence and oxidative stress response of <i>Enterococcus faecalis</i> . FEMS Microbiol Lett 252:137–141.
416 417 418	[56]	Verneuil N, Rincé A, Sanguinetti M, Posteraro B, Fadda G, Auffray Y, et al. (2005) Contribution of a PerR-like regulator to the oxidative-stress response and virulence of <i>Enterococcus faecalis.</i> , Microbiology 151:3997–4004.
419 420	[57]	Verneuil N, Sanguinetti M, Le Breton Y, Posteraro B, Fadda G, Auffray Y, et al. (2004) Effects of the <i>Enterococcus faecalis hypR</i> gene encoding a new transcriptional regulator

- 421 on oxidative stress response and intracellular survival within macrophages. Infect
 422 Immun 72:4424–4431.
- 423 [58] Wu L, Juurlink BHJ (2002) Increased methylglyoxal and oxidative stress in hypertensive
 424 rat vascular smooth muscle cells. Hypertension 39:809–814.
- 425 [59] Yan X, Zhao C, Budin-Verneuil A, Hartke A, Rincé A, Gilmore MS, Auffray Y,
 426 Pichereau V (2009) The (p)ppGpp synthetase RelA contributes to stress adaptation and
 427 virulence in *Enterococcus faecalis* V583. Microbiology 155:3226–3237.
- 428 [60] Yan X, Budin-Verneuil A, Auffray Y, Pichereau V (2014) Proteome phenotyping of
 429 Δ*relA* mutants in *Enterococcus faecalis* V583. Can J Microbiol 60:525–531.
- 430 [61] Zhao C, Hartke A, La Sorda M, Posteraro B, Laplace JM, Auffray Y, et al. (2010) Role
 431 of methionine sulfoxide reductases A and B of *Enterococcus faecalis* in oxidative stress
 432 and virulence. Infect Immun 78:3889–3897.

434

Legends to figures

435

436	Fig. 1	. Growth	of V583 er	y ^s with	shaking	in GM	17 medium	or su	pplemented	with	1.5mM
	0			2	0				1 1		

437 1.75mM and $2mM H_2O_2$. The arrows indicate the time at which RNA was extracted.

438

- Fig. 2. Functional classification of genes with statistically significant increases (\blacksquare) and decreases (\Box) in mRNA level upon 4 h exposure to hydrogen peroxide (total of 213 genes). The total number of genes associated with increased/decreased mRNA abundance as the result of H₂O₂ exposure in each functional class is shown.
- 444 Fig. 3. Network analysis of genes shown to be associated with significant transcript changes445 (built using STRING v9.1 [13]).

447 Table 1. Oligonucleotide primers used for real-time quantitative PCR in this study.

0188L: TCGCAGCTTGTGGTAATACG	0188R: ACTCGCAATAATCCGTTTGG
0191L: GGAACACCGCAAGAAGTGAT	0191R: GCCGCTGTGTCTGACTATGA
0475L: TCGAATTGCGCTGACAGATA	0475R: TAGCGCGTTCTCCAACTTTT
0567L: CGCTATGCACTGAATGTGCT	0567R: ACCTCCCGGTAAAAAGTGCT
0570L: GCTGGTGTTGGGAAAACCTA	0570R: GGACGATCATGAGGTTCGAT
0575L: AGGCTTTGGAAAAGGTCGAT	0575R: AAATCCGCATTTTGAGCAAG
0630L: AGTCAACCACGTGGGGATTA	0630R: TTCCACCAATTTCATCACGA
0666L: TCTTGAGCAAGCGGGTATCT	0666R: AGCGCCATTTGCGTATTATC
1120L: TTAAAGTGATGGGCGTTTCC	1120R: TGCGAAGGATAAGCAGAAGC
1617L: ACCCGAAATCGACGTAACAG	1617R: GGCGCGGACTTTCTTCTAA
1620L: TGAAGGTAAGCCGGTATTGG	1620R: GTCCACGTTTTCCTGAATCG
1621L: CAACCTGGACAGTTCGTTTGT	1621R: TGTGATTCGCTACGTTCAGG
1624L: AAATTGGCACCGATTATTGC	1624R: ATTGTATGACCCGCACCTTC
1627L: CACGTCACTGAAACGACAGAA	1627R: CAGGATCTACGGCATTTTTCA
1629L: ATCCATCGCTGGTTCAGAAA	1629R: AGCTGCTTGACCACTGTGAA
1633L: TTAGGCGCACTGGGTTATTT	1633R: TAACAGCTGCGTTTGTTTGC
1635L: CAGGGATGGCGTTTAATGTT	1635R: TTGCATTCATTCGTCCATGT
1638L: ATAAAACACAGGCGGTGGAA	1638R: GCCGCTGTGACGTTTAATG
1669L: GCCCAAGTCGTTTTGGTAGA	1669R: TGATTTACGATCCGCTAGGC
3085L: AACCGATAGTGCAAGGTTGG	3085R: CCGCTTAGCGCAAAAATAAA

