
HAL Id: hal-01078437
https://hal.univ-brest.fr/hal-01078437v1

Submitted on 15 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards agile cross-platform application development
with Smalltalk and Model Driven Engineering

Glenn Cavarlé, Alain Plantec, Vincent Ribaud, Christophe Touzé

To cite this version:
Glenn Cavarlé, Alain Plantec, Vincent Ribaud, Christophe Touzé. Towards agile cross-platform ap-
plication development with Smalltalk and Model Driven Engineering. International Workshop on
Smalltalk Technologies - IWST 2014, ESUG, Aug 2014, Cambridge, United Kingdom. �hal-01078437�

https://hal.univ-brest.fr/hal-01078437v1
https://hal.archives-ouvertes.fr

Towards agile cross-platform application development
with Smalltalk and Model Driven Engineering

abGlenn Cavarlé aAlain Plantec aVincent Ribaud bChristophe Touzé
aLab-STICC, UMR CNRS 6285, Université de Bretagne Occidentale, UEB, 20 av. Le Gorgeu, Brest, France

bSARL Diazol, 156 rue Jean Jaurès, Brest, France
{glenn.cavarle,alain.plantec,vincent.ribaud}@univ-brest.fr, christophe.touze@diazol.com

Abstract

Nowadays, general public applications or specific infor-
mation systems must be able to run on mobile platforms as
well as on conventional platforms. Because developers have
to deal with mobile platform specificities, this constraint si-
gnificantly lessen the benefits of agile methods and as a
consequence impacts on the application development cost.
Many research works aim at reducing the development cost.
Prototyping as well as automatic code generation have been
investigated by the community. In this article, we present
Dali, a framework that uses both Smalltalk and Model Dri-
ven Engineering. With Dali, an application model can be de-
signed for multiple platforms and interpreted before code
generation. An execution platform is modelled as a set of
constraints over a context. These constraints can affect the
presentation of the Graphical User-Interface (GUI) but also
the overall behaviour of an application.

Keywords cross-platform design, agile development, mo-
del driven engineering, smalltalk

1. Introduction

Nowadays, general public applications or specific infor-
mation systems are often able to run on mobile platforms as
well as on conventional platforms.

This recent requirement has impacts on the development
model, the tools and the development infrastructure. While
the cost of purchasing applications decreases, the cost of
development increases.

Many research works aim at reducing the development
cost. Prototyping is one solution. It can be used to adjust an
application before its development for the target platform.
In this context, the right capabilities of Smalltalk regarding
agile development and prototyping are recognized. Using
Smalltak, a prototype can be early tested. However, we are
not aware of a Smalltalk infrastructure able to generically
deal with different execution platforms for the same applica-
tion prototype. Moreover, producing the final application to

the target platform may involve a significant cost. To over-
come this overhead, Model Driven Engineering (MDE) and
automatic code generation are often used : stemming from
specific models, all or part of the application is automatically
generated for the target platform. Produced applications are
validated by running them on the target platform. The advan-
tage of this method is to have a single, standard meta-model
for all application variants. However, the development cycle
is still expensive because the applications have to be tested
and validated after code generation.

In this paper, we propose a development method and a
framework called Dali based on Smalltalk for early conside-
ration of different execution platforms. With Dali, an appli-
cation model can be used for several platforms and interpre-
ted before code generation. An execution platform is model-
led as a set of constraints over a context. These constraints
can affect the presentation of the Graphical User-Interface
(GUI) but also the overall behaviour of an application.

The contributions described in this article are :

— we present the Dali framework and an agile develop-
ment method for early consideration of different exe-
cution platforms ;

— we show how an application can be tested before code
generation thanks to the interpretation of application
models while considering the different execution plat-
forms envisaged for the application.

The remainder of this paper is organized as follows.
Chapter 2 explains the problems addressed and existing so-
lutions. Chapter 3 presents our solution called Dali. Chap-
ter 4 presents an illustrative case. Chapter 5 presents Dali
meta-models. Chapter 6 explains how Dali is implemented
in Pharo. The article ends with relative works and a conclu-
sion.

2. Problems and state of the Art

Our concern is about developing small applications, espe-
cially information systems that can be characterized as fol-
lows :

1. development is physically centralized on one site ;
2. implementation needs a small number of developers

(between 1 and 3) ;
3. targeted system is not critical, i.e. malfunctioning is

not likely to endanger people life or health and does
not involve significant financial loss to the develop-
ment company ;

4. the number of screen views is low (between 10 and
20).

These assumptions are in favor of the application of agile
methods [TFR05]. Indeed, according to the manifesto for
agile software development [BBB+09], some fundamental
principles of agile methods are :

— the priority is to meet the needs ; the customer is part
of the development team and he operates continuously
for validation tasks ;

— to measure the progress of the project regarding the
working system and to deliver frequent releases of the
system under development ;

— to maintain the simplicity of developments [Hic11].

Considering these principles include notably the follo-
wing practices [TFR05] :

— development granularity is small ; the code is built
iteratively and incrementally and iterations are short ;
the expected gain is the early detection and correction
of malfunctions ;

— prototypes are developed and tests performed early in
the development cycle in relation to the needs expres-
sed by the user ; verification, validation and prototy-
ping activities can be conducted continuously at each
iteration.

These practices are consistent with agile development.
However, because of the growing importance of mobile plat-
forms, applications shall be developed for desktops and si-
multaneously adapted to smartphones and tablets.

The idea is similar to that of usage contexts [SeTC99]
about the execution platform, the user and the environment.
For an application, considering numerous possible contexts
involves more complex developments and thus a loss of
agility.

2.1 Parallel versions

To support multi-target platforms, for business with limi-
ted resources, one direct solution is to maintain different ver-
sions, one for each execution platform. Figure 1 depicts such
a solution. For each target platform, a part of the application

code is written according to the target platform specific li-
brary.

