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Abstract: The ocean‘s continental margins face strong and rapid change, forced by a 53 
combination of direct human activity, anthropogenic CO2-induced climate change, and 54 
natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, 55 
we (1) provide an overview of the drivers of biogeochemical variation and change on 56 
margins, (2) compare temporal trends in hydrographic and biogeochemical data across 57 
different margins (3) review ecosystem responses to these changes, (4) highlight the 58 

importance of margin time series for detecting and attributing change and (5) examine 59 
societal responses to changing margin biogeochemistry and ecosystems.  We synthesize 60 
information over a wide range of margin settings in order to identify the commonalities 61 
and distinctions among continental margin ecosystems. Key drivers of biogeochemical 62 
variation include long-term climate cycles, CO2-induced warming, acidification, and 63 
deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle 64 
alteration, changing land use, fishing, and species invasion. Ecosystem responses are 65 
complex and impact major margin services including primary production, fisheries 66 
production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. 67 
Despite regional differences, the societal consequences of these changes are unarguably 68 
large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on 69 
continental margins.  70 
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1. Introduction to dynamic margin ecosystems 88 
 89 
The oceans‘ continental margins extend for some 150,600 km (Jahnke, 2010) and 90 
encompass estuarine, open coast, shelf, canyon, slope, and enclosed sea ecosystems.  91 

They are both gateway and window to the open ocean, where water, nutrients, energy, 92 
sediments, contaminants and organisms meet and are transferred through land-margin 93 
and margin-open ocean interactions (Levin et al., 2001). The continental margins include 94 
proximal estuaries, bays, lagoons and banks, and distal shelves, slopes and marginal seas. 95 
These are susceptible to changes in biodiversity, water quality, and productivity and have 96 

been increasingly perturbed by human activities.  97 
 98 
Margin ecosystems include hard and soft-substrate habitats ranging from structurally 99 
complex wetlands, kelp forests, coral reefs, rocky reefs and sand beaches, to sedimented 100 

estuaries, slopes and canyons.  Most of the habitat volume, however, occurs in the 101 
overlying water column, with variation linked to water masses, circulation, and land and 102 

atmospheric interactions.  As one crosses depth contours from estuaries across the shelf 103 
to the continental slope, steep gradients in nutrient concentrations, temperature, salinity, 104 

oxygen, pH and suspended matter are found that impact the productivity, composition, 105 
diversity, and abundance of organisms (Cloern, 1996; Hofmann et al., 2011; Levin and 106 
Sibuet, 2012). Relative to their area, the margins account for a disproportionately large 107 

fraction of the global primary production (10 – 15%), nutrient recycling, carbon burial (> 108 
60% of total settling organic carbon), and fisheries production (Walsh et al. 1988; 109 

Muller-Karger et al., 2005). They also are exceptionally dynamic systems with ecosystem 110 
structures that can oscillate slowly or shift abruptly, but rarely remain static. 111 
  112 

The current continental margin seascape has been shaped extensively by climate change 113 

and human activities, yielding altered ecosystem services. Margin ecosystems provide 114 
key services in the form of physical protection from waves, storms, and floods, chemical 115 
buffering, food provisioning, nursery support, nutrient cycling, habitat fostering 116 

biodiversity, carbon sequestration, recreation, and aesthetic value.  Finely tuned 117 
biogeochemical interactions drive these functions. Because human populations are 118 

disproportionately concentrated in coastal cities, there is heterogeneity in the human 119 
effects on margins, creating mosaics of heavily impacted and relatively pristine systems.  120 

Nutrient inputs, freshwater extraction, fishing, construction, species introductions, and 121 
contamination are but a few of the many ways humans alter coastal ecosystems. Also the 122 
steady increase of anthropogenic CO2 inputs to the atmosphere will result in significant 123 
changes in water column temperature, oxygenation, pH, and productivity by 2100, with 124 

major consequences for margin ecosystems and the over 1 billion people that depend on 125 
them for food, employment and revenue (Mora et al., 2013; FAO, 2012). 126 
 127 

While margin research has a long history among oceanographers (Banner et al., 1980. 128 
Walsh et al., 1988, Biscaye et al., 1994, Duarte et al. 1999, Antia et al., 2001, Liu et al., 129 
2010), a synoptic view of dynamic coupled margin systems has emerged more slowly and 130 
the linkages between human and natural biogeochemical variations, ecosystem response 131 
and human social structures are only now being explored. The interactive effects of 132 
remote forcing from distant inland activities, from atmospheric processes, and from 133 
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physical processes far out to sea are becoming more apparent. There are, however, gaps 134 

in our understanding of the combined effects of multiple drivers on coastal 135 
biogeochemistry and ecosystems across all continental margins. The objectives of this 136 
paper are to provide an overview of sources of biogeochemical variation on margins, 137 

associated ecosystem responses, and the societal and policy implications, with a focus on 138 
lessons from multiple continental margin time series (Fig 1).   139 

 140 
This paper reflects the themes and discussions of the continental margins working group 141 

of IMBER IMBIZO III (Goa, India in January 2013).  In this paper we examine drivers of 142 
biogeochemical variation on margins, distinguishing natural from CO2-based climate 143 
variability, and more direct human drivers.  We next compare temporal trends for 144 
multiple physical and biogeochemical parameters at geographically contrasting locations 145 
We then discuss the complex ecosystem responses to biogeochemical variation and 146 

trends on margins, in particular those related to warming, deoxygenation, acidification 147 
and hydrologic alterations. We subsequently identify the key roles played by continental 148 

margin time-series stations (Fig. 1) in identifying and attributing drivers of change and in 149 

understanding the associated ecosystem responses. Finally, we examine societal 150 
responses to changing margin biogeochemistry and ecosystems, highlighting areas where 151 
social and natural scientists must work together. Case studies (expanded in Supplement 152 

B) are synthesized to provide insights into the sensitivity of margins to natural and human 153 
perturbations, the ecological, social and economic consequences that stem from these 154 

perturbations, and the policy actions needed to mitigate impacts on coastal ecosystems 155 
and their resources.    156 
 157 
 2. Natural and human-induced drivers of biogeochemical variation on margins 158 
 159 

Controls on biogeochemistry of margins are complex and dynamic. In this paper we 160 
distinguish drivers associated with natural variability, anthropogenic CO2 –driven climate 161 

change and direct human (anthropogenic) impacts.  It is often difficult to disentangle 162 
these three forcing mechanisms, as well as to distinguish local change from regional to 163 
global-scale pressures. Multiple factors act together – exerting top-down (often human) 164 

and bottom – up (natural or human) controls on ecosystem structure simultaneously.  165 
 166 

Natural Sources of Variability 167 
Natural variation in biogeochemical features affecting margin ecosystems occurs on a 168 
vast range of time scales, from millions of years to hours. Direct measurements during 169 
the past century in many of the systems discussed here have revealed large, abrupt, 170 

persistent changes in the structure and function (or state) of an ecosystem, which were 171 
sometimes interpreted as regime shifts (Mumby et al., 2007; de Young et al., 2008; 172 
Barnovsky et al. 2012).  These may be manifested as simultaneous changes in 173 
phytoplankton, dominant consumer species, and trophic structure. Regime shifts often 174 

yield major consequences for fisheries and human livelihood (McFarlane et al., 2002; 175 
Zhang and Gong, 2005). Examples can be found in the North Pacific - Pacific Decadal 176 
Oscillation (Wooster and Zhang, 2004), North Atlantic (Alheit et al., 2014) Caribbean 177 
coral reefs (Hughes, 1994), Mediterranean Sea (Conversi et al., 2010), Northern Adriatic 178 
Sea (Conversi et al., 2009) and North Sea (Beaugrand, 2004).  In the Northern 179 
Hemisphere, major ecosystem shifts were observed in the late 1980s to early 1990s, with 180 
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synchronous shifts following an overall period of high variability. These ecosystem 181 

regime shifts were linked to changes in global-scale climate indices (Chavez et al., 2011; 182 
Conversi et al., 2010; Möllmann et al., 2011).  It is cautioned that these abrupt changes 183 
are sometimes difficult to distinguish from random fluctuations or overfishing effects and 184 

their true nature often remains unclear (e.g., Hsieh et al., 2005). 185 
 186 
Margins may also be subject to basin-specific and regional influences. For example, the 187 
California Cooperative Oceanic Fisheries Investigations (CalCOFI), one of the longest 188 
existing oceanographic time series (63 y), reveals major natural variations in water 189 

column temperature, oxygen, pH and current strength that are associated with changes in 190 
the regional hydrography of the California Current Ecosystem over multiple time and 191 
space scales (Checkley and Barth, 2009; McClatchie et al., 2010; Nam et al., 2011; Send 192 
and Nam 2012). In addition to the Pacific Decadal Oscillation, there are decadal scale 193 

ENSO cycles, seasonal and week-long upwelling events that alter productivity and/or 194 
ocean biogeochemistry with marked shifts in oxygen and pH (Fig 2). Variability in these 195 

environmental parameters results in changes in the regional biodiversity and ecosystem 196 
structure with significant impacts on ecosystem services we depend on (Doney et al. 197 

2012).   198 
 199 
Much natural climate variability and some manifestations of climate change occur 200 

abruptly over short time and space scales.  Most margins experience episodic, extreme 201 
events that shape their ecosystems, often through biogeochemical modification.  For 202 

example the Rhone River carries 80% of its solid flux during 5% of the time (Antonelli et 203 
al., 2007) with large biogeochemical consequences (Cathalot et al., 2010). Extreme storm 204 
events can reshape coastal systems with short-lived, dramatic changes in salinity and 205 

flushing rates and through more persistent alterations of channel openings (Paerl et al., 206 

2001).   Atmospheric deposition of nutrients associated with air mass outflow from the 207 
Indo-Gangetic Plain to the northern Bay of Bengal is significant and most can occur over 208 
4 months in association with the NE monsoon, highlighting the temporal nature of these 209 

atmospheric drivers (Srinivas et al., this volume). These are likely to have direct 210 
consequences for eutrophication in Bay of Bengal surface waters triggering profuse algal 211 

blooms in the adjacent Sundarban wetland (Naha Biswas et al., 2013). Heat waves that 212 
last for a few weeks can induce mass mortality in coastal ecosystems of the 213 