Locus	Descriptions (Gene symbol)	M*
Biosynthe	sis and metabolism	
EF0693	1-phosphofructokinase (<i>fruK-1</i>)	1.1
EF1222	adenine deaminase (ade)	1.4
EFI511	mandelate racemase/muconate lactonizing enzyme family protein	1.1
EF2999	allantoinase nutative	11
LI 2777		1.1
Transport	and binding protein	
EF0188	iron compound ABC transporter, substrate-binding protein	2.0
EF0191	ferrichrome ABC transporter, ATP-binding protein	1.1
EF0192	ferrichrome ABC transporter, permease protein	1.0
EF0193	ferrichrome ABC transporter, permease protein (fhuG)	1.0
EF0475	ferrous iron transport protein A (feoA)	1.3
EF0476	ferrous iron transport protein B (feoB)	1.6
EF0567	potassium-transporting ATPase, subunit A (kdpA)	1.2
EF0568	potassium-transporting ATPase, subunit B (kdpB)	1.2
EF0569	potassium-transporting ATPase, subunit C (kdpC)	1.2
EF0575	cationic ABC transporter, ATP-binding protein	1.0
EF0576	cation ABC transporter, permease protein	1.1
EF0694	PTS system, fructose-specific family, IIBC components	1.0
EF1053	ABC transporter, ATP-binding protein	1.0
EF1117	amino acid ABC transporter, permease protein	2.2
EF1118	amino acid ABC transporter, permease protein	2.3
EF1119	amino acid ABC transporter, amino acid-binding protein	2.0
EF1120	amino acid ABC transporter, ATP-binding protein	1.8
EF1220	spermidine/putrescine ABC transporter, ATP-binding protein	1.0
EF3082	iron compound ABC transporter, substrate-binding protein	3.1
EF3083	iron compound ABC transporter, ATP-binding protein	3.2
EF3084	iron compound ABC transporter, permease protein	3.2
EF3085	iron compound ABC transporter, permease protein	3.3
Pegulation	and signal	
EE0570	songer histiding kingga (kdr.D)	1.0
EF0570	belix turn helix protoin iron dependent repressor family	1.0
EF0378	nenx-turn-nenx protein, non-dependent repressor faining	1.5
Cell envel	ope and cell division	
EF0887	glycosyl transferase, group 2 family protein	1.5
EF3314	cell wall surface anchor family protein	1.5
Stress and	Virulence	
EF2068	multidrug resistance protein, putative	1.2
Unknown		
EF0477	hypothetical protein	1.7
EF0886	hypothetical protein	1.4
EF0888	conserved hypothetical protein	1.0
EF0889	conserved hypothetical protein	1.2
EF1223	chlorohydrolase family protein	1.2
EF1512	conserved hypothetical protein	1.1
EF1808	agaS protein	1.1
EF2067	conserved hypothetical protein TIGR00481	1.1

450	Table 2. Genes of <i>Enterococcus faecalis</i> V583 ery ^S associated with increased transcript
451	abundance as the result of exposure to H_2O_2 .

*M is the mean Log2(fold ratio); SD is the standard deviation.