FIGURE 1. Maintaining several versions for the same ap-
plication

Object-oriented languages can be effectively used to re-
fine abstractions and consider specific contexts such as the
features of an execution platform. The solution is to deve-
lop a reference version which is then adapted to different
platforms envisaged by specialization. Aspect-oriented pro-
gramming [KLM+97] can provide additional solutions to
adapt an application to different contexts.

However, maintaining multiple parallel versions for mul-
tiple execution platforms is a very heavy task and makes the
continuous validation and tests very difficult. This kind of
method can lead to spaghetti code with very negative impact
on the evolutivity and on the maintainability of the applica-
tion code.

2.2 Model-Driven Engineering and code generation

Model-Driven Engineering (MDE) proposes to solve
these problems by model transformation and code genera-
tion.

As an example, the Model-Driven Architecture (MDA)
[Obj00] approach aims at developing a set of models, lin-
ked by transformations. These transformations allow to start
from a Computation Independent Model (CIM) to a Plat-
form Independent Model (PIM) and finally a final Platform
Specific Model (PSM). The PSM represents the concrete im-
plementation of the system. MDE helps to limit specific and
non-automated developments for each context : stemming
from a cohesive set of models, the different versions can be
generated.

The MDE improves the development method because a
target platform can be modelled separately. As depicted in
Figure 2, from an application model (PIM in MDA) together
with a specific platform model, a target platform application
model (PSM) is produced by model transformation. Then,
parts of the code of the application is automatically genera-
ted from it.

The main advantage is that the target platform are speci-
fically modelled and that the same application model can be
shared for multiple target platforms.

FIGURE 2. The MDE approach

However, depending on the target platform, one must go
through a phase of code generation and code compilation
before you can execute all or part of the application. These
steps are time consuming and the impact of model changes
cannot be immediately observed. The causal connection bet-
ween the models and the generated artefacts is lost because
of the code generation step [RFBLO01]. But, to remain
agile, a development method must favour short development
cycles. Thus, MDE does not help in limiting the loss of agi-
lity.

2.3 Emulators

Some development environments provide emulators for
target platforms. Emulation relies on the execution of a vir-
tual device supporting the application that will be later de-
ployed. This is, for instance, the solution proposed by the
SDK Android [And].

This solution allows to test an application for multiple si-
milar targets without having the physical devices. But, the
application execution by the emulator can only occur after
the code generation and its compilation. In addition, the ap-
plication code is specific to one development environment
and one kind of emulator. As depicted in Figure 3, this solu-
tion implies code generation and deployment steps. In fact,
this solution is very similar to the development of parallel
versions but with the facility brought by emulators. Because
of the code generation step and of the additional deployment
steps, the problem of lack of agility is not resolved by emula-
tion. Moreover, emulating can be very slow and time consu-
ming.

FIGURE 3. Emulation approach

2.4 Common interpreters

A common interpreter can be used for all target execution
platforms. Two solutions are possible. The first is depicted
by the top part of Figure 4. The interpreter is a separate tool
and the application code is the same whatever the platform.
This solution is file based. As an example, a web browser can
be used as an interpreter of a Javascript program embedded
in an HTML page. As another example, one can use Java and
its interpreter. The main advantages are that the application
code is reusable and web development and deployment is
made easier.

Development environments and dynamic languages
[Jod10, RG09] promote agile applications development in
a uniform and comprehensive way. The second solution is
depicted by the bottom part of Figure 4. The interpreter and
the development environment are integrated. This is the case
of Smalltalk. This solution is image based. As additional
advantages, an image based solution favours short develop-
ment cycle and direct feedbacks. Indeed, with dynamic lan-
guages, the causal connection is preserved because any mo-
dification of a model can be immediately observed.

FIGURE 4. Interpretation approach

However, it is necessary to have up-to-date virtual ma-
chines for all target platforms. Interpreters can be made avai-
lable by vendors with specific libraries. This might imply

greater difficulties to maintain code reusability. In addition,
the use of interpreters can make it difficult the integration
of native widgets and more generally using primitive sys-
tem. Finally, as for emulation, the interpreting process can
be time consuming.

3. Dali solution

To improve the development of applications for different
execution platforms while allowing us to have native ver-
sions, our solution is blended. We propose to use Smalltalk
as a tuning and as a development environment and to use
MDE to produce target applications for execution platforms.

Maintaining the causal connection between the models
and the executed application can resolve significantly the
lack of agility. To maintain it, a solution is to execute an
application in and by the development environment.

FIGURE 5. The Dali approach

Figure 5 shows the Dali approach. The first goal is to
maximize the agility of the development process by the use
of a Smalltalk solution to design, prototype and validate
an application for several target platform. With Dali, an
application model (the business part) must be associated
with a specific platform model to be interpreted. The same
application model is used for several platforms.

The deployed application can be the Smalltalk one but
it might be desirable to directly benefit from native libraries
and from fast running. For that purpose, an MDE approach is
used. With Dali, after a tuning process, a native application
can be automatically generated from the application model
together with the chosen target platform model.

The remainder of this paper presents the Dali solution
regarding the design on validation steps in Pharo.

4. An illustrative example

Let us take for example the display of a contact list in
an address book. Figure 6 shows two possible displays for a
contact list. The displayed information as well as the beha-

viour are different. The left window is adapted to a smart-
phone and the right window to a desktop computer. On a
computer screen, it is possible to view all contact informa-
tion. On a mobile device, the size is limited. This constraint
implies that only the name and the e-mail are presented. A
button is added to access the contact details.

FIGURE 6. Two possible displays of a contact list

We do have the same information system but with two
different presentations. We also have a behaviour variation
because the mobile phone version requires the use of an
additional button.

The solution implemented with Dali let us use the same
application model and to express the constraints of the mo-
bile phone. Throughout this article, the presentation of the
framework will use this example.

