N

N

EUGENE: a STEP-based framework to build

Application Generators
Alain Plantec, Vincent Ribaud

» To cite this version:

Alain Plantec, Vincent Ribaud. EUGENE: a STEP-based framework to build Application Generators.
1st Australian Workshop on Constructing Software Engineering Tools, CSIRO-Macquarie University,
Nov 1998, Adelaide, Australia. hal-01078451

HAL Id: hal-01078451
https://hal.univ-brest.fr /hal-01078451

Submitted on 11 Sep 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.univ-brest.fr/hal-01078451
https://hal.archives-ouvertes.fr

EUGENE: a STEP-based Framework to
build Application Generators

A.Plantec and V.Ribaud
LIBr & Syseca

LIBr: Faculté des Sciences, BP 809, 29285 Brest Cedex, France
Syseca: 34 quai de la Douane, 29200 Brest, France

E-mail: {plantec,ribaud} @univ-brest.fr
April, 30, 1998

Abstract

Application generators translate specifications into products (programs, documenta-
tions). They parse specifications statements into data structures (called dictionaries or
meta-models), from which desired products can be derived.

An application generator builder offers a way to define specification languages and
associated parsers, to describe and traverse the meta-models structure and to specify the
derivation on this structure. In most builders, derivation is specified with templates (or
skeletons) of code. Templates contain a mixture of commands operating on the meta-
models and “real” code directly put in the products.

STEP is an ISO 10303 standard developed to facilitate product information sharing
by specifying sufficient semantic content for data and their usage. Parts of ISO 10303 are
intended to standardize conceptual structures of informations either generic, or within a
subject area (e.g. mechanics). Standardized parts are expressed with a dedicated technol-
ogy, mainly an object oriented modelling language EXPRESS and a data access interface.

STEP technology offers very useful software tools and can be applied for the design
and the implementation of application generators. We used this capabilities in a tool
EUGENE, that is intended for the building of application generators. The meta-models
are defined with EXPRESS schemata, and code templates are programmed in EXPRESS
with embedded target code.

STEP aims to standardize consensus data specifications, called application protocols,
exchanged and shared throughout an engineering community. The STEP standardization
process relies on successive data models definition, based on standardized constructs reuse.

We defined a method inspired from this process, and its implementation with FEUGENE.
The goal is to build a meta-model close to the target product, formally derived from
others meta-models. Templates are then applied to this meta-model. As benefits of this
method, the final meta-model offers a higher abstraction of the generation process, and the
complexity of code templates is greatly reduced.

Introduction

Application generators translate source specifications into target products as programs or doc-
umentations. They use data structures called dictionaries or meta-models to store the source
specifications and intermediate representations. Asin compilers, there are two main functions
in a generator: parsing of the source specifications and the target code generation.

An application generator builder offers a means to define specification languages and asso-
clated parsers, to describe and traverse the meta-model structure and to specify the derivation
on this structure. In most builders, derivation is specified with templates (or skeletons) of
code. Templates contain a mixture of commands operating on the meta-models and ”real”
code directly inserted into the products.

STEP is an ISO 10303 standard developed to facilitate product information sharing by
specifying sufficient semantic content for data and their usage. Parts of [SO 10303 are intended
to standardize conceptual structures of information which are either generic or within a subject
area (e.g. mechanics). Standardized parts are expressed with a dedicated technology, mainly
an object-oriented modelling language called EXPRESS and a standard data access interface
called SDATL

Application generator building can benefit from the STEP technology at specification and
implementation levels [11, 10]. We used these capabilities in a tool, called EUGENE, that is
intended for the building of application generators [12]. The meta-models are defined with
EXPRESS schemata; code templates are programmed in EXPRESS and are interpreted by a
STEP data access interface.

STEP description and implementation methods

The EXPRESS language [1] is an object-oriented modelling language. The application data are described

in schemata. A schema has the type definitions and the object descriptions of the application called Entities. An
entity is made up of attributes and constraint descriptions.
The constraints expressed in an entity definition can be of four kinds: (1) the unique constraint allows entity
attributes to be constrained to be unique either solely or jointly, (2) the derive clause is used to represent
computed attributes, (3) the where clause of an entity constraints each instance of an entity individually and
(4) the inverse clause is used to specify the inverse cardinality constraints. Entities may inherit attributes and
constraints from their supertypes.