Mediterranean Sea either directly (Garrabou et al., 2009; Marba and Duarte, 2010) or 214 
through the spread of disease and invasive species (Lejeusne et al., 2010). 215 
 216 
As with short time scales, small areas of the ocean can play key roles in global 217 

biogeochemical fluxes on margins.  For example, 1% of the ocean‘s water volume 218 
accounts for 50% of N removal through water column denitrification and annamox in 219 
oxygen deficient zones (Deutsch et al., 2011), and 60-70% of the annual denitrification 220 

rate occurs in shelf sediments (Codispoti, 2007). Submarine canyons carry 80-90% of the 221 
sediment and organic matter fluxes to the open seafloor sediments, with transport 222 
affected by climate-driven stratification, wind regime and winter cooling (Canals et al., 223 
2006; Rabouille et al., 2013). It is proposed that the Congo River, with the second largest 224 
discharge in the world, carries 50% of the river‘s silica through an 800-km long 225 
submarine canyon to a 3000 km

2
 deep-sea fan (Raimonet et al., this volume). The 226 
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functions of submarine canyons as key removal agents via deep-sea fans and deltas may 227 

be diminished by climate change-driven reduction of dense water formation with less 228 
cascading and deep export (Herrmann et al., 2008; Rabouille et al., 2013). 229 
 230 

An important question to emerge is whether natural variability associated with exposure 231 
to stressful conditions (such as hypoxia or hypercapnia) confers evolutionary pre-232 
adaptation to further stress from climate change or direct human activities. Evidence 233 
suggests that animals in margin settings subject to upwelled, low-pH waters are resilient 234 
to such conditions (e.g., Thomsen et al., 2010; Yu et al., 2011; Hoffmann et al., 2014). In 235 

other coastal regions where hydrographic variability is also intense and there are multiple 236 
controls from land, detection of trends, sources and biological responses including 237 
adaptation can be difficult (Duarte et al., 2013). Whether hydrographic stressors that vary 238 
naturally (oxygen, acidification and warming) elicit more adaptation than ‗unnatural‘ 239 

(man made) trace organic or metal/metalloid contaminants, remains an open question. 240 
 241 

CO2-driven climate drivers 242 
Rising CO2 in the atmosphere is reshaping margin ecosystems by increasing sea level, 243 

ocean warming, ocean acidification and ocean deoxygenation (Doney et al. 2012). There 244 
are also climate shifts that alter patterns of heat, drought, precipitation, and flooding that 245 
modify margins directly and indirectly through changes in land use, runoff, and human 246 

activities. 247 
 248 

CO2-induced warming and enhanced stratification have been linked to declining oxygen 249 
concentrations on the southern California shelf and upper slope (Bograd et al., 2008) as 250 
well as increased seasonal hypoxia on the inner Oregon shelf (Chan et al., 2008). These 251 

changes also involve lowered pH and high pCO2 (Frieder et al. 2012; Alin et al. 2012), 252 

with consequences for biogeochemical cycling and ecosystem structure in the California 253 
Current (CC) system (Doney et al. 2012). Upwelling is intensifying and low pH (which 254 
promotes aragonite undersaturation) is spreading in the northeast Pacific (Feely et al. 255 

2008; Gruber et al., 2012). The observed low pH conditions in the CC system are shaping 256 
characteristics of this ecosystem by affecting calcifying species and have resulted in the 257 

decline of cultured bivalves (Barton et al., 2012). Whether the oxygen and pH changes 258 
reflect a continuous, secular trend resulting from CO2-driven climate changes or are part 259 

of a larger (50 y) natural cycle remains controversial (McClatchie et al. 2010; Deutsch et 260 
al., 2011). These changes are occurring in an ecosystem already subject to high natural 261 
variability (Fig. 2). Clear understanding of this complexity is needed for forecasting 262 
future conditions.  263 

 264 
Beyond upwelling regions, perhaps the greatest manifestations of climate change are 265 
found on the shelves of the Arctic Ocean. Among the most massive of inputs, a full 10% 266 

of the freshwater reaching the oceans occurs in the Arctic, which has only 4 million 267 
people living there. Thawing of permafrost due to warming yields increased inputs of soil 268 
organic carbon and methane to the coastal ocean and atmosphere (Schurr, 2013), and will 269 
influence many aspects of the Arctic coastal ecosystem (Whiteman et al., 2013).  The 270 
freshwater from melting sea ice combined with degradation of released organic matter is 271 
causing major perturbation of low pH in the Arctic.  Baseline monitoring of the W. Arctic 272 
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Ocean reveals that 20% of the Canada Basin surface waters exhibit aragonite 273 

undersaturation (Robbins et al., 2013). 274 
 275 
As temperatures continue to increase (Behrenfeld et al., 2006), warming is expected to 276 

reduce productivity over much of the ocean (Mora et al., 2013). It is uncertain whether 277 
lowered production will reduce oxygen depletion in midwater (from decomposition of 278 
sinking phytoplankton and respiration of vertical migrators), counteracting the 279 
deoxygenation effects of global warming (from increased stratification and reduced 280 
mixing).  Alternatively, intensified upwelling in a warmer world may pump more 281 

nutrients into surface waters, increase respiration of microbes and other organisms, and 282 
increase the rate of deoxygenation. As a direct effect or through changes in currents such 283 
as the Gulf Stream, warming might increase methane emissions via dissociation of gas 284 
hydrates on continental margins (Phrampus and Hornbach, 2012).  Massive gas hydrate 285 

deposits in the shallow Arctic Ocean are particularly susceptible and their release may 286 
exacerbate acidification and oxygen depletion via aerobic methane oxidation in the water 287 

column (Biastoch et al., 2011).   There has yet to be exploration of modern biological 288 
responses to long-term increases in methane fluxes on margins, although the geologic 289 

past may hold lessons in this regard (Kennett et al., 2003).   290 
 291 

Direct Human Drivers  292 
Rivers are a primary conduit of nutrient loading to the shelf from terrestrial sources of 293 
nutrients.  Since the development in the early 20th century of the Haber-Bosch process 294 

for fixing nitrogen for use in fertilizers, the global nitrogen cycle has become increasingly 295 
affected by anthropogenic inputs.  The net anthropogenic nitrogen inputs (NANI) to a 296 
region include fertilizer application, atmospheric deposition, agricultural N fixation by 297 

leguminous crops, and the nitrogen associated with food and livestock feed crossing 298 

regional boundaries.  Nitrogen flux in rivers is often highly correlated to the NANI of 299 
their drainage basins (e.g., Howarth et al., 1996; Han and Allen, 2008; Swaney et al., 300 
2012). In areas of high population densities (e.g., coastal cities) or regions of industrial-301 

scale livestock production, as is increasingly seen in India and China, the nitrogen 302 
associated with the trade of food and feed commodities may be very significant.  In areas 303 

of high crop production, synthetic N fertilizer is typically the dominant source of N (e.g., 304 
Yan et al., 2010).  In India, use of synthetic fertilizer has grown exponentially over the 305 

last fifty years, making Indian agriculture one of the most intense consumers of fertilizer 306 
in the world (Swaney et al., this issue).  Between 1970 and 2000, the coastal Bay of 307 
Bengal has experienced massive N and P loading (50% and 35% increase, respectively) 308 
causing eutrophication; 70-80% of the loading is from agricultural sources (Sattar et al., 309 

2014).  310 
 311 
Margins play a key role in filtering nutrients and contaminants that enter the ocean via 312 

runoff and rivers.  Productive estuarine ecosystems, particularly wetlands, are able to 313 
remove nutrients by denitrification, uptake by vascular plant, phytoplankton, and 314 
microbes, by promoting flocculation and enhancing deposition and burial (Kennedy 315 
1984, Howarth et al., 2006; Dähnke et al., 2008; Lassaletta et al., 2011; Howarth et al., 316 
2012). Intensive filter feeding by bivalves such as oysters and mussels can also remove 317 
particulate nutrients and control eutrophication (Cloern et al. 1982; Dame 2012). The 318 
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filtering functions of margins have been greatly affected by massive wetland loss over the 319 

past century, due largely to changing land use and sea level rise. Globally, overfishing (of 320 
oysters) and species introductions (of invasive bivalves) have also had a major influence 321 
on water filtration functions (Dame 2011). 322 

 323 
Human acceleration of nutrient cycles and eutrophication are among the best studied of 324 
the anthropogenic forcing factors and cause the most conspicuous adverse effects upon 325 
continental margins as witnessed by diverse case studies (Table 1, Fig. 1).  Intensified 326 
nitrogen loading is widespread in coastal ecosystems receiving effluents from catchments 327 

with dense human populations (Rabalais, 2004; Glavovic et al., submitted).  This yields 328 
continental margin dead zones (coastal hypoxic areas resulting from eutrophication), 329 
which number over 475 and are on the rise (Diaz and Rosenberg, 2008; World Resources 330 
Institute, 2013). The largest of these occur in the Baltic Sea, the Black Sea, the northern 331 

Gulf of Mexico and the East China Sea (Rabouille et al., 2008; Zhu et al., 2011), where 332 
historical hypoxia induced by natural climate conditions and circulation has been 333 

exacerbated by human nutrient input (Zillén et al. 2008; Rabalais et al., 2010; K.-K. Liu 334 
et al., this issue). The relative importance of natural and human (nutrient) drivers and 335 

efficacy of nutrient legislation has been under debate in recent years (e.g., Bianchi et al., 336 
2008). For example, shrinking of hypoxic areas in the Black Sea appears to have resulted 337 
from reductions in human agricultural nutrient inputs, though the extent of the human 338 

impacts on this ecosystem is still not clear (Mee et al., 2005).  In addition, as indicated 339 
above, the balance between N, P and Si is being modified by many factors that affect 340 

coastal production, both qualitatively and quantitatively (Ragueneau et al., 2005). CO2-341 
driven changes in warming, winds, upwelling, and precipitation will inevitably influence 342 
both the intensity and areal cover of hypoxia in many dead zones (Rabalais et al., 2009, 343 

2014; Giani et al., 2012).  344 

 345 

3. Comparisons across continental margins 346 
 347 

To gain a broader sense of how shelf systems are responding to climatic forcing and 348 
direct human activities we have compared multiple physical and biogeochemical 349 

observations collected at geographically contrasting locations (Fig. 3, Table 2). 350 
Consistent with the global warming trend, three out of five margins (the Cariaco Basin, 351 

East China Sea and North Sea) have shown increasing temperatures over the last four 352 

decades (slope = X C yr
-1

; p < 0.01), except for San Francisco Bay (slope = -0.029 C 353 
yr

-1
; p = 0.07) where a cooling trend has been detected (For more detail see Supplement 354 

A). The cooling trend observed in San Francisco Bay is attributed to an increase in 355 

upwelling intensity accros the entire California Curruent system resulting from increasing 356 

northerly wind stress along the western coast of the US (Chavez et al., 2011). The 357 
warming trend in the Cariaco Basin, in turn, is the result of the weakening of the Trade 358 
Winds, and thus of upwelling intensity, along the southern Caribbean Sea (Astor et al., 359 
2013; Taylor et al., 2012).  360 
 361 