5. The Dali framework

To achieve a satisfactory level of agility in considering
specific execution platforms, one solution is to allow the de-
veloper to model the various platforms and provide an exe-
cution of the application within the development environ-
ment. The idea is to converge to a suitable solution before
code generation.

The remainder of this section presents the meta-model
and the main framework components. We depict features re-
lated to the description of business models : specific beha-
viour, presentation and constraints of execution platforms.

5.1 The Dali meta-model

Dali was inspired by self-descriptive object-oriented
meta-models such as EMOF [Gro04] and ECore [SBPM09],
especially for the description of the structural aspects of an
object. In fact, as in EMOF and ECore, Dali is based on a
Classifier (or Class) concept, on Operation and on Property
definitions. Dali is also inspired from Magritte [RDK07],
from its syntax and from its concept of accessors strategy.
Moreover, Dali allows the description of the behaviour and
of GUI. Specific requirements related to the target platforms
can be used to constrain any Dali description element. The
business behaviour is expressed in Smalltalk.

FIGURE 7. Main classes of the Dali meta-model

Figure 7 presents the three main Dali abstractions : DA-
Description, DAProperty and DABehavior.

A DADescription can be related to a Class in
EMOF [Gro04]. A DADescription handles a set of DAPro-
perty and a set of DABehavior. A DADescription is also a
composite : it can contain child descriptions.

A DAProperty corresponds to an object instance variable
or a Property in EMOF [Gro04]. As a kind of value holder,
at runtime, each DAProperty stores the value of the related
property. A DAStyle is a special property used to describe
graphic features of a DAWidget.

A DABehavior might be a business operation (DAOpera-
tion) as in EMOF [Gro04] but also a more specific behaviour
such as a reaction (DAReaction), or a binding (DABinding).

FIGURE 8. Contact class (left), its Dali representation (cen-
ter) and the simulated instance (right)

Figure 8 shows on the left an UML element for a Contact
class with a field #name and a method #sendEmail. The
role of a DADescription is twofold : on one side, it describes
the structure and the behaviour of the related class, on the
other side, it is directly used at runtime to manipulate the
value of the properties and to invoke the object behaviour.
In the center of Figure 8, is depicted how the Contact class
is described with Dali with a DADescription instance. The
name field is described by a DAProperty instance and the
#sendEmail operation is described by a DAOperation ins-
tance. On the right, is shown a simulated Contact instance
at runtime. The actual name is stored in the related DAPro-
perty. The actual #sendEmail method is invoked through
the related DAOperation.

5.2 The behaviour

Dali uses Smalltalk to describe business behaviour.
Smalltalk was chosen because the business behaviour can
be directly interpreted within the development environment

and because it let us the possibility to manipulate the abstract
syntax tree (AST) in order to translate the business behaviour
to other languages. All business behaviours are manipulated
by Dali through instances of DAOperation. In fact, a DAOpe-
ration references the name af the method which implements
the related business behaviour.

DABinding and DAReaction are more specific. They are
implemented as Observers [GHJV95] and describe interac-
tions between children of a DADescription.

A DAReaction specifies an association between a DAO-
peration and an event. For instance, a DAReaction can be
used to trigger a DAOperation as a reaction of an incoming
event. Such event can be emitted by a DAWidget.

A DABinding binds several instances of DAProperty to-
gether by a source / destination relationship (Data Binding)
or bidirectional relationship (Two Way Data Binding). When
the source is changed, the destination property is automati-
cally updated (and vice versa if the binding is bidirectional).
For instance, a DABinding can be used to bind a property of
a domain object to a property of a widget.

FIGURE 9. Using of a DAReaction

Figure 9 presents an operation triggered as an event reac-
tion. A DAReaction listens to an event coming from a source
object an is able to trigger an associated operation.

FIGURE 10. Using of a DABinding

Figure 10 depicts how a DABinding can be used to auto-
matically chain property updates. When a property value is
changed, an event is emitted by the DAProperty instance. As
a reaction, the DABinding updates its target property value.

5.3 The widgets

In Dali, widgets and associated layout are kinds of DA-
Description. Widgets are described as instances of DAWid-

get. Each widget has its own set of styles which impacts on
the look of the user interface and its own set of managed
events which impacts its behaviour. A composition of wid-
gets is specified by a DALayout which is owned by a DAPa-
nel.

A DAWidget is only a logical description which needs to
be tied to a native Smalltalk widget at runtime when the
application is interpreted. In order to relate a DAWidget to
a Smalltalk widget, a DAAdapter must be specified.

The set of DAWidget are defined according to well known
standards such as W3C CSS2 [BLLJ08] for the graphical
properties (DAStyle) and W3C DOM [HKL+13] for events
(DAEvent). These standards provides the consistency of the
API which can cover most of the needs of a GUI description.

5.4 The target platforms modeling

In order to consider execution platforms during the appli-
cation development, we need models to represent them.

FIGURE 11. The environment composition

As depicted in Figure 11, Dali includes the concept of
environment. An environment is reified as a DAEnvironment
instance. The role of an environment is threefold, it contains
the model of the execution platform (DAPlatform), the requi-
rements of the application (DARequirementRepository) and
specifies how the development environment must be custo-
med during the simulation (DAEnvAdaptation). Dali makes
it possible to simulate and test the same application for seve-
ral execution platforms. The same set of DADescription can
be simulated with different actual presentations.

A DAPlatform describes a particular target execution
platform. A DARequirementRepository contains all DARe-
quirement used to constrain an application. A DARequire-
ment consists in a set of conditions that are checked over
a target DAPlatform. At runtime, Dali objects structure are
set-up according to the related set of DARequirement. A DA-
Requirement can have a parent requirement. The parent re-
lation is used by Dali to order requirements evaluation, a
parent requirement being evaluated before a child one.