The STEP physical file format defines an exchange structure using a clear text encoding of product
data for which a conceptual model is specified in the EXPRESS language. The mapping from the EXPRESS
language to the syntax of the exchange structure is specified in [2].

The Standard Data Access Interface (SDAI) [3] defines an access protocol for EXPRESS-modelled
databases and is defined independently from any particular system and language. The representation of this
functional interface in a particular programming language is referred to as a language binding in the standard. As
an example, SO 10303-23 is the STEP part describing the C++ SDAI binding [4].

The five main goals of the SDAI are: (1) to access and manipulate data which are described using the EXPRESS
language, (2) to allow access to multiple data repositories by a single application at the same time, (3) to allow
commit and rollback on a set of SDAI operations, (4) to allow access to the EXPRESS definition of all data
elements that can be manipulated by an application process, and (5) to allow the validation of the constraints
defined in EXPRESS.

An SDAI can be implemented as an interpretor of EXPRESS schemata or as a specialized data interface. The
interpretor implementation is referred to in the standard [3] as the SDAI late binding. An SDAI late binding is
generic in nature. The specialized implementation is referred to in the standard as the SDAI early binding.

References

[1] ISO 10303-11. Part 11: EXPRESS Language Reference Manual, 1994,

[2] 1SO 10303-21. Part 21: Clear Text Encoding of the Exchange Structure, 1994.

[3] 1SO DIS 10303-22. Part 22: Standard Data Access Interface, 1994.

[4] ISO CD 10303-23. Part 23: C++ Programming Language Binding to the SDAI Specification, 1995.

STEP aims to standardize consensus data specifications, called application protocols, ex-
changed and shared throughout an engineering community. The standardization process relies
on successive data model definition, based on high level and standardized construct reuse.

This paper argues that this process can be applied for the design and the implementation of
application generators. The goal is to build a meta-model close to the target product, formally
derived from other meta-models. Templates are then applied to this meta-model. As benefits
of this method, the final meta-model offers a higher abstraction level, the complexity of code
templates is greatly reduced and the reusability of meta-models is increased.

In order to illustrate the concepts, a practical example is given. The problem covered by the
example is described in section 1. Section 2 shows how a generator is built with EUGENE.
A first solution resolving the example problem is given. In section 3 we focus on the STEP
standardization process. Section 4 shows how this process can help to improve application
generator design. Then an improved solution is given.

1 A concrete application

The problem concerns the cascade in referential integrity as it is defined in the ANSI/ISO
SQLI92 standard. A primary key is a set of columns in a table called the parent table, which
have a different value for each row of the table. A foreign key is the same set of columns
included in another table called the child table: for each row in the child table, the value in
the foreign key matches a value in the corresponding primary key from the parent table. The
matching row in the child table is dependent on the matched row in the parent table.

One of the actions that can be performed on the dependent rows in a child table is the
cascade when the referenced parent key value is updated or the referenced parent row is deleted.
It means that, in the child table, the matching value should be updated or the matching row
should be deleted.

Triggers can be used to enforce the cascade rule. Triggers represent typical data management
operations that can be automatically generated from table descriptions. The remainder of this
article examines the delete trigger from the table Parent to a dependent table Child. The delete
trigger code is shown in figure 1.

CREATE TRIGGER del_Child from_Parent
BEFORE DELETE ON Parent
FOR EACH ROW
BEGIN
DELETE FROM Child
WHERE Child.<foreign key> = :OLD.<primary_key>
END;

Figure 1: The trigger code example

2 Building application generators with EUGENE

2.1 Overview

STEP is intended to deal with product data. STEP toolkits provide tools to specify data
structures with EXPRESS and to manage databases through the SDAI. As part of conventional
STEP projects, we made a STEP-based toolkit starting from NIST implementations [8].

This paper presents EUGENE, an application generator builder. Built application gener-
ators use STEP capabilities in an original way. In our research, STEP technology is used in
order to manage meta-data and to produce software components.

An application generator built with EUGENE uses meta-data in order to generate a target
textual representation. Meta-data come from a source specification analysis and are stored in a
so-called source language meta-model. Derivations are programmed with imperative functions,
called translation functions. They are made of fixed parts that are mainly either meta-model
traversal routines or string constants directly put into the target and made of variable parts
that are values fetched from the source language meta-model.