No significant trends in sea surface salinity (SSS) are observed at the Cariaco Basin or 362 
the North Sea. SSS in the Bohai Sea, however, shows a positive trend (0.0632 yr

-1
) (Fig. 363 
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3b). The increasing salinity of the Bohai Sea is thought to be caused by decreasing 364 

freshwater discharge from the Yellow River (Fig. 3d). 365 
 366 
The load of dissolved inorganic nitrogen (DIN) in Changjiang (aka the Yangtze River), 367 

which empties into the East China Sea, has increased by over two-fold (Liu et al., 2014) 368 
between 1970 and 2002 (Fig. 3c), while this river‘s freshwaterwater discharge has only 369 
increased slightly (Fig. 3d). This suggests that rising DIN concentrations in the 370 
Changjiang River is mainly due to the intensive use of chemical fertilizer (Yan et al., 371 
2010). By contrast, and due to EU policy change, the DIN load discharged to the North 372 

Sea has decreased by 50% since 1977. Dissolved inorganic phosphorus (DIP) shows a 373 
similar decreasing trend at this location (Pätsch and Lenhart, 2011) 374 
 375 
The sea surface chlorophyll-a concentrations in SF Bay have increased in the last two 376 

decades (Fig. 3e), which is consistent with the observed decreasing trend in SST . 377 
Simultaneously, however, chlorophyll-a in the Cariaco Basin shows a decreasing trend 378 

since the late 90‘s due to weaker upwelling events and stronger thermal stratification 379 
(Taylor et al., 2012). The monthly mean sea surface chlorophyll-a in the East China Sea 380 

derived from ocean color products by NASA‗s Sea-viewing Wide Field-of-view Sensor 381 
(SeaWiFS) also exhibits a significant increasing trend since 1998, which is thought to 382 
result from increased DIN loads from the Changjiang River (Fig. 3c) (K.-K. Liu et al., 383 

this issue).  384 
 385 

In response to increasing phytoplankton growth, bottom water oxygen saturation in SF 386 
Bay and the East China Sea has shown a significant decline (Fig. 3f). Oxygen saturation 387 
shows a weak decline in the upper 3 m at the CARIACO Station (Fig 3f), probably due to 388 

warming and possibly to lower oxygen production by phytoplaknton (Fig 3e). 389 

 390 
Different margins show markedly different responses to local stressors and to global-391 
scale change. Variations in availability and temporal coverage of different environmental 392 

parameters highlight the need for comprehensive and sustained time-series observations 393 
on continental margins.  These are required in ordert to understand ecosystem responses 394 

to natural, CO2 climate-driven and direct human perturbations. 395 
 396 

4. Ecosystem responses to biogeochemical change on continental margins 397 
 398 
Some of the most apparent environmental and ecosystem consequences due to the 399 
common climate and human stressors discussed in this special issue are summarized in 400 

Table 1 and discussed below.  401 
 402 
Human alteration of hydrological processes such as damming and water diversion (B3, 403 

B4), drives very noticeable physical changes in margins causing loss of habitats due to 404 
coastal erosion or reduced river discharge (e.g., S.M. Liu, this issue). When combined 405 
with climate effects, resulting salinity increases can lead to species invasions that reshape 406 
coastal ecosystems.  Following massive water diversion and drought in San Francisco 407 
Bay, an invasion by Asian clams altered the timing and magnitude of phytoplankton 408 
availability, with cascading trophic consequences (Cloern and Jassby, 2012, B3). In the 409 
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Bay of Brest, introduction of an invasive limpet changed the seasonality of primary 410 

production, which in turn has changed benthic biodiversity and completely modified the 411 
benthic-pelagic coupling over a 30-year period (Grall and Chauvaud, 2002). 412 
 413 

 In a broad sense, land use change alters how rainfall interacts with the landscape.  Some 414 
land-use activities result in increased soil degradation and erosion (i.e., agriculture, 415 
mining), and in eutrophication of rivers and continental margins through the use of 416 
fertilizers.  The coastal zone‘s high primary productivity and the abundant filter feeders 417 
(e.g., Lotze et al., 2006) offset land-derived nutrient inputs to some extent, but are tested 418 

by eutrophication and overfishing (B2).  Moreover, rising sea levels will lead to flooding 419 
of low-lying coastal regions like India and Bangladesh, movement of seawater farther up 420 
estuaries, and intrusion of seawater into groundwater reservoirs.  421 
 422 

Eutrophication is among the most widespread of coastal insults (Table 1; B2, B3, B4, B5, 423 
B6), but the outcomes, which include productivity enhancement and hypoxia, can be 424 

complex. For example, several cross-system comparisons indicate that increased N 425 
enhances total landings of fish and mobile shellfish even in systems with hypoxia (Fig. 426 

4), although individual species may decline and the overall composition of the catch can 427 
be affected (Nixon and Buckley, 2002; Breitburg et al., 2009b).  On the downside, 428 
hypoxia - an endocrine disrupter in fish that experience chronic exposure (Thomas et al., 429 

2006) - can favor gelatinous plankton and some bivalves (Breitburg et al., 2003), and 430 
create and eliminate shallow water refuges for small and juvenile fishes (Breitburg et al. 431 

2009a).  432 
 433 
Reversal of eutrophication trends have been observed in some areas such as the Danish 434 

straits (Carstensen et al., 2006), the Scheldt Estuary (Soetaert et al., 2006) and other 435 

continental European rivers discharging into the North Sea (Emeis et al., this volume), 436 
the open Northern Adriatic (Giani et al., 2012), and the NW Black Sea (McQuatter-437 
Gollop et al., 2009).  In some instances P reduction has been considered to be a primary 438 

driver of these changes.  In the areas subject to oligotrophication, overfishing may act 439 
synergistically to diminish the trophic chain and reduce seafood resources (B5).  440 

However, along the Danish and Finnish coasts, dissolved oxygen in bottom waters 441 
continues to drop despite efforts to reduce nutrient discharge (Carstensen et al., 2014). In 442 

the Baltic Sea, which hosts nearly 20% of the world‘s identified coastal hypoxic sites, 443 
climate and nutrient drivers interact with regional circulation patterns and wastewater 444 
treatment technologies to produce a mosaic of faunal responses (Conley et al., 2011).  445 
 446 

While eutrophication-induced hypoxia is spreading, warming also causes the ocean to 447 
lose oxygen due to the synergistic effect of reduced oxygen solubility and enhanced 448 
water column stratification (Bopp et al., 2001). This has been termed deoxygenation and 449 

contributes to global expansion of oxygen minimum zones (Stramma et al. 2010).  Recent 450 
model results demonstrate the extreme sensitivity of the volume of suboxic water in the 451 
open ocean to changing climate conditions (Deutsch et al., 2011).  Biological analyses 452 
suggest that equator-ward species boundaries are highly sensitive to changes in ocean 453 
temperature and oxygen content.  Models predict a decline in metabolic scope of species 454 
(energy available for maintenance and reproduction) and functional habitat loss.   455 
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On margins both eutrophication and intensified upwelling typically increase production 456 

while drawing down oxygen and creating hypoxia at deeper water levels.  Animal 457 
avoidance of hypoxia acts to aggregate species around or above hypoxic zones, and leads 458 
to habitat compression, both in estuarine settings and in open-ocean oxygen minimum 459 

zones (OMZs). The resulting aggregations are susceptible to overfishing (Craig, 2012, 460 
Breitburg et al., 2009b), but high catches may mask the consequences of ecosystem 461 
stress, making detection of habitat degradation difficult (Breitburg et al., 2009b).  Such 462 
conditions also induce shoaling of the zooplankton biomass layer at the thermocline 463 
(upper oxycline boundary) and concentration of midwater biomass in a layer at the lower 464 

oxycline  (Wishner et al., 2013). As oxygen declines and oxygen minima shoal in both 465 
the Atlantic and Pacific, large billfish are now found at shallower depths and are 466 
increasingly susceptible to overfishing (Prince and Goodyear, 2006; Prince et al., 2010; 467 
Stramma et al., 2011).  468 

 469 
Upwelling margins, which host key world fisheries, exhibit strong vertical gradients in 470 

temperature, oxygen and pH associated with oxygen minimum zones (Paulmier et al., 471 
2011). Across these gradients bathyal benthic assemblages reveal shifts in diversity, body 472 

size, zonation, carbon processing, bioturbation, colonization and resilience (Levin, 2003, 473 
Levin et al. 2009; Gilly et al., 2013; Levin et al., 2013). Intensified upwelling is predicted 474 
to result in changes in biodiversity and ecosystem functioning associated with the 475 

expansion of OMZs (Stramma et al., 2010; Gilly et al., 2013).  Recent onset of seasonal 476 
hypoxia on the Oregon inner shelf now causes summer die-offs of fish and invertebrates 477 

(Grantham et al., 2004).  Responses to intensified upwelling winds and increased 478 
stratification can also vary regionally. For example, comparative analyses of the 479 
California and Canary systems reveal substantial differences in the responses of 480 

biological production and air–sea CO2 fluxes to upwelling intensification in these two 481 

systems (Lachkar and Gruber, 2013). These differences have been attributed to various 482 
drivers such as the contrasting shelf topography, eddy activity, coastal water residence 483 
times and basin-scale forcing in the two regions (Marchesiello and Estrade, 2009; 484 

Lachkar and Gruber, 2013). These differences also affect the vulnerability of these 485 
ecosystems to global anthropogenic perturbations such as ocean acidification (Lachkar, 486 

2014). Other upwelling regions have received less attention and could exhibit additional 487 
(or alternative) response mechanisms.    488 

 489 
CO2-induced climate change is the predominant forcing on the ecosystem of the polar 490 
margins (S8).  Warming of the Arctic is taking place two to three times faster than global 491 
rates (Trenberth et al., 2007); as a result sea-ice cover has been decreasing at a rate of 492 

>10% per decade with ice-free summers expected in a few decades. Arctic ecosystems 493 
are increasingly being challenged by tipping elements (Duarte et al., 2012; Naam, 2012; 494 
Wassmann and Lenton, 2012).  In the future Norway may experience decreased primary 495 

productivity, while Russia will show increased productivity. Nowhere will adaptation be 496 
a more critical element of sustainability than in the Arctic, because the Arctic shelves 497 
have inordinate importance in feeding the world population. (See S8 for more details) 498 
 499 
Among the many effects of rising atmospheric CO2, the significant decrease of ocean pH 500 
(ocean acidification) and shift in seawater carbonate chemistry (Doney et al., 2001) may 501 
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elicit some of the most economically significant responses from margin ecosystems.  502 