Regarding the illustrative example, for the mobile device,
a set of DARequirement is declared to constrain the size
of the panel. Moreover, each row is constraint to present a

button instead of showing the complete card data. This kind
of constraint is also expressed with a DARequirement.

In order to run an application within the development en-
vironment, one must declare the actual set of widgets to use
(e.g Spec widgets or Morphic widgets). For that purpose, a
DAEnvironment is set-up with a set of adapters. The purpose
of an adapter is to bind a platform widget with a correspon-
ding DAWidget. An adapter establishes a mediation between
a platform widget and a Dali widget. The mediation consists
in providing a concrete look but also in interpreting events
and the widget behaviour.

The set of DAAdapter is stored within a DAEnvAdaption
instance. As an example, a DAEnvAdaption can be specified
for Spec widgets [VRDF12] and another one to bind DA-
Widget instances directly to Morphic widgets.

6. Dali within Pharo

Dali is implemented in Pharo. The idea is to use Pharo as
a classical development environment to design and to early
validate applications for multiple target execution platforms
but with enhanced agile validation capabilities.

After explanations about the fundamental aspects of Dali
regarding DADescription implementation, the reminder of
this chapter describes how our illustrative example is imple-
mented in Pharo.

6.1 Fundamentals

All objects manipulated through Dali are instances of
a subclass of DADescription. Then, a model is made of a
set of DADescription. It embeds a set of business object
descriptions but also the related widget descriptions.

In a Dali description, objects are referenced by a relative
identifier (RID). An RID is unique in the scope of a DADes-
cription and for all the DAObject of a same kind : properties,
behaviours and descriptions.

A DADescription is made of a list of properties. But, in
order to take into account several possible structures and se-
veral possible behaviours, the list of properties of a DADes-
cription is not fixed. It depends on the related environment. It
means that the actual representation of a concept may differ
depending on a given environment.

Each property can be either a data property (e.g. a Contact
name) or a behaviour (e.g. the sendMail function). All pro-
perties of a DADescription are managed as instances of DA-
Property or of DABehavior. It means that a data property
is not managed and used through an instance variable but
through the corresponding DAProperty instance. It means
also that a behaviour is not directly coded within a method
and, at run-time, is not invoked by a direct message sent but
indirectly through a DABehavior instanddce.

The methods that implement a particular business object
behaviour is still implemented as a method of its class (a
subclass of DADescription) so that self is preserved at in-
vocation time. Such a method is referenced and indirectly
invoked by the corresponding DAOperation.

6.2 Configuring an environment

A Dali description structure and behaviour depend on a
environment. Thus, an environment must be primarily set-up
before instantiating any DADescription. The setting of the
environment shown in Figure 12 corresponds to the DAEn-
vironment used in the illustrative example.

1 platform := DAPlateform new
2 at: #screenWidth put: 300;
3 at: #screenHeight put: 400; yourself.
4
5 commonRequirement := DARequirement new
6 name: #common;
7 constraint: [:plfm | true]; yourself.
8

9 smallScreenRequirement := DARequirement new
10 name: #smallScreen;
11 parent: #common;
12 constraint: [:plfm |
13 (plfm at: #screenWidth) <= 360 and:
14 (plfm at: #screenHeight) <= 480]; yourself.
15

16 applicationRequirements := DARequirementRepository new
17 addRequirement: commonRequirement;
18 addRequirement: smallScreenRequirement; yourself.
19

20 morphicAdaptation := DAEnvAdaptation new
21 adapt: TextMorph
22 to: DAText
23 with: DAMorphTextAdapter; yourself.
24
25 myEnv := DAEnvironment new
26 adaptation: morphicAdaptation;
27 plateform: platform;
28 requirements: applicationRequirements; yourself.
29

30 myEnv withinDo: [ContactListWindow new open].

FIGURE 12. Setting and using an environment

An environment associates a platform, some require-
ments and an adaptation :

— platform : A DAPlateform stores characteristics of a
particular logical platform. All characteristics are sto-
red into a private dictionary so that any characteristic
can be freely defined. In Figure 12, an instance of DA-
Plateform is configured to represent a platform with
display size characteristics. Regarding our illustrative
example, the mobile platform can be described simply
by the size of its display.

— requirements : A DARequirement consists in the spe-
cification of a constraint over the platform characte-
ristics. A DARequirement is named and is configured
with a block. The block implements a constraint over
the platform. The constraint block receives the current
platform as argument and contains a boolean expres-
sion. Finally, all requirements are made available to

an environment through a DARequirementRepository.
Regarding our example :
— The block of the requirement named #common

always returns true, meaning that this requirement
is always valid regardless of the platform. Given
that the actual list of properties or of behaviours of
a DADescription is built by evaluating the require-
ments, this kind of requirement is used to declare
that a property or a behaviour is always present in
a description.

— The requirement named #smallScreen
constrains the size of the display. This requi-
rement is used to select the layout to use and
which widgets to display.

— adaptation : A DAEnvAdaption specifies which adap-
ters are used. In our example, we use Morphic as the
underlying presentation layer. The adaptation is made
of a DAMorphTextAdapter which binds DAText and
TextMorph, the Morphic class that is used to edit or
display text.

The last line of Figure 12 shows the instantiation of an
application configured for a given platform. The environ-
ment to be used by the application is made available thanks
to the #withinDo : message sent. The application is ac-
tually built in the block passed as argument. Internally, the
current environment is made available to the application by
using the stack context (thisContext). Because of the requi-
rement #smallScreen, the resulting application is adapted
to a small mobile device as shown in the left part of Figure 6.

6.3 Declaring a business object

The purpose of our illustrative example is to manipulate a
list of contacts. A contact is a business object specified by a
subclass of DADescription. Figure 13 shows the declaration
of the Contact class.