Using EUGENE, an application generator results from two activities. The first activity
alms to define together in EXPRESS the source language meta-model and the translation
Sfunctions. The second activity aims to produce the application generator, mainly made of an
SDAT built from the results of the first activity.

STEP toolkit !

Source
speeticaion
&
tansition

Readlisation

Figure 2: The building and the using of an application generator

Figure 2 shows that an application generator built with EUGENE is only a process that
consumes meta-data and produces some realisation. The meta-data are themselves produced
by other processes or tools that can use the automatically built SDAT in order to write standard

STEP files.
2.2 The specification of the generator

2.2.1 The source language meta-model

As pointed out in [4], recognizing where an application generator can be used is difficult and
often occurs too late in the life cycle. Another difficulty is to convince project managers to

invest efforts in generator development rather than concentrate the forces on the project itself.
We believe that introducing a new specification language increases these difficulties. So we use
the specification languages in turn on the projects as source languages that are those specified
from classical application design: OMT class models, database data definition language (DDL)
schemata or EXPRESS schemata.

The source language meta-model consists in a set of EXPRESS schemata that describes the
source language data constructs. The main components of a source language meta-model are
types and entities, describing concepts that can be used with the source language. Entities
provide buckets to store meta-data while global and local EXPRESS constraints are used to
ensure meta-data soundness.

Considering the example of section 1, the source language is SQL and figure 3 shows a
simplified SQL meta-model. The table definition is related to a list of columns. The referential
integrity constraint is referred to in the entity column as the attribute foreign: a child column
that is constrained by a referential integrity rule has a foreign column relating the child column
to the parent column. The inverse attribute owner points to the table of the columns.

SCHEMA sql_dictionary;

ENTITY simple_type ABSTRACT SUPERTYPE OF (ONEOF(real_type, integer_type, string_type));
END_ENTITY; ...

ENTITY table;

name : STRING;

columns : LIST [1:?] OF column; ...
END_ENTITY;

ENTITY column;
name : STRING;
domain : simple_type;
foreign : OPTIONAL column; ...
INVERSE
owner : table FOR columns;
END_ENTITY; ...
END _SCHEMA,; — sql_dictionary

Figure 3: An example of source meta-model: a simple SQL dictionary

2.2.2 The translation model

The translation functions are written in EXPRESS and are specified in the translation model
schema. The specification of translation functions is a programming activity in which EX-
PRESS is used as an imperative language. A typical translation function returns a string and
is parameterized with types that are entities defined in the source language meta-model. The
resulting string represents part of the target textual representation. Because of the nature of
parameter types, this activity is often called meta-programming [2, 7].

Figure 4 shows three translation functions related to the paper example. Functions
del_trigger_of_column and del_trigger_of_table can be used in order to produce the definitions
of delete triggers for, respectively, a column and a table. The function del_trigger_-name com-
putes the name of a trigger from column entity. These three functions represent three kinds of

functions usually found in the translation model:

o del_trigger_of-table is a traversal function that iterate over all columns of a table; this
kind of function is directly related to the tree structure of the source language meta-
model; because the attribute foreign of the entity column is optional, the value of this
attribute has to be tested with the EXPRESS built-in function EXISTS for all columns
of the table,

o del_trigger_of-column is a derivation function that builds a part of the target represen-
tation. It consists of a concatenation of fixed string values and variables taken from the
source language meta-model,

o del_trigger_name specifies the way in which a trigger name is built; it is a private function
providing some readability and some re-usability.

The reader should note that only del_trigger_of_column function fully depends on the example
problem. The traversal function del_trigger_of_table partly depends on the source language
meta-model structure and the private function del_trigger_name depends on the way a trigger
name is built.

FUNCTION del_trigger_name (col : column) : STRING;
RETURN (’del_’ + col.owner.name + > from_’ + col.foreign.owner.name);
END FUNCTION; — get_del_trigger_name

FUNCTION del_trigger_of_column (col : column) : STRING;
RETURN (
>CREATE TRIGGER °’ + del_trigger_name(col) + ’ BEFORE DELETE ON ’ + col.foreign.owner.name
+ ’ FOR EACH ROW BEGIN DELETE FROM ’ + col.owner.name + > WHERE ’ + col.owner.name + ’.°