Acidification alters seawater chemical speciation, most notably the lowering of calcium 503 
carbonate saturation states, which impacts shell-forming marine organisms from plankton 504 
to benthic molluscs, echinoderms, and corals, all of which are abundant in continental 505 

margins.  Ocean acidification is exacerbated in the coastal zone by increased land-derived 506 
nutrient inputs, which enhance, in turn, productivity of organic matter and therefore 507 
respiration and release of CO2 (e.g., Borges and Gypens, 2010; Cai et al., 2011).  A 508 
serious drop of aragonite saturation state has occurred in some coastal seas, such as the 509 
North Yellow Sea, threatening the aquaculture of shellfish (e.g., Zhai et al., 2014). Coral 510 

reef ecosystems, which provide key fisheries, critical shoreline protection and habitats for 511 
a large number of species, are highly susceptible (Andersson and Gledhill, 2013). Due to 512 
ocean acidification, rates of coral calcification may decrease, whereas rates of bioerosion 513 
and carbonate dissolution may increase, resulting in a transition from net accretion to net 514 

erosion. Impairment of the calcifying capacity of marine organisms is therefore expected 515 
to have negative impacts on coral reefs and other calcifiers (e.g., bivalves) and on the 516 

ecosystem services they provide.  517 
 518 

The complexity of ocean biogeochemical-ecosystem interactions on margins means that 519 
some drivers will create responses that generate feedback – further altering a system. One 520 
example occurs when acidification-induced undersaturation of carbonate minerals 521 

adversely affects shell growth and settlement success of bivalves and coral polyps 522 
building reefs; this is predicted to ultimately reduce oyster, mussel and clam populations 523 

and coral reef building. Locally, the presence of large oyster populations buffers 524 
increasing CO2 and decreasing pH through shell dissolution and alkalinity increase. So 525 
lowered pH ultimately reduces local buffering capacity, leading to further reductions in 526 

pH when the mineral buffer is exhausted. In addition, mass removal of shellfish (by 527 

harvest), could contribute to a deficit in the carbonate balance, as the shells form a 528 
dissolution buffer needed by many animals to survive (Waldbusser et al., 2013).  529 
Populations may be reduced to the point of unsustainability leading to ‗recruitment 530 

overfishing‘.  531 
 532 

On some margins high-frequency climate oscillations are the dominant driver of 533 
biogeochemical variation and consequently, ecosystem structure.  In the Bay of Calvi in 534 

the Ligurian Sea of the NW Mediterranean (Goffart et al., this issue) the biogeochemical 535 
condition is very oligotrophic during mild winters and mesotrophic during moderate 536 
winters (B7). During severe winters, the Bay sustains a ―high nutrient - low chlorophyll‖ 537 
situation.  With little human disturbances this Bay may serve as the baseline, against 538 

which ecosystem changes in the Mediterranean due to direct human impacts can be 539 
detected (see B7 for more details). In the East Pacific Ocean, interannual variations 540 
linked to ENSO induce low productivity (well oxygenated) El Nino and high productivity 541 

(low oxygen) La Nina conditions that affect fisheries production in the Humboldt and 542 
California and Benguela current ecosystems (Arntz et al., 2006). 543 
 544 

5. Using time series to distinguish drivers of change 545 
Hydrographic and ecological time series have provided data critical to evaluating and 546 
interpreting change on margins. Koslow and Couture (2013) have referred to ecological 547 
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time series as the Cinderella (hard working drudges) at the climate change ball. Beyond 548 

this they may provide the ―Anthropocene‘s canary in a coal mine‖ for many other forms 549 
of human disturbance. Below we address the approaches, benefits and limitations of time 550 
series in attribution of change on margins. 551 

 552 
Several multi-decadal oceanographic time series measurements from a variety of coastal 553 
and pelagic systems have shown how lower and intermediate trophic levels, and 554 
biogeochemical cycling react to climate oscillations regionally and globally (Chavez et 555 
al., 2003; Black et al., 2011; Church et al., 2013) (Table 1).  Multi-decadal time series of 556 

phytoplankton have been generated for many regions including San Francisco Bay 557 
(Cloern and Jassby, 2013), Chesapeake Bay (Lee et al., 2013), Narragansett Bay 558 
(Borkman and Smayda, 2009), the Cariaco Basin (Chavez et al., 2011, Muller-Karger et 559 
al., 2013), the North Sea (Wiltshire et al., 2008) and areas of the Mediterranean Sea (e.g. 560 

Goffart et al., 2002, Ninčević Gladan et al., 2010, Zingone et al., 2010, Goffart et al., 561 
submitted) including the Northern Adriatic (Bernardi-Aubry et al., 2012, Marić et al., 562 

2012, Mozetič et al., 2012) and Gulf of Naples (Ribera d‘Alcalà et al., 2004).  There are 563 
also Arctic time series in the Bering, Chukchi, and Barents Sea. Most of these reveal 564 

oscillations associated with climate variability (Borkman et al., 2009; Harrison et al., 565 
2010).  Indeed, such long-term ocean time series have been fundamental for expanding 566 
our knowledge about the sensitivity of marine biodiversity, ecosystems and 567 

biogeochemistry to environmental change (Church et al., 2013; Koslow and Couture, 568 
2013). However, moving forward an international network of time series is needed to 569 

evaluate regional linkages and interpret global changes. 570 
 571 
There are some major gaps in time series monitoring. Whereas models of nutrient fluxes 572 

from watersheds abound, monitoring data to verify them do not. In the developing world, 573 

the scarcity of monitoring data adequate to characterize riverine nutrient flows has 574 
impeded our understanding of the relationships with human activities.  Research and 575 
development of monitoring in these regions, should be made a priority, and would 576 

improve our management of coastal waters. It is important to add that not only the N 577 
cycle should be monitored, but also changes in nutrient ratios delivered by rivers. In 578 

particular the Si:N and Si:P ratios should be closely monitored as potential early warning 579 
indicators of disturbances (Billen and Garnier, 2007); indeed, they are often decreasing 580 

due to excessive N and P inputs and decreasing Si inputs due to damming (Humborg, 581 
1997) and the proliferation of invasive species (Ragueneau et al., 2005) causing 582 
replacement of diatoms by dinoflagellates. South East Asia, where anthropogenic factors 583 
leading to decreasing Si:N and Si:P ratios combine, should be especially targeted for 584 

monitoring (Ragueneau et al., 2006). 585 
 586 
Modern time series gain added value when used in conjunction with paleooceanographic 587 

studies (Black et al., 2011) and models (see Church et al., 2013); together these tools 588 
allow researchers to discern natural sources of environmental change from variations 589 
induced by climate change (warming, extreme flooding from river input or snow melt, or 590 
heat waves) and direct human drivers such as eutrophication, damming and fishing 591 
(Koslow and Couture, 2013). In some margin settings subject to long bouts of habitation 592 
and industrialization (e.g., Chesapeake Bay, the coastal SE North Sea, northern Adriatic), 593 
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natural variability is a small signal relative to the influence of humans. In others (e.g., 594 

upwelling margins) natural variability produces an exceedingly strong signal and 595 
irrefutably detecting CO2-driven climate change or anthropogenic forcing is difficult.   596 
 597 

Sediment and glacial ice core climate records often provide the long temporal perspective 598 
needed to identify climate oscillations prior to high anthropogenic CO2 (> 280 ppm) 599 
conditions or resulting from long-term changes in human population density and land use 600 
practices (Cooper and Brush, 1993; Emeis et al., 2000; Yasuhara et al., 2012).  Some of 601 
these geological climate records are now complemented by oceanographic and 602 

biogeochemical time series observations, thus providing valuable insights into the effects 603 
of anthropogenic perturbations on the marine environment (see Black et al., 2011).  604 
 605 
Time Series and Coastal Management. The motivation underlying the establishment of 606 

ecological time series varies. In California, CalCOFI was developed in the 1950s to 607 
understand the boom and bust cycles of the sardine (Bograd et al., 2003; Chavez et al., 608 

2003).  At its inception, the CalCOFI concept of monitoring the entire ecosystem, now 609 
widely accepted in the context of ecosystem-based management, was visionary and 610 

somewhat heretical. In Chesapeake Bay, a long time series of young-of-year fish 611 
abundances in Maryland waters was initiated in 1954 by the state fisheries agency to aid 612 
management of several anadromous species (Durrell and Weedon, 2011), a time series of 613 

jellyfish abundances was begun in 1960 by a University of Maryland researcher in 614 
response to the ‗Jellyfish Nuisance Act‘ (Cargo and King, 1990), and bay-wide time 615 

series monitoring of water quality parameters was begun in the 1980s with funding from 616 
the States of Maryland and Virginia and the US EPA to aid management efforts to 617 
improve water quality conditions (Boesch et al., 2001).  Governments of states bordering 618 

the western coasts of Europe  (OSPAR) and the Baltic Sea (HELCOM) initiated 619 

monitoring programs in the 1970´s to protect the marine environment from all sources of 620 
pollution through intergovernmental cooperation.  621 
 622 

Although each time series is fixed in space and provides local information, when data are 623 
combined across time series they can provide a powerful synoptic understanding of the 624 

link between climate variability and ocean biogeochemistry (Church et al, 2013).  The 625 
ICES Phytoplankton and Microbial Plankton Status Report 2009/2010 exemplifies this 626 

for the North Atlantic (O‘Brien et al., 2012). Records of sea ice cover and tipping points 627 
in the Arctic provide another example (Carstensen and Weydmann, 2012). Under optimal 628 
conditions, time series provide data prior to catastrophe (e.g., fishery collapse) so that 629 
causes can be discerned. It is important, however, to recognize the value of understanding 630 

regional differences and their forcing mechanisms.  631 

Time series constraints.  Spatially fixed time series may have limitations.  Single-location 632 
measurements typically do not reveal spatial expansions, contractions or oscillations.   633 

They cannot recognize change due to relocation of organisms or features, making it 634 
difficult in some cases to untangle spatial and temporal change, although spatial 635 
comparisons can sometimes be used as proxies of temporal change (e.g., Wishner et al., 636 
2013). Satellite remote sensing has typically been the tool of choice for extrapolating 637 
fixed time series observations to broader spatial and temporal scales. Some time-series 638 
stations (i.e., Hawaiian Ocean Time-series [HOT] and the Bermuda Atlantic Time Series 639 
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[BATS]) have been successful at using autonomous samplers and sensors (e.g., gliders, 640 

drifting profilers) for learning the regional significance of the measurements they collect. 641 
These are especially important for hard-to-reach areas like the Arctic and Antarctic, and 642 
can expand coverage for traditional time series in other regions. Autonomous sampling 643 

platforms, however, are expensive to operate and thus are out of reach for time-series 644 
programs with limited resources. Another approach is to engage platforms of opportunity. 645 
Industry with a presence on the ocean margins, such as offshore wind and aquaculture, 646 
fishing, fossil fuel extraction and minerals, may have a role to play in time series 647 
development in the future, and should be broadly engaged to support monitoring efforts.  648 