1 DADescription subclass: #Contact
2 instanceVariableNames: ''
3 classVariableNames: ''
4 category: 'Dali−ContactExample'
5

6 Contact>>declareName
7 <dali:#common>
8 ∧DAProperty new
9 rid: #name; yourself

FIGURE 13. Declaring a business object class

As mentioned in Chapter 6.1, business object properties
are not handled through instance variables. Indeed, in Fi-
gure 13 the instanceV ariableNames string is empty even
if a Contact has properties. In fact, any instance variable can
be added for internal or private use. But, the business pro-
perties must be declared with the help of dedicated methods.

As an example, the Contact name property is declared
by the declareName method. The property declaration is

based on a specific annotation (pragma in Pharo). This an-
notation is used by Dali to identify the methods to evaluate
in order to build the actual list of properties. The property
selection is achieved according to the constraints that are de-
clared for the current environment. Such a method is a kind
of factory method that returns a configured DAProperty.

Thus, with the help of its annotation, the declareName
method declares that the property named #name is added
if the requirement named #common is met. As shown in
Figure 12, the #common requirement is always met be-
cause its constraint block returns true. As a consequence,
the #name property is always added to the Contact des-
cription whatever the environment.

1 Contact>>declareLocation
2 <dali:#(#smallScreen #gps) >
3 ∧DAProperty new
4 rid: #location; yourself

FIGURE 14. Declaring a property with multiple require-
ments

In some cases, using a single requirement in the annota-
tion might lead to duplicate requirement code. For instance,
suppose that we want to use the GPS service on a smart-
phone. A field named location would be required to store
the GPS data. As a consequence, for this property, two re-
quirements must be met : the application runs on the small
screen device and the GPS service is available. Figure 14
shows how multiple requirements can be declared with the
annotation.

At runtime, a property is used as a value holder. In order
to get or set the value of a property, accessors must be
implemented. Regarding the #name property, we might
declare its accessors as shown in Figure 15. Notice that the
name of the method is meaningful because it is considered
by Dali as the name of the corresponding property. The
property instance retrieval is achieved by the thisProperty
message sent.

1 Contact>>name
2 ∧self thisProperty value
3
4 Contact>>name: aString
5 self thisProperty value: aString

FIGURE 15. Declaring a property accessors

6.4 Declaring a widget

As explained in Chapter 6, a DAWidget is also a DADes-
cription. As a consequence, declaring a widget property and
its accessors is achieved with the same syntax as for the bu-
siness objects. A widget is specified through a subclass of
DAWidget.

Figure 16 shows the declaration of the class ContactItem-
Panel that is the description of the presentation of a contact
in the list of contacts shown in Figure 6. A ContactItemPa-
nel is specified by a subclass of DAPanel which can handle
sub-widgets embedded in a layout.

1 DAPanel subclass: #ContactItemPanel
2 instanceVariableNames: ''
3 classVariableNames: ''
4 category: 'Dali−ContactExample'
5

6 ContactItemPanel>>declareContact
7 <dali:#common>
8 ∧DAProperty new
9 rid:#contact; yourself

10

11 ContactItemPanel>>declareNameText
12 <dali:#common>
13 ∧DAText new
14 rid:#nameText;
15 fontSize: 22 pt; yourself

FIGURE 16. Declaring a widget class

As for a property, a sub-widget can be declared by a
dedicated method. As shown in Figure 16, the DAText named
nameText is declared by the declareNameText method.
This method is also used to configure the property fontSize
of the DAText instance.

6.5 Adding a layout

Figure 17 shows the declaration of a row layout referen-
cing widgets of the ContactItemPanel. The way a layout is
declared with Dali is very near from Spec [VRDF12]. A
layout consists simply in a tree of sub-widget references that
can be visited without any adaptation and drawing.

1 ContactItemPanel>>declareLayout
2 <dali:#common>
3 ∧DARow new
4 child:#contactImage;
5 column: [:c |
6 c child: #nameText;
7 row: [:r |
8 r child: #emailLabel;
9 child: #emailText]]; yourself

FIGURE 17. Adding a layout

6.6 Specifying multiple representations

As a solution to multiple representations of the same bu-
siness object, a Dali description contains all the possible pro-
perties regardless of the actual environment. When a descrip-
tion is bound to an environment, the subset of properties that
meet the environment requirements is computed.

FIGURE 18. Focus on the presentation of a contact

Figure 18 shows the same element of a contact list but
with two different presentations. The top one is for desk-
top whereas the bottom one is for a mobile platform. This
difference is implemented with two possible layouts in the
ContactItemPanel class. The desktop version is shown in Fi-
gure 17. For the mobile version shown in Figure 19, one
must declare an additional button and use the dali annota-
tion to bind the declarations with the #smallSreen requi-
rement.

1 ContactItemPanel>>declareSmallLayout
2 <dali:#smallScreen>
3 ∧DARow new
4 child:#nameText;
5 child:#detailsButton; yourself
6

7 ContactItemPanel>>declareDetailsButton
8 <dali:#smallScreen>
9 ∧DAButton new

10 rid:#detailsButton;
11 text: 'Details'; yourself

FIGURE 19. Adapting widget with requirements

At instantiation time, the two applicant layouts may be
selected. Indeed, the #common requirement is always met
whatever the platform. Dali resolves this selection issue by
using the parent relation between requirements. As shown
in Figure 12, the #smallScreen requirement is a child of
the #common requirement. As a consequence, it is always
evaluated after the #common requirement and then, in the
context of a mobile platform, only the mobile layout is
selected and actually instantiated.

6.7 Adding behaviours

As introduced in Chapter 5.2, a behaviour can be either a
DAOperation or a DABinding or a DAReaction. The same
declaration syntax is used as for properties, widgets and
layouts.

6.7.1 Adding an operation

An operation consists in the declaration of a method to
invoke. The name of the method serves as a key to lookup
the actual method. Figure 20 shows the declaration of a
DAOperation and the associated method. At runtime, this
operation invocation results in the #openDetails message
sent to the receiver.

