D. A. Bazylinski, J. W. Farrington, and H. W. Jannasch, Hydrocarbons in surface sediments from a Guaymas Basin hydrothermal vent site, Organic Geochemistry, vol.12, issue.6, pp.547-558, 1988.
DOI : 10.1016/0146-6380(88)90146-5

H. W. Beam, P. , and J. J. , Microbial degradation and assim- ilation of n-alkyl-substituted cycloparaffins, J. Bacteriol, vol.118, pp.394-399, 1974.

P. T. Becker, S. Samadi, M. Zbinden, C. Hoyoux, P. Compère et al., First insights into the gut microflora associated with an echinoid from wood falls environments, Cah. Biol. Mar, vol.50, pp.343-352, 2009.

M. B?aszczyk, Comparison of denitrification by Paracoccus denitrificans, Pseudomonas stutzeri and Pseudomonas aeruginosa, Acta Microbiol. Pol, vol.41, pp.203-210, 1992.

A. Blazejak and A. Schippers, Real-Time PCR Quantification and Diversity Analysis of the Functional Genes aprA and dsrA of Sulfate-Reducing Prokaryotes in Marine Sediments of the Peru Continental Margin and the Black Sea, Frontiers in Microbiology, vol.2, 2011.
DOI : 10.3389/fmicb.2011.00253

S. Borin, F. Mapelli, E. Rolli, B. Song, C. Tobias et al., Anammox bacterial populations in deep marine hypersaline gradient systems Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups High rates of denitrification and nitrate removal in cold seep sediments, Extremophiles FEMS Microbiol. Lett. ISME J, vol.17, issue.5, pp.289-299, 2006.

M. B-o-w-l-e-s, L. N-i-g-r-o, and A. T-e-s-k-e, Denitrification and environmental factors influencing nitrate removal in Guaymas Basin hydrothermally altered sediments, Front. Microbiol, 2012.

A. J. Lucinidae-i-n, Further insights from the Bohol Sea (the Philippines) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways, FEMS Microbiol. Ecol. Front. Ecol. Environ, vol.75892, issue.5, pp.63-7689, 2007.

N. B-y-r-n-e, M. S-t-r-o-u-s, V. C-r-e-p-e-a-u, B. Kartal, J. Birrien et al., Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents, ISME J, vol.3, pp.117-12372, 2008.

S. E. Calvert, D. E. S-t-e-w-a-r-t, F. J. Thamdrup, B. De-brabandere, L. Dalsgaard et al., Origin of Diatom-Rich, Varved Sediments from the Gulf of California, The Journal of Geology, vol.74, issue.5, Part 1, pp.546-565, 1966.
DOI : 10.1086/627188

J. M. Carvajal-arroyo, W. Sun, R. Sierra-alvarez, and J. A. Field, Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents, Chemosphere, vol.91, issue.1, 2013.
DOI : 10.1016/j.chemosphere.2012.11.025

T. K. Dutta and S. Harayama, Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp, 2001.

S. Fonselius, D. Dyrssen, Y. , and B. , Methods of Seawater Analysis, 2007.

C. A. Francis, K. J. Roberts, J. M. Beman, A. E. Santoro, and B. B. Oakley, Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean, Proc. Natl. Acad, 2005.
DOI : 10.1073/pnas.0506625102

M. W. Friedrich, Phylogenetic Analysis Reveals Multiple Lateral Transfers of Adenosine-5'-Phosphosulfate Reductase Genes among Sulfate-Reducing Microorganisms, Journal of Bacteriology, vol.184, issue.1, pp.278-289, 2002.
DOI : 10.1128/JB.184.1.278-289.2002

N. Frigaard and C. Dahl, Sulfur Metabolism in Phototrophic Sulfur Bacteria, Adv. Microb. Physiol, vol.54, issue.10308, pp.10-1016, 0200.
DOI : 10.1016/S0065-2911(08)00002-7

H. R. Harhangi, M. Ler-o-y, T. Vanalen, B. Hu, J. Groen et al., Hydrazine Synthase, a Unique Phylomarker with Which To Study the Presence and Biodiversity of Anammox Bacteria, Applied and Environmental Microbiology, vol.78, issue.3, pp.752-758, 1128.
DOI : 10.1128/AEM.07113-11

S. , R. M. A-m-i-n-o-t, A. K-É-r-o-u-e-l, R. H-o-o-k-e-r, B. A. S-o-n et al., A simple and precise method for measuring ammonium in marine and freshwater ecosystems, Can. J. Fish. Aquat. Sci, vol.56, pp.1801-1808, 1999.