+ col.name + > = :0LD.’ + col.foreign.name + ’> END; ’);
END FUNCTION; — del_trigger_of_column
FUNCTION del_trigger_of_table (table : table) : STRING;
LOCAL str: STRING := ’’; END_LOCAL;

REPEAT no := LOINDEX(table.columns) TO HIINDEX(table.columns);
IF EXISTS(table.columns[no].foreign) THEN
str := str + del_trigger_of_column(table.columns[no]);
END_IF;
END_REPEAT;
RETURN (str);
END FUNCTION; — del_trigger_of_table

Figure 4: First version of translation functions that create SQL delete triggers

2.3 The resulting application generator

The resulting application generator is made up of two parts:

o the first part is a lexer and a parser for the source language analysis; it produces meta-
model instances;

e the second part is a code generator that processes translation functions; this process
consumes meta-model instances and produces target codes.

Managing instances and processing EXPRESS functions are the main goals of an SDAI. Thus
an SDAI dedicated to the meta-model is the main component of the resulting application
generator. An SDAIT is either generic or automatically produced from EXPRESS schemata,
hence only the first part is hand-made, typically with a lex/yacc component relying on SDAT
services.

3 The STEP design framework

A fundamental concept of STEP is the definition of consensus data specifications that describe
the data to be exchanged or shared and that cover some particular application domain. These
data specifications are called Application Protocols [9, 5].

3.1 Application protocols

An application protocol (AP) is a part of STEP that defines the context, scope and information
requirements for designated domain(s) and specifies the STEP resource constructs used to
satisfy these requirements [9]. APs were first proposed as a means of ensuring that STEP
would provide a more reliable way of exchanging product data. APs define the form and
contents of a block of data that is to be exchanged in such a way that claims of conformance
to the standard for particular software products can be properly tested [1]. In order to avoid
overlapping between APs, STEP standardizes common entities and common usages, called
integrated resources.

3.2 Application protocol development process

The goal of an AP development process is the definition of an application interpreted model
(AIM). An AIM consists of a selected set of integrated resources which are specialized, con-
strained or completed to satisfy the information requirements of the domain. The AIM spec-
ification is based on the reuse of integrated resources: an AIM is an EXPRESS schema that
selects the applicable constructs from the integrated resources as baseline conceptual elements.
Thus, this schema is specialized with additional constraints, relationships and entities which
inherit from common constructs. This process is called application interpretation; it assigns
a meaning to integrated resources in the context of a particular domain. The application
interpretation process is a formal and well established part of the AP development process.

4 Improving the building process with STEP

4.1 Revisiting the code generation process

As in the compiler field, intermediate representations, close to the target, reduce the code
generation work. As source representation, an intermediate representation is stored in a meta-
model. The structure of this meta-model is related to the target language. The method used
to obtain this meta-model, called interpreted meta-model (IMM), is similar to the method used
to define an AIM from integrated resources.

The generated application is obtained through three steps (see figure 5): analysis of source
specification, building of the IMM, generation of the target representation. The method is

L Source | _[nterpretation Interpreted | [Generation
meta-model meta-model

Source Generated
specification application

Figure 5: Generation with an intermediate meta-model

revisited to deal with the description with EXPRESS of the target languages data constructs
and of the description of translation parameters that shall be used by the translation process.
Together with the source meta-model, all these schemata are used in the interpreted meta-
model. The IMM serves as the basis for the processing of translation functions.

4.2 Data models
4.2.1 Source and target language meta-model schemata

The source and target language meta-models consist in a set of EXPRESS schemata that de-
scribe the source and target language data constructs. Parallel to the idea of STEP Application
Protocol, the source and target language meta-models are considered as integrated resources.

Considering the example of section 1, the target language meta-model is shown in figure 6.
This schema contains the entities delete_trigger that describes all needed data in order to
produce a delete trigger and table_triggers that contains the list of all triggers related to a
table.

SCHEMA trigger;
USE FROM sql_dictionary;
ENTITY trigger;
col : column;
name : STRING;
END_ENTITY;

ENTITY delete_triggers;
trig_list : LIST [0:?] OF trigger;
END_ENTITY;

Figure 6: The target meta-model

4.2.2 The translation parameters schema

The translation parameters schema consists of a set of entities describing other data that are
used by the translation process. It aims to describe data useful for the naming of target
programming constructs such as the class or type names. It can also contain target system
descriptions such as the name of basic classes used by produced classes. This schema is
considered as a description of a part of programming rules usually described and used for
building and for integration of an application within a target system.