1 ContactItemPanel>>declareOpenDetails
2 <dali:#common>
3 ∧DAOperation new
4 rid:#openDetails; yourself
5

6 ContactItemPanel>>openDetails
7 ContactDetailsWindow new
8 contact: self contact;
9 open

FIGURE 20. Declaring an operation

6.7.2 Adding a binding

Figure 21 shows the declaration of a DABinding. The
DABinding establishes a link between the property #name
of the Contact and the property #text of the child wid-
get #nameText. Thanks to this binding, when the contact
name is changed, the #text property of the widget is auto-
matically updated.

1 ContactItemPanel>>declareNameBinding
2 <dali:#common>
3 ∧DABinding new
4 rid:#nameBinding;
5 srcAccessor:
6 ((#contact asDaliAccessor)
7 withNext: #name asDaliAccessor);
8 destAccessor:
9 ((#nameText asDaliAccessor)

10 withNext: #text asDaliAccessor);
11 yourself

FIGURE 21. Declaring a binding

A binding relies on accessors for the source and the tar-
get properties. Figure 22 shows the hierarchy of accessors
implemented as a Decorator. An accessor can be straight-
forward or chained. This feature is borrowed from Ma-
gritte [Ren06].

FIGURE 22. Hierarchy of accessors in Dali

6.7.3 Adding a reaction

A reaction consists in the declaration of an association
between an event and an operation. Figure 23 shows the de-
claration of a DAReaction which listens the event DAClick fi-
red by the button named #detailsButton. When the button
is clicked, the operation named #openDetails is invoked.

1 ContactItemPanel>>declareButtonReaction
2 <dali:#smallScreen>
3 ∧DAReaction new
4 rid:#buttonReaction;
5 event: DAClick;
6 senderAccessor: #detailsButton asDaliAccessor;
7 operationRid: #openDetails; yourself

FIGURE 23. Declaring a reaction

6.8 More on styles and events

The public protocol of a widget consists mainly in imple-
menting its styles and managing events.

Dali is a modelling layer that must be adapted to spe-
cific environments for graphic rendering. To remain adap-
table to any underlying framework, Dali does not provide its
own underlying graphical implementation and widget pro-
tocols are not defined according to a specific one (Morphic,
Spec,...). Instead, the goal is to rely on normalized protocols.
For that purpose, we have chosen to be compliant with two
main standards : W3C CSS2 [BLLJ08] for styles and W3C
DOM [HKL+13] for events.

6.8.1 Styles

Styles management can be confusing. Each style can be
used by several widgets but sharing of styles can not rely
on widget hierarchy definition. As an example, button and
text are represented in Dali by DAButton and DAText. Their
common ancestor is DAWidget. These two widget kinds can
manage a text. Then, these widget kinds must implement
text styles management. Unfortunately, the text styles ma-
nagement is not available at the level of DAWidget. Thus,
we need a clear way to define styles and to allow their sha-
ring independently of the widget hierarchy. For that purpose,
as shown in Figure 24, Dali uses traits to declare available
styles.

1 DAWidget subclass: #DARectangle
2 uses: DATWithBackground + DATWithBorder
3 ...
4 DARectangle subclass: #DAButton
5 uses: DATWithText
6 ...
7 DAWidget subclass: #DAText
8 uses: DATWithText + DATWithBgColor
9 ...

FIGURE 24. The text and the button widgets sharing the
same text style definition

A style trait covers the definition of a standard subset of
CSS2 [BLLJ08] styles. As shown in Figure 25, in such a
trait, each style implementation is made of three methods :
the first is for the style instantiation and the two others are for
the style value accessing. As an example, The DATWithText
trait shown in Figure 25 is compliant with subset of CSS
about text specification.

1 DATWithText>>declareFontStyle
2 <dali>
3 ∧DAStyle new rid: #fontStyle;
4 value: DAFontStyle normal; yourself
5

6 DATWithText>>fontStyle
7 ∧self thisProperty value
8

9 DATWithText>>fontStyle: aFontStyle
10 ∧self thisProperty value: aFontStyle

FIGURE 25. DATWithFont trait snippet

6.8.2 Events

The DOM [HKL+13] specification define different kind
of events that can be fired by graphical elements. Dali pro-
vide the DAWidgetEvent hierarchy which is compliant with
this specification. To take advantage of announcement me-
chanism in Pharo, DAWidgetEvent is a subclass of Announ-
cement. Once more, traits are used to make available the
event protocols at the widget level. The implementation of
an event, in such a trait, is made of two declarations of a
DAOperation with their related methods. The first method
fires a specific event, the second method declare a reaction
between this event and an operation. Figure 26 shows the
first one.

1 DATWithClickEvent>>declareFireClickEvent
2 <dali>
3 ∧DAOperation new rid:#�reClickEvent; yourself
4

5 DATWithClickEvent>>�reClickEvent
6 self announcer announce: (DAClick target: self)

FIGURE 26. DATWithClickEvent trait snippet

6.9 Visiting a model

As a development environment, Dali permits early vali-
dation of applications through their direct interpretation. But
the ultimate goal is to produce an adapted version of an ap-
plication for a specific execution platform. The primary re-
quirement for such a goal is to be able to visit a description.
Moreover, a description model must be visitable even it is
not adapted.

To visit a model instance, an environment must be confi-
gured as described in Chapter 6.2. This environment repre-
sents the target platform. In its current state, Dali allows such
visits as presented in Figure 27. This example shows a visit
invocation in order to generate a CSS representation. The
resulting CSS is shown in Figure 28.