Locus	Descriptions (Gene symbol)	M*	SD
Biosynthe EF0098	sis and metabolism	-2.4	0.2
EF0099	L-serine dehydratase, iron-sulfur-dependent, beta subunit (<i>sdhB-1</i>)	-2.7	0.6
	L-serine dehydratase, iron-sulfur-dependent, alpha subunit (sdhA-1)		
EF0630	glyoxalase family protein	-1.0	0.
EF0867	glyoxalase family protein	-1.2	0.
EF1358	glycerol dehydrogenase, putative	-1.6	0.
EF1617	conserved hypothetical protein (EutQ)	-2.6	0.5
EF1618	ethanolamine utilization protein (EutH)	-2.7	0.6
EF1619	carbon dioxide concentrating mechanism protein CcmL, putative (EutN)	-2.8	0.
EF1620	hypothetical protein (EutX)	-2.9	0.
EF1621	conserved hypothetical protein (EutY)	-2.8	0.
EF1622	conserved domain protein (EutZ)	-3.0	0.
EF1623	microcompartment protein (EutK)	-2.6	0.4
EF1624	aldehyde dehydrogenase, putative (EutE)	-3.1	0.
EF1625	microcompartment protein family (EutM)	-3.0	0.0
EF1626	ethanolamine utilization protein (EutL)	-3.1	0.
EF1627	ethanolamine ammonia-lyase small subunit (EutC)	-3.3	0.
EF1629	ethanolamine ammonia-lyase large subunit (EutB)	-3.4	0.
EF1632	sensor histidine kinase (HK)	-1.1	0.
EF1633	response regulator (RR)	-1.1	0.
EF1634	propanediol utilization protein PduU (EutS)	-1.1	0.
EF1635	propanol dehydrogenase PduQ, putative (EutG)	-2.1	0.0
EF1637	ATP:cob(I)alamin adenosyltransferase, putative (EutT)	-1.7	0.0
EF1638	propanediol utilization protein PduV (eutP)	-1.3	0.
EF1669	glyoxylase family protein	-1.0	0.
Protein bio	psynthesis and fate		
EF0100	seryl-tRNA synthetase (serS-1)	-3.4	0.
EF0650	lipoate-protein ligase A (lplA-1)	-1.4	0.1
DNA meta	abolism		
EF2114	adenine methyltransferase, putative	-1.7	0.1
Transport	and binding protein		
EF0636	Na+H+ antiporter ($nhaC$ -2)	-1.1	0.2
EF0986	cation transporter	-1.0	0.
EF2623	cadmium-translocating P-type ATPase (<i>cadA</i>)	-2.4	0.4
Regulation	n and signal		
EF0097	regulatory protein pfoR, putative	-2.0	0.
EF0110	transcriptional regulator. ArsR family	-1.2	0.
EF0143	transcriptional regulator, CroCI family	-1.2	0.
EF0923	transcriptional regulator, LysR family	-1.2	0.
EF1668	transcriptional regulator, MarR family	-1.4	0.
EF2141	transcriptional regulator, CroCI family	-1.3	0.
Cell envel	ope and cell division		
EF0139	FtsKSpoIIIE family protein	-1.1	0.0
EF0153	cell wall surface anchor family protein	-1.1	0.3

454 Table 3. Genes of *Enterococcus faecalis* V583 ery^S associated with transcript reductions as 455 the result of exposure to H_2O_2 .