Expansion of programs like the World Ocean Council Smart Data/Smart Industries 649 
(http://www.oceancouncil.org/site/smart_ocean.php) may be useful. 650 

Time, funding and facilities constraints often limit time series to the upper water column 651 

and basic hydrographic parameters.  To link these to key resource needs and sustainable 652 
management – including aquaculture, fisheries, energy and minerals – it will be necessary 653 
to incorporate the sea floor and its organisms into time-series monitoring. Benthos 654 

monitoring can also provide critical information about biogeochemical feedbacks from 655 
the sea floor, processes often not included in large-scale climate or ecosystem models.  656 

  657 
Most margin time series are not of sufficient duration to detect variation outside normal 658 
statistical variability (especially given decadal-scale cycles emerging in the atmosphere-659 

surface ocean system). Often shifts and change are misattributed due to lack of 660 
knowledge about natural variability and its sources. Paleoceanographic records in ice 661 

cores, sediment cores or tree rings allow us to extend understanding of margin processes 662 
back in time, prior to the establishment of in situ observations (Gooday et al. 2009).   663 

Innovative analyses of scales, teeth, otoliths and ichnofacies may allow use of such 664 
records to reconstruct complex changes in exposure histories and food web dynamics 665 

(Gooday et al., 2009; Morat et al., 2014). Recent development of geochemical proxies for 666 
detection of fish exposure to hypoxia offers the promise of identifying past and present 667 
trends in oxygen concentration using otoliths (Limburg et al., 2011; 2014 [this volume]); 668 

fish scales and other skeletal elements may also prove useful, but require testing.   669 
Chronosequences from long-lived calcifying organisms (e.g., coldwater corals or 670 

bivalves) may provide excellent time series of temperature or pH as a basis for 671 
chronometric analyses similar to dendrochronology (e.g., Chauvaud et al., 2005, 2012; 672 

Black et al., 2008). Novel functional gene microarrays may be used to evaluate the 673 
diversity and composition of the denitrifying microbial community in hypoxic settings 674 
like OMZs, allowing us to better understand how microbial metabolism can impact the 675 

global climate through the production of N2O, a bi-product of denitrification and a 676 
powerful greenhouse gas (Jayakumar et al., 2013).  We need to further develop proxy 677 
variables for environmental reconstructions, expand the data bases for regional-scale 678 
hindcasts, and strive to detect and interpret interannual variability from low resolution 679 

archives. 680 
 681 
While valuable in having fixed measurements, time series may also need to have an 682 
adaptive observation component focused on (a) identifying changes and their underlying 683 
causes and (b) monitoring parameters tied to the ecosystem services we care about, in 684 
order to directly address policy concerns for effective management of these services.  685 

http://www.oceancouncil.org/site/smart_ocean.php
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There is often a gap between what we can realistically measure, and what we want to 686 

achieve. This highlights the importance of research on basic processes and mechanisms 687 
that will identify indicators of change and incorporate process-based knowledge into our 688 
models. Often the early warning of degradation will come from land.  For example, 689 

agricultural inputs, nutrient concentrations, N:P, Si:P , Si:N ratios or multiple nutrient 690 
concentration data together could be key indicators (Billen and Garnier, 2007). 691 

The burgeoning number of time series and rising volumes of data highlight a need to 692 
engage more scientists in the analysis phase of time series research. There is also a 693 
challenge of maintaining continuity in the face of severe funding shortages; scientists 694 

must advocate for continuation of monitoring programs.  Key to the successful 695 
continuation of time series is concise presentation of insight gained and raising the 696 
awareness of the public and policy makers of their value.  It is here that social scientists 697 

can help natural scientists learn how to make a strong case without loss of integrity and 698 
accountability. 699 
 700 

6. The continental margin in the Anthropocene: the convergence of 701 

biogeochemistry, ecosystems and society 702 
 703 
To be effective, economic models must be able to weigh the costs of the unwanted 704 
impacts of stressors and forcings on ecosystem services discussed above and associated 705 

consequences against gains for society, and to attribute change to specific and 706 
controllable drivers. To date scientists have failed to convey the message of the 707 

overriding importance and societal consequences of CO2 emissions (as well as other 708 
greenhouse gases) in the context of global warming.  Investment in collaboration efforts 709 

between social and natural scientists, development of outreach and public communication 710 
skills, and advocacy about the importance of individual actions are required to manage 711 

margins effectively (Pidgeon and Fischhoff, 2011).  A need to combine scientific with 712 
traditional and local ecological knowledge, especially in settings such as the Arctic, 713 
further argues for key social-natural science integration. 714 

 715 
There is growing need for modeling of coupled human (social)-biogeochemical systems 716 

on margins.  A pioneering example can be found for the surfclam fishery on the Middle 717 
Atlantic Bight (MAB) continental shelf (McCay et al., 2011). This million-dollar fishery 718 

has been managed since the 1990s with transferable quotas, one of the first in the US to 719 
do so. In recent decades the population has shifted to the north and overall abundance has 720 
declined (Weinberg, 2005).  Simulations of surfclam growth that use 50-year hindcasts of 721 

bottom temperature obtained from an implementation of the Regional Ocean Modeling 722 
System for the MAB (Kang and Curchister, 2013) show that episodic warming events 723 
increase surfclam mortality and limit animal size in the southern portion of its range 724 
(Narváez et al, this issue). The resulting northward movement of the stock has negative 725 

economic consequences for the fishing fleet and processing plants. These studies point to 726 
a key role for natural scientists in assessment of the socio-economic consequences of 727 
climate change (McCay et al., 2011). 728 
 729 
Disasters can sometimes serve as catalysts for action. In the United States, several 730 
disaster events have caught the attention of the scientific community and policy makers, 731 
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and have resulted in the development of large-scale monitoring efforts that seek to 732 

mechanistically understand these events and mitigate their impacts by improving our 733 
predicting capabilities. One example is the unexpected failure of the oyster aquaculture 734 
fishery on the US Pacific coast due to upwelling of carbonate-undersaturated waters 735 

(Barton et al., 2012); this stimulated state-sponsored research programs on ocean 736 
acidification (Adelsman and Binder, 2012). Highly destructive Superstorm Sandy 737 
stimulated sea level rise preparedness, and massive fish kills resulting from hurricane-738 
induced release of hog waste and sewage in North Carolina (Malin et al., 1999) have 739 
engendered public support for altered agricultural practices and backup treatment plants. 740 

These types of events are not one–time occurrences, but are likely to become more 741 
frequent. For example, low bottom-water aragonite saturation values on shelves are 742 
expected to have negative effects on shellfish in the Yellow Sea (Zhai et al., 2014) and 743 
off California (Gruber et al., 2012).  The costs required for building community, industry 744 

and ecosystem resilience are now being weighed against the massive costs of disaster 745 
damage and disaster relief.   746 

 747 
While continued and expanded time series measurements are essential to monitor status 748 

and trends, scientists often know enough to make strong policy recommendations 749 
regarding CO2, nutrients and human activities. In many instances adaptation to change is 750 
required and distinguishing among drivers is not essential for policy decisions.  Whether 751 

reduced sediment inputs to the coastal zone result from damming or from drought, it will 752 
still be necessary to prepare for climate-related sea level rise and associated consequences 753 

of limited land-building and net loss of coastal wetlands. For anadromous fishes, loss of 754 
freshwater inputs from damming versus drought will have similar consequences, as will 755 
loss of river-sea connectivity from eutrophication induced hypoxia versus upwelling-756 

induced deoxygenation.  For coastal shellfish, the corrosive effects of acidification may 757 

result from atmospheric CO2 inputs, intensified upwelling, increased stratification, 758 
anthropogenic nutrient loads, precipitation or sea ice melting. Acting to reduce CO2 759 
emissions and limit the now-inevitable rise in ocean temperatures, acidification, and 760 

deoxygenation is critical.   761 
 762 

There is growing consensus that direct anthropogenic stressors such as overexploitation 763 
of natural resources (fisheries, mining), habitat destruction, land use/cover change, 764 

alteration of river catchments, coastal construction, damming, species invasion and 765 
pollution will lower the resilience of populations, species and ecosystems and make them 766 
less able to cope with climate-induced stress (Bijma et al., 2013).  For example, reducing 767 
fishing mortality in exploited populations can also reduce total mortality and be 768 

protective of declining populations, even where part of that total mortality was due to 769 
hypoxia, disease or habitat degradation (Breitburg et al., 2009b). Thus policy, law and 770 
management of margins must consider and address climate and direct human stressors 771 

together. Relevant lessons can be drawn from regional, time series and case studies where 772 
different combinations of stressors interact and their trends have been tracked over time. 773 
Understanding system connectivities, seeking indicators of regime change, and 774 
promoting adaptation-oriented policy to build functional resilience, are lessons from the 775 
Arctic (Carmack et al., 2012) that apply well to most margin ecosystems. The recently 776 
released IPCC AR5 report emphasizes the overwhelming need for societal adaptation to 777 
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multiple stressors associated with climate change, especially in countries where poverty 778 

will exacerbate the consequences (Field et al. IPCC 2014). 779 
 780 
The recognition of the importance of natural capital and ecosystem services to national 781 

wealth has come slowly to some nations.  In the USA this is now evidenced by the 782 
generation of a National Ocean Policy (2004; http://ioc-783 
unesco.org/images/stories/LawoftheSea/Documents/NationalOceanPolicy/nop.usa.pdf). 784 
To a large extent this policy addresses the continental margins, where most of the key 785 
services and commercial resources are provided. The Marine Strategy Framework 786 

Directive (Directive 2008/56/EC, 787 
http://ec.europa.eu/environment/water/marine/ges.htm), adopted by the European 788 
Commission in 2008, marks an important milestone in the development of the EU‘s 789 
marine environmental policy and is the first framework instrument aimed expressly at 790 

protecting and preserving the marine environment with a holistic approach. In 2012 The 791 
EU launched its Blue Growth initiative 792 

(http://ec.europa.eu/maritimeaffairs/policy/blue_growth/) that addresses three crucial 793 
components of sustainable development of marine resources: gathering and channeling 794 

marine knowledge to improve access to information about the continental margins of 795 
Europe, maritime spatial planning to aid management of offshore resources, and 796 
integrated maritime surveillance. Other nations have national ocean policies in review 797 

(e.g., South Africa) or in early stages of formulation (Namibia). 798 
 799 

Margin management strategies must move from mono- to multiple stressor 800 
considerations.  Most policies and research programs address only one or two factors – 801 
nutrients, oxygen, ocean acidification, fishing pressure, disease, or invasive species, (e.g., 802 