Considering the example, one can think about a prefix information used to build the names
of the trigger. The example translation parameters schema is shown in figure 7.

SCHEMA traduction_parameters;
ENTITY naming;
prefix : STRING; ...
END_ENTITY; ...

Figure 7: The translation parameters schema

4.2.3 The interpreted meta-model schema

The interpreted meta-model (IMM) schema contains all constructs of the target meta-model
schema. Subtypes of the entities from the target meta-model schema are created. The creation
of subtypes allows more specific attribute definitions to be given in the context of the source
language meta-model schema and of the translation parameters schema. The context is repre-
sented in the subtypes by associating them with entities from the source language meta-model
and from the translation parameters. The goal is to redefine all the attributes of subtypes of
the target meta-model schema as derived attributes in order to compute their value in the given
context. The idea is very similar to the STEP application interpretation process described in
section 3.2 in which the AIM is the interpretation of integrated resources in the context of a
particular domain.

SCHEMA sql2trigger_-imm;
USE FROM trigger; USE FROM traduction_parameters; USE FROM sql_dictionary;

ENTITY i_trigger SUBTYPE OF (trigger);
nam : naming; (* interpretation context *)
DERIVE
SELF\trigger.name : STRING := nam.prefix + col.owner.name + > _from_’ + col.foreign.owner.name;
END_ENTITY;

ENTITY i_delete_triggers SUBTYPE OF (delete_triggers);
tbl : table; nam : naming; (* interpretation context *)
DERIVE
SELF\delete_triggers.trig_list : LIST [0:?] OF i_trigger := compute_trigger_list(tbl, nam);
END_ENTITY;

FUNCTION compute_trigger_list(tbl : table; nam : naming) : LIST OF i_trigger;
LOCAL i_trigs : LIST OF i_trigger := [|; END_LOCAL;
REPEAT no := LOINDEX(tbl.columns) TO HIINDEX(tbl.columns);
IF EXISTS(tbl.columns[no].foreign) THEN
INSERT(i_trigs, i_trigger(tbl.columns[no], ?, nam), 0);
END_IF;
END_REPEAT;
RETURN (i_trigs);
END_FUNCTION;

Figure 8: The interpreted meta-model

Considering the example, the IMM shown in figure 8, contains the entity i_delete_triggers
that is considered as the interpretation of delete_triggers. The context of this interpretation is
made up of the table and the naming entities: in order to compute the attribute trig_list of the
entity delete_triggers used from the schema trigger, all needed data are fetched from table and
naming entities.

4.3 The translation model

Programming the translation function is achieved as described in section 2.2.2, except the
translation functions operate now on the IMM rather than the source meta-model. Computing
instances of the IMM carries out a part of the code generation. Thus there is less work left
and translation functions are simpler.

Considering the example, the translation model shown in figure 9, contains now only two
functions. Comparing this model with the model of figure 4, the reader should note that the
private function del_trigger_name is replaced by the derived attribute i_trigger_name of the
IMM (figure 8), and that the traversal function del_trigger_of_table operates on a list of valid
column instances, hence there is no need to test their existence.

FUNCTION del_trigger_of_column (it : i_trigger) : STRING;
RETURN (
’CREATE TRIGGER ’ + it.name + > BEFORE DELETE ON °’ + it.col.foreign.owner.name
+ ’ FOR EACH ROW BEGIN DELETE FROM ’ + it.col.owner.name + ’ WHERE ’ + it.col.owner.name 4 ?.?

+ it.col.name 4+ > = :0LD.’ + it.col.foreign.name + > END;’);
END FUNCTION; — del_trigger_of_column
FUNCTION del_trigger_of_table (its : i_delete_triggers) : STRING;
LOCAL str: STRING = ’’; END_LOCAL;

REPEAT no := LOINDEX(its.triglist) TO HIINDEX(its.trig_list);
str := str + del_trigger_of_column(its.trig list[no]);
END_REPEAT;
RETURN (str);
END FUNCTION; — del_trigger_of_table

Figure 9: Second version of translation functions that create SQL delete triggers

4.4 Benefits

Benefits of this method are discussed in [10]. Translation functions mix up different kind of
generation directives. The various schemata are intended to organize the generator design and
implementation.