EF0149	aggregation substance, putative	-1.4	0.2
Mobile and	extrachromosomal element functions		
EF0158	conjugal transfer protein, putative	-1.3	0.4
EF2096	tail protein	-1.5	0.1
Unknown			
FF0083	hypothetical protein	-11	0.6
EF0109	Thi IPfnI family protein	-1.1	0.0
EF0131	conserved domain protein	-1.1	0.1
EF0132	hypothetical protein	-1.5	0.2
EF0134	hypothetical protein	-1.4	0.2
EF0135	conserved hypothetical protein	-1.1	0.1
EF0136	hypothetical protein	-1.0	0.1
EF0130	conserved domain protein	-1.1	0.1
EF0138	conserved hypothetical protein	-1.1	0.0
EF0142	conserved domain protein	-1.0	0.3
EF0144	hunothatical protein	-1.2	0.5
EF0151	hypothetical protein	-1.2	0.4
EF0152	apponential protein	-1.0	0.0
EF0154	conserved hypothetical protein	-1./	0.1
EF0133	conserved hypothetical protein	-1.0	0.4
EF0415	conserved hypothetical protein	-1.4	0.4
EF0319	nypomencal protein	-1.0	0.1
EFU9/1	De JCD = JCD = A D = D A TD = = for ile ante in	-1.1	0.1
EF1327	BadFBadGBcrABcrD A Pase family protein	-1.4	0.5
EF1359	conserved hypothetical protein	-1.3	0.3
EF1360	dinydroxyacetone kinase tamily protein	-1.2	0.4
EF1361	dinydroxyacetone kinase tamily protein	-1.4	0.2
EF1362	conserved domain protein	-1.1	0.1
EF2014	coenzyme F420 hydrogenase domain protein	-1.0	0.1
EF2065	conserved hypothetical protein	-1.0	0.1
EF2094	hypothetical protein	-1.1	0.1
EF2095	hypothetical protein	-1.1	0.3
EF2097	hypothetical protein	-1.5	0.1
EF2098	hypothetical protein	-1.4	0.2
EF2099	hypothetical protein	-1.6	0.1
EF2100	hypothetical protein	-1.5	0.1
EF2101	hypothetical protein	-1.6	0.2
EF2102	hypothetical protein	-1.7	0.4
EF2103	hypothetical protein	-1.6	0.3
EF2104	hypothetical protein	-1.7	0.1
EF2105	hypothetical protein	-1.7	0.1
EF2106	conserved domain protein	-1.6	0.1
EF2107	hypothetical protein	-1.7	0.1
EF2108	hypothetical protein	-1.6	0.3
EF2109	conserved domain protein	-1.8	0.0
EF2110	hypothetical protein	-1.6	0.0
EF2111	hypothetical protein	-1.7	0.1
EF2112	hypothetical protein	-1.7	0.1
EF2113	conserved hypothetical protein	-1.6	0.3
EF2120	conserved hypothetical protein	-1.0	0.6
EF2125	hypothetical protein	-1.0	0.3

-1.0 0.2

Stress and virulence

EF2127

hypothetical protein

EF2133	hypothetical protein	-1.0	0.3	
EF2134	hypothetical protein	-1.0	0.6	
EF2137	hypothetical protein	-1.2	0.3	
EF2140	conserved hypothetical protein	-1.2	0.2	
EF2606	conserved hypothetical protein	-1.0	0.1	
EF2792	conserved hypothetical protein	-1.0	0.0	
*M is the mean Log2(fold ratio); SD is the standard deviation.				

459 Table 4. Comparison of gene expression analyzed by real-time quantitative PCR and

460 Microarray.

Locus	(Gene symbol) Function	H ₂ O ₂ /	GM17
		RT qPCR	Microarray
ef0188	iron compound ABC transporter, substrate-binding protein	9.24±1.95	$3.94{\pm}1.20$
ef0191	ferrichrome ABC transporter, ATP-binding protein	3.33±0.70	2.20 ± 0.44
ef0475	(feoA) ferrous iron transport protein A	3.16±0.99	2.48 ± 0.03
ef0567	(kdpA) potassium-transporting ATPase, subunit A	2.72±1.27	2.27±0.34
ef0570	(kdpD) sensor histidine kinase KdpD	1.67 ± 0.38	1.99 ± 0.12
ef0575	cationic ABC transporter, ATP-binding protein	2.37±0.77	1.92 ± 0.25
ef1120	amino acid ABC transporter, ATP-binding protein	6.44±0.25	3.52 ± 0.03
ef3085	iron compound ABC transporter, permease protein	18.1 ± 7.18	11.2 ± 3.81
ef0630	glyoxalase family protein	-3.92 ± 0.91	-2.00 ± 0.14
ef0867	glyoxalase family protein	-2.67 ± 0.40	-2.33 ± 0.12
ef1617	(eutQ) conserved hypothetical protein	-8.16 ± 0.48	-6.10 ± 1.41
ef1620	(eutX) hypothetical protein	-8.62 ± 0.50	-7.50 ± 1.41
ef1621	(eutY) conserved hypothetical protein	-3.41±0.95	-7.00 ± 1.41
ef1624	(eutE) aldehyde dehydrogenase, putative	-9.18 ± 0.60	-8.60 ± 1.07
ef1627	(eutC) ethanolamine ammonia-lyase small subunit	-10.1±0.46	-9.80 ± 1.07
ef1629	(eutB) ethanolamine ammonia-lyase large subunit	-7.76±0.45	-10.6 ± 1.07
ef1633	(RR17) response regulator	-4.13±0.24	-2.10 ± 1.07
ef1635	(eutG) propanol dehydrogenase PduQ, putative	-11.7±0.85	-4.30 ± 1.07
ef1638	(eutP) propanediol utilization protein PduV	-2.82 ± 0.26	-2.50 ± 1.07
ef1669	glyoxylase family protein	-2.90 ± 1.15	-2.04 ± 0.04