Crain et al., 2008). We know that T, O2 and CO2 are changing simultaneously and 803 

interacting (Bijma et al., 2013). There is need for scientific consensus on a) what the 804 
multistressor questions are and b) how to approach the issues.  How to integrate 805 
laboratory studies, field observations, monitoring, modeling, and use of proxies to 806 

address these questions remains a major challenge. 807 
 808 

To incorporate natural variability and climate change into our decision making and 809 
management activities we need research that identifies, quantifies and confronts 810 

management tradeoffs. Stakeholder identification and finding equitable solutions is 811 
critical as every decision has winners and losers. We must quantify the economic costs of 812 
nutrient reduction for agriculture, fishers, and ecosystem services.  Margin researchers 813 
have only just begun to tackle the larger question of valuing ecosystem services and 814 

biodiversity on the continental slope beyond the shelf –this is especially critical in deep 815 
waters where resource extraction activities (energy, minerals and deep-water fishing) are 816 
on the rise (Levin and Dayton, 2009; Jobstvogt et al., 2013). 817 

 818 
As both top predators and guardians of the planet we face immense ocean policy 819 
challenges over the next 10-50 years. The mentality of many nations is of a land-based 820 
society.  Managing a fluid -connected environment is fundamentally different than 821 
managing land use where discrete boundaries between impacted and more pristine areas 822 
can be maintained. There is a spatial disconnect between farm policies and their effects 823 

http://ioc-unesco.org/images/stories/LawoftheSea/Documents/NationalOceanPolicy/nop.usa.pdf
http://ioc-unesco.org/images/stories/LawoftheSea/Documents/NationalOceanPolicy/nop.usa.pdf
http://ec.europa.eu/maritimeaffairs/policy/blue_growth/
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on the coastal ocean and our margins. Even international climate negotiations 824 

(Converence of Parties) involve remarkably little consideration of ocean processes, 825 
despite the large role the ocean plays in regulating climate.  The concepts underlying 826 
sustainability in ocean margins must involve an educational thrust that starts early, as 827 

well as strategies to communicate at national and international levels. We need to better 828 
understand the process by which science is introduced to policy, and target and fast track 829 
scientific approaches that meet those needs. End-to-end efforts are needed that first bring 830 
together the natural and human component of socio-ecosystems; and then work with 831 
stakeholders and policy makers towards finding and implementing solutions. 832 

 833 
This article focuses on the impacts of the 20

th
 century; we recognize that the 21

st
 century 834 

may involve a different suite of primary stressors, some of which are as yet unknown. 835 
The continental margins of the future will undergo further changes as the system is 836 

continuously perturbed. As human populations grow, needs for fresh water, energy, 837 
space, and food will create new demands of the coastal ocean including coastal 838 

aquaculture, wind farms, wave energy stations and desalinization plants, intensified 839 
shipping activities, and seabed mineral exploration.  840 

 841 
Holistic consideration of margins facing the confluence of human, climate and natural 842 
stressors highlights the need to integrate science with societal needs. Building on work of 843 

others (e.g., Islam and Tanaka, 2004), we identify the need to:  844 

 Formulate a clear understanding of the environmental, ecological and economic 845 
value of margin ecosystems and how these vary under different climate regimes. 846 

 Enact water quality management that recognizes land-ocean-atmosphere 847 
exchanges controlled by climate and humans. 848 

 Enact comprehensive monitoring to link policy-based changes in drivers to 849 
ecosystem responses 850 

 Improve cooperation of stakeholders, regulators, scientists and civil society 851 

 Scale and coordinate local, regional, national and international activities to 852 

maximize knowledge and promote modeling efforts 853 

 Protect key services via ecosystem-based management  854 

 Develop mechanisms to translate scientific knowledge into regulation and 855 
legislation, and the political realities needed to achieve action. 856 

 857 
Ultimately, we will need to set priorities, accept tradeoffs and motivate creative solutions. 858 
These goals are very much in line with the approach of the Future Earth Initiative to meet 859 
the grand challenge of global sustainability (Reid et al., 2010). Interactions among social 860 

and natural scientists are nascent, but a growing number of national and international 861 
programs recognize their importance.  Achieving sufficient energy, water, food and 862 
healthy margin ecosystems is a tall order, but a challenge that natural and social scientists 863 

must work together to meet head on.  864 
 865 

6. Acknowledgements 866 
 867 

We are grateful for the hospitality of the National Institute of Oceanography, Goa, India, 868 
which hosted the IMBIZO III. Support for the workshop was provided by IMBER (a core 869 



 20 

project of IGBP), SCOR and a host of co-sponsors. We thank two anonymous reviewers 870 

for their comments which have improved the manuscript. L. Levin‘s and D. Breitburg‘s 871 
attendance was supported by the US Ocean Carbon Biogeochemistry program and 872 
IMBER.  Levin‘s research support is from NOAA - California Sea Grant College 873 

Program Project # R/CC-04 and NSF OCE 0927445 and 1041062.  Support for E. 874 
Hofmann was provided by NSF grant GEO-0908939.  Support for K.-K. Liu was 875 
provided by the Ministry of Science and Technology, Taiwan, and SCOR. 876 

 877 

7. References 878 
 879 
Adelsman, H., and Binder, L. W. (Eds.) (2012) Washington State Blue Ribbon Panel on 880 

Ocean Acidification (2012): Ocean Acidification: From Knowledge to Action, 881 
Washington State’s Strategic Response, Washington Department of Ecology, 882 

Publication no. 12-01-015, Olympia, Washington. 883 
Alheit, J. Licandro, P,  Coombs, S., Garcia, A., Giráldez, A., Santamaría,  M.,  Slotte, A., 884 

Tsikliras, A. Atlantic Multidecadal Oscillation (AMO) modulates dynamics of 885 
small pelagic fishes and ecosystem regime shifts in the eastern North and Central 886 

Atlantic, Journal of Marine Systems, Volume 131, March 2014, Pages 21-35, 887 
ISSN 0924-7963, http://dx.doi.org/10.1016/j.jmarsys.2013.11.002. 888 

Alin, S. R., Feely, R. A., Dickson, A. G., Hernandez-Ayon, J. M., Juranek, L. W., Ohman, 889 

M. D., and Goericke, R. (2012) Robust empirical relationships for estimating the 890 
carbonate system in the southern California Current System and application to 891 

CalCOFI hydrographic cruise data (2005-2011), Journal of Geophysical Research 892 
117, C05033. 893 

Andersson, A.J., Gledhill, D., (2013). Ocean acidification and coral reefs: Effects on 894 

breakdown, dissolution, and net ecosystem calcification. Annual Review of 895 

Marine Science, 5: 321-348 896 
Antia, Avan, Maaßen, J., Herman, P., Voß, M., Scholten, Jan, Groom, S. and Miller, 897 

P. (2001) Spatial and Qualitative Patterns of Particle Flux at the European 898 

Continental Margin: The OMEX I Project Deep-Sea Research Part II-Topical 899 
Studies in Oceanography, 48 (14-15). pp. 3083-3106. 900 

Arntz, W.E., V.A. Gallardo, D. Guteierrez, E. Isla, L.A. Levin, J. Mendo, C. Neira, G. 901 
Rowe, J. Tarazona and M. Wolff. (2006) ENSO and similar perturbation effects 902 

on the benthos of the Humboldt, California and Benguela Current upwelling 903 
ecosystems. Advances in Geosciences 6, 243-265. 904 

Astor, Y.M., Lorenzoni, L., Thunell, R., Varela, R., Muller-Karger, F., Troccoli, L., 905 
Taylor, G.T., Scranton, M.I., Tappa, E., Rueda, D., (2013) Interannual variability 906 

in sea surface temperature and fCO2 changes in the Cariaco Basin. Deep-Sea Res. 907 
II, doi:10.1016/j.dsr2.2013.01.002. 908 

Banner, F.T., Collins, M.E., Massey, M.S. (Eds) (1980) The North-West European Shelf 909 

Seas: The Sea Bed and the Sea in Motion II. Physical and Chemical 910 
Oceanography, and Physical Resources. Elsevier Oceanography Series, Volume 911 
24, Part B, 301-638.  912 

Barnosky, A.D., Hadly, E.A., Bascompte, J., Berlow, E.L., Brown, J.H., Fortelius, M., 913 
Getz, W.M., Harte, J., Hastings, A., Marquet, P.A., Martinez, N.D., Mooers, A., 914 
Roopnarine, P., Vermeij, G., Williams, J.W., Gillespie, R., Kitzes, J., Marshall, 915 



 21 

C., Matzke, N., Mindell, D.P., Revilla, E., Smith, A.B., 2012. Approaching a state 916 

shift in Earth‘s biosphere. Nature, 486, 52-58, doi:10.1038/nature11018. 917 
Barton, A., Hales, B., Waldbusser, G.G., Langdon, C., and Feely, R.A. (2012) The 918 

Pacific oyster Crassostrea gigas, shows negative correlation to naturally elevated 919 

carbon dioxide levels: implications for near-term ocean acidification effects. 920 
Limnol. Oceanogr.57, 698–710 921 

Beaugrand, G. (2004) The North Sea regime shift: evidence, causes, mechanisms and 922 
consequences, Progress in Oceanography 60, 245-262. 923 

Behrenfeld, M. J., R. T. O´Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. 924 

Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier and E. S. Boss (2006) 925 
"Climate-driven trends in contemporary ocean productivity." Nature 444, 752-926 
755. 927 

Bernardi Aubry, F., Cossarini, G., Acri, F., Bastianini, M., Bianchi, F., Camatti, E., De 928 

Lazzari, A., Pugnetti, A., Solidoro, C., Socal, G. (2012) Plankton communities in 929 
the northern Adriatic Sea: patterns and changes over the last 30 years. Estuarine, 930 

Coastal and Shelf Science 115, 125-137 931 
Bianchi, T. S., Dimarco, S. F., Allison, M. A., Chapman, P., Cowan, J. H., Hetland, R. D., 932 

& Rowe, G. (2008)  Controlling hypoxia on the US Louisiana shelf: Beyond the 933 
nutrient‐ centric view. Eos, Transactions American  Geophysical Union, 89(26), 934 
236-237. 935 

Biastoch, A., Treude, T., Rupke, L. H., Riebesell, U., Roth, C., Burwicz, E. B., Park, W., 936 
Latif, M., Boning, C. W., and Madec, G. (2011) Rising Arctic Ocean 937 

temperatures cause gas hydrate destabilization and ocean acidification, 938 
Geophysical Research Letters 38. 939 