The separation between the what and the how is enforced, the IMM contains descriptions
of the target product (what to generate), while translation functions describe how to generate.

The translation parameter schema facilitates integration of the generated product into the
whole system thanks to the control of the naming and typing rules. This allows the same
generator to be reused in different contexts.

5 Applications

5.1 Experiences

EUGENE has been used by several research projects to build the following generators :
¢ a generator of early binding SDAI in Smalltalk-80 and in Java,
e a Java graphical user interface generator for database management,

e a generator producing a LaTeX programmer reference documentation from the analysis
of comments contained in sources of programs,

10

e a generator producing a Smalltalk-80 handler of a Management Information Base (in the
field of Telecommunication Management).

These experiences showed that the building of application generator was simplified because
only the EXPRESS language has to be learned by EUGENE users. The main task was meta-

models specification that required expert knowledge of the domain.

5.2 Pros and cons

Most application generator builders first focus on the formal definition of the source specifica-
tion concrete and abstract syntax. From these definitions, an internal representation structure
and specialized tools as structure editors and parsers are automatically derived. Stage [4],
Centaur [3] or the meta-environment described in [6] are examples of such application gen-
erator builders. These tools are very powerful, but unfortunately they are few used in an
industrial context. The reasons are mainly because they are too complex and because the
source specification is not always a formally defined language.

Using EUGENE requires essentially data design and imperative programming. These activ-
ities are familiar to software engineers.
The source specification is not constrained to be a textual language described by a LL(1)
or LALR grammar.
As instances of EXPRESS schemata, meta-data can be exported and imported with the
STEP neutral exchange structure. It enables interoperability between application generators
as well between an application generator and another CASE tool (as depicted in figure 2).

When the source specification can be described with a grammar, the lack of formal syntax
definition denies EUGENE of automatic parser generation. For the same reason, the consis-
tency of meta-models is more difficult to achieve.

6 Conclusion

Various components of an application can be drawn automatically from formal specifications
and design. STEP is an ISO standard (ISO-10303) for the computer-interpretable representa-
tion and exchange of product data. Parts of STEP standardize conceptual structures and usage
of information in generic or specific domains. The standardization process of these constructs
is an evolutionary approach, which builds successive models.

This paper has presented a STEP-based tool FUGENFE intended to build generators and

a method inspired by this standardization process.

References

[1] M.S. Bloor A. McKay and J. Owen. Application Protocols: a position paper. In Pro-
ceedings of European Product Data Technology Days Conference. Hermes, Paris, March
1993.

[2] Y. Ait-Ameur, F. Besnard, P. Girard, G. Pierra, and J. C. Potier. Formal Specification
and Metaprogramming in the EXPRESS langage. In Int’Conf’ on Software Engineering
and Knowledge Engineering (SEKE), 1995.

11

[3] P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual.
CENTAUR: the system. In ACM SIGSOFT’88, Third annual symposium on software

development environment, 1988.
[4] J. C. Cleaveland. Building Application Generators. IEEFE Software, July 1988.

[6] W. F. Danner. STEP Data Specification Methodology. Technical report, ISO
TC184/SC4/WGH N50, 1993.

[6] Paul Klint. A Meta-Environment for Generating Programming Environments. In ACM
Transaction on Software Fngineering and Methodology, volume 2, 1993.

[7] David A. Ladd and J. Christopher Ramming. A*: A Language for Implementing Language
Processors. IFEFE Transactions on Software Engineering, 21(11), November 1995.

[8] D. Libes. The NIST EXPRESS Toolkit - Design and Implementation. Technical report,
National Institute of Standards and Technology, Gaithersburg, Maryland, 1993.

[9] M. Palmer. Guidelines for the development and approval of STEP application protocols.
Technical report, ISO TC184/SC4/WG4 N511, 1995.

[10] Alain Plantec. Ezxploitation de la norme STEP pour la spécification et la mise en ceuvre
de générateurs de code. PhD thesis, Université de Renmnes I, 35065 Rennes cedex, France,

1998 (to be published).

[11] Alain Plantec and Vincent Ribaud. Data Management: From EXPRESS Schemata To
User Interface. Journal of Computing and Information, 2(1), November 1996.

[12] Alain Plantec and Vincent Ribaud. The STEP Standard as an Approach for Design and
Prototyping. Rapid System Prototyping, RSP’98, IEFE, 1998.

12