1 myEnv whithinDo: [
2 DACssExporter new
3 visit: (ContactListWindow new)]

FIGURE 27. Exporting CSS from a widget

1 div.contact−window {
2 width: 300 px; height: 400 px;
3 color: #000000; background−color: #FFFFFF;
4 }
5 div.contact−item−panel{
6 width: 100%; height: 60 px;
7 color: #000000; background−color: #FFFFFF;
8 }
9 span.contact−item−panel .contact−name { font−size : 22 pt;}

10 span.contact−item−panel .contact−email { color : #0000F1;}

FIGURE 28. Generated CSS snippet

7. Related Work

AppliDE [QDDD11] is a software framework that is ba-
sed on Software Product Lines (SPL) [PBL05]. SPL lets the
user define characteristics diagrams for each products family
also called features. AppliDE uses SPL in association with
MDE to construct a single model of products family. Fea-
tures are used to specify the variability between different
products. This model is used to automate the derivation of
applications for several target platforms. AppliDE describes
the behaviour by high-level services (GPS, mailing,...) and
manipulates them as features. The business behaviour is im-
plemented at the target execution platform level. The gene-
rated code is linked with the business behaviour after code
generation. AppliDE uses a static builder for GUI aspects
of an application. AppliDE is code generation based. It does
not provide any interpreting facility.

CAPucine [Par11] uses also SPLs but with Aspect-
oriented programming to consider context variations at run-
time. It is based on a variability model to define product fa-
milies and their variability points. An aspect model is used
at design time to generate code and is used at runtime for re-
configure an application according to the events fired within
the execution context. CAPucine is also based on code gene-
ration. The behaviour is represented at a high abstraction le-
vel, as components or services. Compared to AppliDE, CA-
Pucine does not include any elements to automate the deve-
lopment of the GUI.

SPL features are similar to the Dali notion of require-
ments. But, the composition of an application is made at
high level of abstraction (service level). Whereas, in Dali,
a composition of an application is made at the class level.

The works around the plasticity [Cal10] and the multimo-
dality [CCT+03] of GUI take advantage of MDA [Obj00]
architecture to abstract and generalize concepts without spe-
cialize an application directly to some context. But to al-
lows reconfiguration at runtime, the target platforms must
include a specific framework. The Comets [CDCD05] ap-
proach brings widgets which can react at runtime to adapt
their presentation according to the variation of the runtime
context. These Comets are implemented in each target plat-

form and their models are used at design time to specify GUI
composition.

In Dali, a platform is modelled at design time and is made
to constrain objects structure. But, Dali does not provide any
dynamic reconfiguration mechanism after code generation.
Thus, the meta-model is not represented at runtime in the
target platform.

Magritte [RDK07] is a framework to describe proper-
ties of a domain object. The properties description consist
in a separate meta-model that can be manipulated apart. It
is auto-descriptive. Magritte uses mementos to cache model
state and manage model changes as transactions. These me-
mentos can be also used as a kind of value holder.

Dali uses also a meta-model to describe object properties.
In Dali, a description is directly used as a business object :
its properties serve as value holders and for the invocation of
the behaviour.

Spec [VRDF12] is inspired by the VisualWorks UI buil-
der and is implemented in the Pharo environment. It is used
to specify and build GUI in Pharo. Spec uses a logical widget
model with a specific API and an adaptation layer to bind its
widget model to Morphic widgets. The widget composition
is implemented with layouts relying on the command pat-
tern. Each layout element exists as a command that is eva-
luated when the layout is adapted to Morphic. No visiting
mechanism is provided for the widget hierarchy.

A part of Dali is dedicated to GUI description. As
in Spec, it implements widget composition, layouts and
an adaptation layer. Dali widgets are auto-descriptive and
can be reconfigured at design time according to platform
constraints. Moreover, Dali style and events are compliant
with W3C [BLLJ08, HKL+13].

8. Conclusion and further work

This paper deals with the problem of agile application
development for multiple execution platforms. Nowadays,
application vendors must provide multi-platform products.
Often, existing desktop applications have to be adapted
or rewritten to be compliant with mobile platform. This
constraint impacts the cost of application development even
with agile technologies.

This paper presents a solution named Dali which benefits
from Smalltalk together with the Model Driven Engineering
to allow multi-platform application design. With Dali, an
application can dynamically take into account a platform
description and can be interpreted to allow agile design and
validation. When the application is mature enough, the idea
is to finally generate a native target application.

In its current state, Dali provides a framework that can be
used to design desktop as well as mobile simple applications.

The current set of available widgets and related adapters re-
main to be enriched. A Dali model can be visited. It provides
the mean to actually generate target platform code. But, ge-
nerating a real application remains to be experimented.

At the design level, two perspectives are under conside-
ration. The first one concerns the property definitions that
could benefit from Slots [VBLN11]. Indeed, a property des-
cription is a specific instance variable with particular mana-
gement rules.

In Dali, target platform description consists in a set of
properties. A pragma based mechanism is used to select the
actual set of business object properties according to specific
environment requirements. The pragma mechanism implies
a class based definition of all possible properties. This part
of the framework could benefit from an Aspect oriented
mechanism. Indeed, the definition of properties available
in a given environment could be designed with the help of
Aspects. We plan to explore the use of PHANtom [Fab12]
for that purpose.

Références
[And] Android sdk. http ://developer.android.com/.

[BBB+09] Kent Beck, Mike Beedle, Arie Van Bennekum, Alis-
tair Cockburn, Ward Cunningham, Martin Fowler,
James Grenning, Jim Highsmith, Andrew Hunt, Ron
Jeffries, Jon Kern, Brian Marick, Robert C. Martin,
Steve Mellor, Ken Schwaber, and Jeff Sutherland.
Manifesto for agile software development. http ://a-
gilemanifesto.org/, 2009.

[BLLJ08] Bert Bos, Håkon Wium Lie, Chris Lilley, and Ian Ja-
cobs. Cascading style sheets, level 2 (CSS2) speci-
fication. W3C recommendation, W3C, April 2008.
http ://www.w3.org/TR/2008/REC-CSS2-20080411/.

[Cal10] Gaelle Calvary. Plasticité des interfaces homme-
machine : Rétrospective et perspectives. pages 3–4,
Marseille, France, 2010.