Bijma, J., Portner, H.-O., Yesson, C., and Rogers, A. D. (2013) Climate change and the 940 

oceans-What does the future hold?, Marine Pollution Bulletin 74, 495-505. 941 

Billen G., Garnier J., (2007) River basin nutrient delivery to the coastal sea: Assessing its 942 
potential to sustain new production of non-siliceous algae. Marine Chemistry 106, 943 
148-160 944 

Biscaye, P. E., Flagg, C. N., and Falkowski, P. G. (1994) The shelf edge exchange 945 
processes experiment, SEEP-II: an introduction to hypotheses, results and 946 

conclusions, Deep Sea Research Part II: Topical Studies in Oceanography 41, 947 
231-252. 948 

Black, B.A., G.W. Boehlert, and M. Yoklavich.  (2008) Establishing climate–growth 949 
relationships for yelloweye rockfish (Sebastes ruberrimus) in the northeast Pacific 950 
using a dendrochronological approach. Fisheries Oceanography 17, 368-379. 951 

Black, D., R. Thunell, K. Wejnert, and Y. Astor (2011) Carbon isotope composition of 952 

Caribbean Sea surface waters: Response to the uptake of anthropogenic CO2, 953 
Geophys. Res. Lett., 38, L16609, doi:10.1029/2011GL048538. 954 

Boesch, DF, RB Brinsfield and RE Magnien. (2001) Chesapeake Bay eutrophication. 955 

Journal of Environmental Quality 30, 303-320 956 
Bograd, S. J., Castro, C. G., Di Lorenzo, E., Palacios, D. M., Bailey, H., Gilly, W., and 957 

Chavez, F. P. (2008) Oxygen declines and the shoaling of the hypoxic boundary 958 
in the California Current, Geophysical Research Letters 35. 959 



 22 

Bograd, S. J., Checkley, Jr, D. A., and Wooster, W. S. (2003) CalCOFI: A half century of 960 

physical, chemical, and biological research in the California Current System, 961 
Deep Sea Research Part II: Topical Studies in Oceanography 50, 2349-2353. 962 

Bopp, L., Le Quere, C., Heimann, M., Manning, A.C., Monfray, P., 2002. Climate-963 

induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. 964 
Global Biogeochemical Cycles, 16(2) 10.1029/2001gb001445 965 

Borges, A. V. and N. Gypens (2010). "Carbonate chemistry in the coastal zone responds 966 
more strongly to eutrophication than to ocean acidification." Limnology and 967 
Oceanography 55(1): 346-353. 968 

Borkman, D., H. Barreta-Bekker and P. Henriksen eds. (2009) Long-term phytoplankton 969 
time series.  Journal of Sea Research 61, (1 & 2).  970 

Borkman, D.G., Smayda, T. (2009) Multidecadal (1959-1997) changes in Skeletonema 971 
abundance and seasonal bloom patterns in Narragansett Bay, Rhode Island, USA. 972 

Journal of Sea Research 61, 84-94. 973 
Breitburg, D. L., Adamack, A., Rose, K. A., Kolesar, S. E., Decker, B., Purcell, J. E., 974 

Keister, J. E., and Cowan, J. H. (2003) The pattern and influence of low dissolved 975 
oxygen in the Patuxent River, a seasonally hypoxic estuary, Estuaries 26, 280-297. 976 

Breitburg, D. L., Hondorp, D. W., Davias, L. A., and Diaz, R. J. (2009b) Hypoxia, 977 
nitrogen, and fisheries: integrating effects across local and global landscapes, 978 
Annual Review of Marine Science 1, 329-349. 979 

Breitburg, DL, JK Craig, RS Fulford, KA Rose, WR Boynton, DC Brady, BJ Ciotti, RJ 980 
Diaz, KD Friedland JD Hagy 111, DR Hart, AH Hines, ED Houde, SE Kolesar, 981 

SW Nixon, JA Rice, DH Secor and TE Targett. (2009a) Nutrient enrichment and 982 
fisheries exploitation: interactive effects on estuarine living resources and their 983 
management. Hydrobiologia 2009, 31-47 984 

Caballero-Alfonso, A. et al. (2013) Regional variability of hypoxia in the coastal Baltic 985 

Sea. This volume 986 
Cai, W.J. et al., (2011). Acidification of subsurface coastal waters enhanced by 987 

eutrophication. Nature Geoscience, 4(11): 766-770 988 

Canals, M., Puig, P., Durrieu de Madron, X., Heussner, S., Palanques, A., Fabres, J., 989 
(2006). Flushing submarine canyons. Nature 444, doi:10.1038/nature05271. 990 

Cargo, D.G. and King, D. R. (1990) Forecasting the abundance of the sea nettle, 991 
Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13, 486–491. 992 

Carmack, E., McLaughlin, F., Whiteman, G., Homer-Dixon, T. (2012) Detecting and 993 
coping with disruptive shocks in Arctic marine systems: a resilience approach to 994 
place and people. AMBIO (2012) 41:56–65 DOI 10.1007/s13280-011-0225 995 

Carstensen J, Weydmann A. (2012) Tipping points in the arctic: eyeballing or statistical 996 

significance? Ambio. 2012 Feb;41(1):34-43. doi: 10.1007/s13280-011-0223-8. 997 
Carstensen, J., Conley, D.J., Andersen, J.H., Ærtebjerg, G., (2006) Coastal eutrophication 998 

and trend reversal: a Danish case study. Limnology and Oceanography 51 (1e2), 999 

398e408. 1000 
Carstensen, J., et al. (2014). "Hypoxia in the Baltic Sea: Biogeochemical Cycles, Benthic 1001 

Fauna, and Management." AMBIO 43(1): 26-36. 1002 
Cathalot, C., Rabouille, C., Pastor, L., Deflandre, B., Viollier, E., Buscail, R., Gremare, 1003 

A., Treignier, C., Pruski, A.,( 2010). Temporal variability of carbon recycling in 1004 

http://www.ncbi.nlm.nih.gov/pubmed?term=Carstensen%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22246634
http://www.ncbi.nlm.nih.gov/pubmed?term=Weydmann%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22246634
http://www.ncbi.nlm.nih.gov/pubmed/22246634


 23 

coastal sediments influenced by rivers: assessing the impact of flood inputs in 1005 

the Rhone River prodelta. Biogeosciences 7, 1187-1205. 1006 
Chan, F., Barth, J., Lubchenco, J., Kirincich, A., Weeks, H., Peterson, W., and Menge, B. 1007 

(2008) Emergence of anoxia in the California Current large marine ecosystem, 1008 

Science 319, 920-920. 1009 
Chauvaud L., Dunbar R., Lorrain A., Paulet Y.-M., Thouzeau G., Jean F., Guarini J. -M., 1010 

Mucciarone D. (2005) The shell of the great scallop Pecten maximus as a high 1011 
frequency archive of paleoenvironmental change. Geochemistry Geophysics  1012 
Geosystems 6, Q08001  1013 

Chauvaud L., Patry Y., Jolivet A., Cam E., Le Goff C., Strand Ø., Charrier G., Thébault 1014 
J., Lazure P., Gotthard K., Clavier J. (2012) Variation in size and growth of the 1015 
great scallop Pecten maximus along the latitudinal gradient. PLoS ONE 7,e37717  1016 

Chavez, F. P., Messie, M., and Pennington, J. T. (2011) Marine primary production in 1017 

relation to climate variability and change, Annual Review of Marine Science 3, 1018 
227-260. 1019 

Chavez, F.P., Ryan, J., Lluch-Cota, S.E., Ñiquen C., M., (2003) From Anchovies to 1020 
Sardines and Back: Multidecadal Change in the Pacific Ocean. Science 1021 

299,(5604), 217-221. 1022 
Checkley Jr., D. M., and Barth, J. A. (2009) Patterns and processes in the California 1023 

Current System, Progress in Oceanography 83, 49-64. 1024 

Church, M. J., M. W. Lomas, and F. E. Muller-Karger. (2013) Sea Change: Charting the 1025 
course for biogeochemical ocean time series research in a new millennium. Deep-1026 

Sea Research, Part II: Topical Studies in Oceanography 93, 2-15. 1027 
Cloern, J.E. (1982)  Does the benthos control phytoplankton biomass in South San 1028 

Francisco Bay (USA)?:  Marine Ecology-Progress Series 9,191-202 1029 

Cloern, J. E., and Jassby, A. D. (2012) Drivers of change in estuarine-coastal ecosystems: 1030 

Discoveries from four decades of study in San Francisco Bay, Reviews of 1031 
Geophysics 50. 1032 

Cloern, J.E., (1996) Phytoplankton bloom dynamics in coastal ecosystems : a review with 1033 

some general lessons from sustained investigation of San Francisco Bay, 1034 
California. Reviews of Geophysics 34, 127-168. 1035 

Conley, D.J. and 18 others.  (2011) Hypoxia is increasing in the coastal zone of the Baltic 1036 
Sea. Env. Sci. and Technol. Lett. 45, 6777-6783. 1037 

Conversi, A., Fonda-Umani, S., Peluso, T., Molinero, J.C., Santojanni, A., Edward, M. 1038 
(2010) The Mediterranean Sea regime shift at the end of the1980s, and intriguing 1039 
parallelisms with other European Basins. PLoS ONE 5 (5), e10633. http:// 1040 
dx.doi.org/10.1371/journal.pone.0010633. 1041 

Conversi, A., Peluso, T., Fonda-Umani, S. (2009) Gulf of Trieste: A changing ecosystem. 1042 
Journal of Geophysical Research, 114, C03S90, doi:10.1029/2008JC004763, 1043 
2009 1044 

Cooper, S. R., and Brush, G. S. (1993) A 2,500-year history of anoxia and eutrophication 1045 
in Chesapeake Bay, Estuaries 16, 617-626. 1046 

Craig, J. K. (2012) Aggregation on the edge: effects of hypoxia avoidance on the spatial 1047 
distribution of brown shrimp and demersal fishes in the Northern Gulf of Mexico. 1048 
Marine Ecology Progress Series 445, 75-95.) 1049 



 24 

Crain, C. M., Kroeker, K., and Halpern, B. S. (2008) Interactive and cumulative effects of 1050 

multiple human stressors in marine systems, Ecology Letters 11, 1304-1315. 1051 
Dähnke, K., E. Bahlmann and K.-C. Emeis (2008) A nitrate sink in estuaries? An 1052 

assessment by means of stable nitrate isotopes in the Elbe estuary. Limnol. Ocean. 1053 

53(4), 1504-1511. 1054 
Dame, R. (2012) Bivalve Filter Feeders: in Estuarine and Coastal Ecosystem Processes. 1055 

Springer Publishing Co. 1056 
Dame, R. (2011). Ecology of Marine Bivalves: An Ecosystem Approach. CRC Press, 1057 