461 Values are given as means of the fold ratios \pm standard deviation (SD).

Locus	Function		Level of ge	ne expression		Ratio
		GM17	H_2O_2	GM17	H_2O_2	H ₂ O ₂ /GM17
ef0358	glyoxalase family protein	330.7	164.6	408.5	224.2	-1.92±0.10
ef0939	methylglyoxal synthase	1627.9	961	1806.1	909.7	-1.84 ± 0.15
ef0630	glyoxalase family protein	1152.1	541.5	945.8	508.4	-2.00 ± 0.14
ef0656	glyoxalase family protein	138.8	112.8	236.1	178.6	-1.28 ± 0.04
ef0666	glyoxalase family protein	2717	1834	2571.2	1811.8	-1.45 ± 0.03
ef0745	glyoxalase family protein	1003.8	974.3	1216.9	1119.1	-1.06 ± 0.03
ef0867	glyoxalase family protein	253.7	114.8	292.7	119.8	-2.33±0.12
ef1669	glyoxylase family protein	260.3	125.4	314.8	161	-2.04 ± 0.04
ef2591	glyoxalase family protein	3065.4	3012.3	3317.9	2821.4	-1.10 ± 0.08
ef3092	glyoxalase family protein	1302.2	1004.4	1238.1	937.8	-1.31±0.01

Table 5. Expression of all the genes encoding glyoxalase family protein analyzed by Microarray.

Values are given as means of the fold ratios \pm standard deviation (SD).

468 Table 6. Expression of the genes known to be involved in enterococcal adaptation to oxidative

469	stress.

Locus	Protein (Gene)	Expression of genes		Ratio
		GM17	GM17 +H ₂ O ₂	H ₂ O ₂ /GM17
Oxidative stress proteins				
ef0453	Organic hydroperoxide resistance protein (ohr)	3712.9	3449.6	-1.07
ef0463	Superoxide dismutase (sodA)	4697.8	4342.7	-1.08
ef0606	DNA-binding protein (<i>dps</i>)	384.5	370	-1.04
ef1211	NADH peroxidase (npr)	4228.5	3577.3	-1.18
ef1338	Thioredoxine reductase (<i>trx</i>)	3292.4	2649.6	-1.24
ef1405	Thioredoxine reductase (<i>trx</i>)	1787.7	1772.6	-1.01
ef1586	NADH oxidase (nox)	5842.3	6058.5	1.04
ef1597	Catalase (<i>katA</i>)	2734.8	2806.2	1.03
ef1681	Peptide methionine-S-sulfoxide reductase (<i>msrA</i>)	2144	1908.5	1.12
ef2738	Peroxiredoxine reductase (<i>ahpF</i>)	3974	3984.6	1.00
ef2739	Alkyl hydroperoxide reductase (<i>ahpC</i>)	4536.4	4583	1.01
ef3164	Peptide methionine-S-sulfoxide reductase (<i>msrB</i>)	2449	1478.1	-1.65
ef3233	DNA-binding protein (<i>dps</i>)	4553.2	4202.9	-1.08
ef3270	Glutathione reductase (gor)	2707.7	2879.4	1.06
Oxidative stress related transcriptional regulators				
ef1525	(fur)	2925.4	2397.8	-1.22
ef1585	(perR)	2741.6	2304.2	-1.19
ef2063	(soxS)	1847.9	1969.6	1.07
ef2417	(zur)	1017.1	804.2	-1.26
ef2958	(hypR)	245.1	256.9	1.05

Fig. 3