[CCT+03] Gaëlle Calvary, Joëlle Coutaz, David Thevenin,
Quentin Limbourg, Laurent Bouillon, and Jean Van-
derdonckt. A unifying reference framework for multi-
target user interfaces. INTERACTING WITH COM-
PUTERS, 15 :289–308, 2003.

[CDCD05] Gaëlle Calvary, O. Daassi, Joëlle Coutaz, and A. De-
meure. Des widgets aux comets pour la plas-
ticité des systèmes interactifs. Revue d’Interac-
tion Homme-Machine (RIHM), Volume 6, n°1, ISSN
1289-2963 :33–53, 2005.

[Fab12] Johan Fabry. Phantom : An aspect language for pharo
smalltalk. In Proceedings of the 11th Annual Inter-
national Conference on Aspect-oriented Software De-
velopment Companion, AOSD Companion ’12, pages
31–32, New York, NY, USA, 2012. ACM.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns : Elements of Reu-
sable Object-oriented Software. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[Gro04] Object Management Group. Meta object facility
(mof) 2.0 core final adopted specification. 2004.

[Hic11] Rich Hickey. Simple made easy.
StrangeLoop 2011 conference talk,
http ://www.infoq.com/presentations/Simple-Made-
Easy/, Oct 2011.

[HKL+13] Philippe Le Hégaret, Gary Kacmarcik, Travis Lei-
thead, Tom Pixley, Björn Höhrmann, Doug Schepers,
and Jacob Rossi. Document object model (DOM) le-
vel 3 events specification. W3C working draft, W3C,
November 2013. http ://www.w3.org/TR/2013/WD-
DOM-Level-3-Events-20131105/.

[Jod10] André Jodoin. Un environnement dynamique de déve-
loppement (EDD) pour le prototypage rapide d’inter-
faces graphiques. PhD thesis, Université de Montréal,
2010.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhe-
kar, Chris Maeda, Cristina Lopes, Jean-Marc Loing-
tier, and John Irwin. Aspect-oriented programming.
Proceedings of ECOOP ’97, LNCS, Springer-Verlag,
1241 :220—-242, June 1997.

[Obj00] Object Management Group. Model Driven Architec-
ture (MDA), 2000.

[Par11] Carlos Parra. Towards Dynamic Software Product
Lines : Unifying Design and Runtime Adaptations.
These, Université des Sciences et Technologie de
Lille - Lille I, March 2011.

[PBL05] Klaus Pohl, Günter Böckle, and Frank J. van der Lin-
den. Software Product Line Engineering : Founda-
tions, Principles and Techniques. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005.

[QDDD11] Clément Quinton, Christophe Demarey, Nicolas Do-
let, and Laurence Duchien. AppliDE : modélisa-
tion et génération d’applications pour smartphones.
In Journées sur l’Ingénierie Dirigée par les Modèles
(IDM’11), pages 41–45, Lille, France, June 2011.

[RDK07] Lukas Renggli, Stéphane Ducasse, and Adrian Kuhn.
Magritte - a meta-driven approach to empower deve-
lopers and end users. In Gregor Engels, Bill Opdyke,
Douglas C. Schmidt, and Frank Weil, editors, Mo-
del Driven Engineering Languages and Systems, 10th
International Conference, MoDELS 2007, Nashville,
USA, September 30 - October 5, 2007, Proceedings,
volume 4735 of Lecture Notes in Computer Science,
pages 106–120. Springer, 2007.

[Ren06] Lukas Renggli. Magritte — meta-described web ap-
plication development. Master’s thesis, University of
Bern, jun 2006.

[RFBLO01] Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, and
Nosa Omorogbe. The architecture of a uml virtual
machine. SIGPLAN Not., 36(11) :327–341, October
2001.

[RG09] Lukas Renggli and Tudor Gîrba. Why smalltalk
wins the host languages shootout. In IN : PRO-

CEEDINGS OF INTERNATIONAL WORKSHOP ON
SMALLTALK TECHNOLOGIES (IWST 2009), ACM
DIGITAL LIBRARY, 2009.

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternos-
tro, and Ed Merks. EMF : Eclipse Modeling Frame-
work 2.0. Addison-Wesley Professional, 2nd edition,
2009.

[SeTC99] Angela Sasse, Chris Johnson (editors, David Theve-
nin, and Joelle Coutaz. Plasticity of user interfaces :
Framework and research agenda, 1999.

[TFR05] Daniel E. Turk, Robert B. France, and Bernhard
Rumpe. Assumptions underlying agile software-
development processes. J. Database Manag.,
16(4) :62–87, 2005.

[VBLN11] Toon Verwaest, Camillo Bruni, Mircea Lungu, and
Oscar Nierstrasz. Flexible Object Layouts : en-
abling lightweight language extensions by intercep-
ting slot access. In Proceedings of 26th International
Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA ’11),
Portland, États-Unis, November 2011.

[VRDF12] Benjamin Van Ryseghem, Stéphane Ducasse, and Jo-
han Fabry. Spec : A Framework for the Specification
and Reuse of UIs and their Models. In Proceedings of
ESUG International Workshop on Smalltalk Techno-
logies (IWST 2012), Gent, Belgique, August 2012.

	Introduction
	Problems and state of the Art
	Parallel versions
	Model-Driven Engineering and code generation
	Emulators
	Common interpreters

	Dali solution
	An illustrative example
	The Dali framework
	The Dali meta-model
	The behaviour
	The widgets
	The target platforms modeling

	Dali within Pharo
	Fundamentals
	Configuring an environment
	Declaring a business object
	Declaring a widget
	Adding a layout
	Specifying multiple representations
	Adding behaviours
	Adding an operation
	Adding a binding
	Adding a reaction

	More on styles and events
	Styles
	Events

	Visiting a model

	Related Work
	Conclusion and further work