Y. Hong, B. Yin, and T. Zheng, Diversity and abundance of anammox bacterial community in the deep-ocean surface sediment from equatorial Pacific, Applied Microbiology and Biotechnology, vol.10, issue.4, 2011.
DOI : 10.1007/s00253-010-2925-4

E. C. Hopmans, M. V. Kienhuis, J. E. T-t-r-a-y, A. E-s-c-h-k-e, S. Schouten et al., Improved analysis of ladderane lipids in biomass and sediments using high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry, Rapid Communications in Mass Spectrometry, vol.272, issue.14, pp.2099-2103, 2006.
DOI : 10.1002/rcm.2572

M. Hügler, A. Gärtner, and J. F. Imhoff, Functional genes as markers for sulfur cycling and CO 2 fixation in microbial communities of hydrothermal vents of the Logatchev field, FEMS Microbiol. Ecol, vol.73, pp.526-537, 2010.

A. Jaeschke, B. Abbas, M. Zabel, E. C. Hopmans, S. Schouten et al., Molecular evidence for anaerobic ammonium-oxidizing (anammox) bacteria in continental shelf and slope sediments off northwest Africa, Limnology and Oceanography, vol.55, issue.1, p.365, 2010.
DOI : 10.4319/lo.2010.55.1.0365

A. Jaeschke, M. D. Lewan, E. C. Hopmans, S. Schouten, S. Damsté et al., Thermal stability of ladderane lipids as determined by hydrous pyrolysis, Organic Geochemistry, vol.39, issue.12, pp.1735-1741, 2008.
DOI : 10.1016/j.orggeochem.2008.08.006

A. Jaeschke, H. J. Op-den-camp, E. C. Hopmans, and M. S. Jetten, 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs, FEMS Microbiology Ecology, vol.67, issue.3, pp.343-350, 1979.
DOI : 10.1111/j.1574-6941.2008.00640.x

M. M. Jensen, M. M. Kuypers, G. Lavik, and B. Thamdrup, Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea, Limnology and Oceanography, vol.53, issue.1, pp.23-36, 2008.
DOI : 10.4319/lo.2008.53.1.0023

R. Jin, G. Yang, Q. Zhang, C. , and J. , The effect of sulfide inhibition on the ANAMMOX process, Water Research, vol.47, issue.3, pp.1459-1469, 2013.
DOI : 10.1016/j.watres.2012.12.018

D. Karl, C. Wirsen, and H. Jannasch, Deep-Sea Primary Production at the Galapagos Hydrothermal Vents, Science, vol.207, issue.4437, 1980.
DOI : 10.1126/science.207.4437.1345

O. E. Kawka and B. R. Simoneit, Survey of hydrothermallygenerated petroleums from the Guaymas Basin spreading center, Org. Geochem, vol.1187, pp.311-328, 1987.

M. M. Kuypers, G. Lavik, D. Woebken, M. S-c-h-m-i-d, B. F-u-c-h-s et al., From The Cover: Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation, Proc. Natl. Acad, 2005.
DOI : 10.1073/pnas.0502088102

M. M. Kuypers, A. Sliekers, G. Lavik, M. Schmid, B. Jørgensen et al., Anaerobic ammonium oxidation by anammox bacteria in the Black Sea, Proc. Natl, pp.608-611, 2003.
DOI : 10.1023/A:1008848203739

S. Lenk, J. Arnds, K. Zerjatke, N. Musat, R. Amann et al., Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment, Environmental Microbiology, vol.62, issue.3, pp.758-774, 2011.
DOI : 10.1111/j.1462-2920.2010.02380.x

H. Li, S. Chen, B. Mu, and J. Gu, Molecular Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria in High-Temperature Petroleum Reservoirs, Microbial Ecology, vol.9, issue.4, pp.771-783, 2010.
DOI : 10.1007/s00248-010-9733-3

A. Lichtschlag, J. Felden, V. Brüchert, A. R. B-o-e-t-i-u-s, and D. , Geochemical processes and chemosynthetic primary production in different thiotrophic mats of the H??kon Mosby Mud Volcano (Barents Sea), Limnology and Oceanography, vol.55, issue.2, 2010.
DOI : 10.4319/lo.2009.55.2.0931

B. Meyer and J. Kuever, Molecular Analysis of the Diversity of Sulfate-Reducing and Sulfur-Oxidizing Prokaryotes in the Environment, Using aprA as Functional Marker Gene, Applied and Environmental Microbiology, vol.73, issue.23, pp.7664-7679, 2007.
DOI : 10.1128/AEM.01272-07

H. J. Mills, R. J. Martinez, S. Story, and P. A. Sobecky, Identification of Members of the Metabolically Active Microbial Populations Associated with Beggiatoa Species Mat Communities from Gulf of Mexico Cold-Seep Sediments, Applied and Environmental Microbiology, vol.70, issue.9, pp.5447-5458, 2004.
DOI : 10.1128/AEM.70.9.5447-5458.2004

N. E-l-s-o-n, D. C. W-i-r-s-e-n, C. O. Jannasch, and H. W. , Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin, Appl. Environ. Microbiol, vol.55, pp.2909-2917, 1989.

T. Nunoura, M. Nishizawa, T. Kikuchi, T. T-s-u-b-o-u-c-h-i, M. H-i-r-a-i et al., Molecular biological and isotopic biogeochemical prognoses of the nitrificationdriven dynamic microbial nitrogen cycle in hadopelagic sediments, Environ. Microbiol, 2013.

C. Ruehland, A. Blazejak, C. Lott, A. L-o-y, C. R. E-r-s-É-u-s et al., Multiple bacterial symbionts in two species of co-occurring gutless oligochaete worms from Mediterranean sea grass sediments, Environmental Microbiology, vol.187, issue.12, pp.3404-3416, 2008.
DOI : 10.1111/j.1462-2920.2008.01728.x

S. Damsté, J. S. Rijpstra, W. I. Geenevasen, J. A. Strous, M. Jetten et al., Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox), FEBS Journal, vol.68, issue.16, pp.4270-4283, 2002.
DOI : 10.1111/j.1742-4658.2005.04842.x

A. Teske, K. Hinrichs, and V. Edgcomb, Microbial Diversity of Hydrothermal Sediments in the Guaymas Basin: Evidence for Anaerobic Methanotrophic Communities, Applied and Environmental Microbiology, vol.68, issue.4, pp.2731-2739, 2002.
DOI : 10.1128/AEM.68.4.1994-2007.2002

B. Thamdrup and T. Dalsgaard, Production of N2 through Anaerobic Ammonium Oxidation Coupled to Nitrate Reduction in Marine Sediments, Applied and Environmental Microbiology, vol.68, issue.3, 2002.
DOI : 10.1128/AEM.68.3.1312-1318.2002

M. Trimmer, J. Nicholls, and B. Deflandre, Anaerobic Ammonium Oxidation Measured in Sediments along the Thames Estuary, United Kingdom, Applied and Environmental Microbiology, vol.69, issue.11, pp.6447-6454, 2003.
DOI : 10.1128/AEM.69.11.6447-6454.2003

J. Van-de-vossenberg, J. E. Rattray, W. K. G-e-e-r-t-s, L. Van-donselaar, and E. G. , Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production The metagenome of the marine anammox bacterium 'Candidatus Scalindua profunda' illustrates the versatility of this globally important nitrogen cycle bacterium Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California), Environ. Microbiol. Environ. Microbiol. ISME J, vol.10, issue.15, pp.3120-3129, 2008.

V. Damm and K. L. , Seafloor hydrothermal activity: black smoker chemistry and chimneys, Annu. Rev. Earth Planet. Sci, vol.18, 1990.

V. Damm, K. L. Edmond, J. M. Measures, C. I. Grant, and B. , Chemistry of submarine hydrothermal solutions at G u a y m a sB a s i n ,G u l fo fC a l i f o r n i a, Geochim. Cosmochim. Acta, vol.4985, pp.2221-2237, 1985.

C. B. Wenk, J. Blees, J. Zopfi, M. Veronesi, A. Bourbonnais et al., Anaerobic ammonium oxidation (anammox) bacteria and sulfide-dependent denitrifiers coexist in the water column of a meromictic south-alpine lake, Limnology and Oceanography, vol.58, issue.1, pp.1-12, 2013.
DOI : 10.4319/lo.2013.58.1.0001

D. Woebken, P. Lam, M. M. Kuypers, S. W. Naqvi, B. Kartal et al., Scalindua phylotype in marine oxygen minimum zones, Environmental Microbiology, vol.62, issue.11, pp.3106-3119, 2008.
DOI : 10.1111/j.1462-2920.2008.01640.x