Boca Raton, FL. 1058 

Deutsch, C., Brix, H., Ito, T., Frenzel, H., and Thompson, L. (2011) Climate-forced 1059 
variability of ocean hypoxia, Science 333, 336-339. 1060 

deYoung, B., Barange, M., Beaugrand, G., Harris, R., Perry, R. I., Scheffer, M., and 1061 
Werner, F. (2008) Regime shifts in marine ecosystems: detection, prediction and 1062 

management, Trends in Ecology & Evolution 23, 402-409. 1063 
Diaz, R.J., Rosenberg, R., (2008)  Spreading dead zones and consequences for marine 1064 

ecosystems.  Science 321, 926-929. 1065 
Doney, S., Ruckelshaus, M., Duffy, J.E., Barry, J.P., F. Chan, C.A. English, H.M. Galindo, 1066 

J.M. grebmeier, A. B. Hollowed, N. Knowlton, J. Polovina, N. Rabalais, 1067 
W.Sydeman and L. Talley.  2012. Climate change impacts on marine ecosystems. 1068 
Annu. Rev. Mar. Sci. 2012. 4:11–37 1069 

Doney, S.C., Fabry, V.J., Feely, R.A., Kleypas, J.A., (2009) Ocean Acidification: The 1070 
Other CO2 Problem. Annual Review of Marine Science, 1: 169-192 1071 

Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., 1072 
Carstensen, J., Trotter, J. A., and McCulloch, M. (2013) Is ocean acidification an 1073 
open-ocean syndrome? Understanding anthropogenic impacts on seawater pH, 1074 

Estuaries and Coasts, 1-16. 1075 

Duarte, C.M., Agustí, S., Kennedy, H., Vaqué, D. (1999) The Mediterranean climate as a 1076 
template for Mediterranean marine ecosystems: the example of the NE Spanish 1077 
littoral. Progress in Oceanography 44, 245-270. 1078 

Duarte, C.M., Agusti, S., Wassmann, P., Arrieta, J.M, Alcaraz, M., Coello, A., Marba, N., 1079 
Hendriks, I.E., Holding, J., Garcia-Zarandona, I., Kritzberg, E., Vaque, D. (2012) 1080 

Tipping elements in the Arctic marine ecosystem, Ambio 41, 44-55. 1081 
Durell, EQ and C Weedon. (2011) Striped bass seine survey juvenile index web page. 1082 

http://www.dnr.state.md.us/fisheries/juvindex/index.html. Maryland Department 1083 
of Natural Resources, Fisheries Service 1084 

Emeis, K., J. van Beusekom, U. Callies, R. Ebinghaus, A. Kannen, G. Kraus, I. Kröncke, 1085 
H. Lenhart, I. Lorkowski, V. Matthias, C. Möllmann, J. Pätsch, M. Scharfe, H. 1086 

Thomas, R. Weisse and E. Zorita (submitted) The North Sea - a shelf sea in the 1087 
Anthropocene. Journal of Marine Systems (this volume). 1088 

Emeis,K.-C.,  Struck, U., Leipe,T., Pollehne,F., Kunzendorf,H.,  Christiansen,C. (2000)  1089 

Changes in the C, N, P burial rates in some Baltic Sea sediments over the last 150 1090 
years — relevance to P regeneration rates and the phosphorus cycle. Marine 1091 
Geology, 167, (1–2), 43-59 1092 

Feely, R.A., Sabine, C.L., Hernandez-Ayon, J.M., Ianson, D., Hales, B. (2008) Evidence 1093 
for upwelling of corrosive ―acidified‖ water onto the continental shelf. Science 1094 
320, 1490-1492. 1095 

http://www.dnr.state.md.us/fisheries/juvindex/index.html


 25 

Frieder, C., Nam, S., Martz, T., and Levin, L. (2012) High temporal and spatial 1096 

variability of dissolved oxygen and pH in a nearshore California kelp forest, 1097 
Biogeosciences 9, 3917-3930. 1098 

Garrabou, J., Coma, R., Bensoussan, N., Bally, M., Chevaldonne, P., Cigliano, M., Diaz, 1099 

D., Harmelin, J. G., Gambi, M., and Kersting, D. (2009) Mass mortality in 1100 
Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat 1101 
wave, Global Change Biology 15, 1090-1103. 1102 

Giani, M., Djakovac, T., Degobbis, D., Cozzi, S., Solidoro, C., and Umani, S. F. (2012) 1103 
Recent changes in the marine ecosystems of the northern Adriatic Sea, Estuarine, 1104 

Coastal and Shelf Science 115, 1-13. 1105 
Gilly, W.F., Beman, J.M., Litvin, S.Y. and B.H. Robison. (2013) Oceanographhic and 1106 

biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 1107 
21.1-21.28 1108 

Glavovic, B.C. et al., 2014. Living on the Margin in the Anthropocene: Engagement 1109 
Arena for Global Sustainability Research and Action. Science: (Submitted). 1110 

Goffart, A., Hecq, J. H., and Legendre, L. (submitted) Drivers of phytoplankton bloom in 1111 
the oligotrophic Bay of Calvi (NW Mediterranean) : results from a long-term 1112 

study (1979-2011), Progress in Oceanography. 1113 
Goffart, A., Hecq, J.-H., and Legendre, L. (2002) Changes in the development of the 1114 

winter-spring phytoplankton bloom in the Bay of Calvi (NW Mediterranean) over 1115 

the last two decades: a response to changing climate?, Marine Ecology Progress 1116 
Series 236, 45-60. 1117 

Gooday, A.J., Jorissen, F., Levin, L.A., Middelburg, J.J, Naqvi, W., Rabalais, N., 1118 
Scranton, M., Zhang, J. (2009) Historical records of coastal eutrophication and 1119 
hypoxia  Biogeosciences 6, 1-39. 1120 

Grall, J; Chauvaud, L (2002) Marine eutrophication and benthos: the need for new 1121 

approaches and concepts. Global Change Biology, 8: 813-830 1122 
Grantham, B. A., F. Chan, K. J. Nielsen, D. S. Fox, J. A. Barth, A. Huyer, J. Lubchenco, 1123 

and B. A. Menge (2004), Upwelling-driven nearshore hypoxia signals ecosystem 1124 

and oceanographic changes in the northeast Pacific, Nature 429(6993), 749–754, 1125 
doi:10.1038/nature02605. 1126 

Gren, I.-M., 2013. The economic value of coastal waters as nutrient filters for the Baltic 1127 

Sea. Reg Environ Change, 13: 695–703. 1128 

Gruber, N., and Sarmiento, J. L. (1997) Global patterns of marine nitrogen fixation and 1129 
denitrification, Global Biogeochemical Cycles 11, 235-266. 1130 

Gruber, N., Hauri, C., Lachkar, Z., Loher, D., Frolicher, T. L., and Plattner, G.-K. (2012), 1131 

Rapid progression of ocean acidification in the California Current System, 1132 

Science 337, 220-223. 1133 

Han, H., and Allan, J. D. (2008), Estimation of nitrogen inputs to catchments: comparison 1134 
of methods and consequences for riverine export prediction, Biogeochemistry 91, 1135 
177-199. 1136 

Harrison, P.,A. Zingone and E. Phlips ed. (2010) Phytoplankton time series.  Estuaries 1137 
and Coastal Ecosystems , vol. 33, 1138 

Hofmann, E.E., B. Cahill, K. Fennel, MAM Friedrichs, K Hyde, C Lee, A. Mannino, RG 1139 
Najjar, JE O‘Reilly, J Wilkin, J Xue, (2011) Modeling the dynamics of 1140 
continental shelf carbon. Annual Review of Marine Science 3, 93-122. 1141 



 26 

Hofmann, G.E. , T. G. Evans, M. W. Kelly, J. L. Padilla-Gamiño, C. A. Blanchette, 1142 

L.Washburn, F. Chan, M. A. McManus, B. A. Menge, B. Gaylord, T. M. Hill, E. 1143 
Sanford, M. LaVigne, J. M. Rose, L. Kapsenberg, and J. M. Dutton. 2014. 1144 
Exploring local adaptation and the ocean acidification seascape – studies in the 1145 

California Current large marine ecosystem. Biogeosciences, 11, 1053–1064 1146 
Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., 1147 

Downing, J., Elmgren, R., Caraco, N., and Jordan, T. (1996) Regional nitrogen 1148 
budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: 1149 
Natural and human influences, Biogeochemistry 35, 75-139. 1150 

Howarth, R., Swaney, D., Billen, G., Garnier, J., Hong, B., Humborg, C., Johnes, P., 1151 
Morth, C.-M., and Marino, R. (2012) Nitrogen fluxes from the landscape are 1152 
controlled by net anthropogenic nitrogen inputs and by climate, Frontiers in 1153 
Ecology and the Environment 10, 37-43. 1154 

Howarth, R., Swaney, D., Boyer, E., Marino, R., Jaworski, N., and Goodale, C. (2006) 1155 
The influence of climate on average nitrogen export from large watersheds in the 1156 

Northeastern United States, Biogeochemistry 79, 163-186. 1157 
Hsieh, C. H., Glaser, S. M., Lucas, A. J., Sugihara, G. (2005) Distinguishing random 1158 

environmental fluctuations from ecological catastrophes for the North Pacific 1159 
Ocean. Nature 435, 336-340. 1160 

Hughes, TP. (1994) Catastrophes, phase shifts, and large-scale degradation of a 1161 

Caribbean coral reef. Science 265, 1547-1551 1162 
Humborg C, Ittekkot V, Cociasu A, Von Bodungen B (1997) Effect of Danube River 1163 

dam on Black Sea biogeochemistry and ecosystem structure. Nature 386, 385-388 1164 
IPCC (2014). Field et al. Climate Change 2014 : Impacts Adaptation and Vulnerability. 1165 

Summary for Policymakers (Copyright Pending). 1166 

Islam, S., and Tanaka, M. (2004) Impacts of pollution on coastal and marine ecosystems 1167 

including coastal and marine fisheries and approach for management: a review 1168 
and synthesis, Marine Pollution Bulletin 48, 624-649. 1169 

Jahnke, R. (2010), Global synthesis, in Carbon and Nutrient Fluxes in Continental 1170 

Margins: A Global Synthesis, edited by K.-K. Liu, L. Atkinson, R. Quinones and 1171 
L. Talaue-McManus, pp. 597–616. 1172 

Jayakumar, A., Peng, N., and Ward, B. (2013) Denitrifying communities in oceanic 1173 
oxygen deficient zones using microarray analyses, IMBIZO III: The future of 1174 

marine biogeochemistry, ecosystems and societies, IMBER, Goa, India. 1175 
Jobstvogt, N., Hanley, N., Hynes, S., Kenter, J., and Witte, U. (2013) Twenty thousand 1176 

sterling under the sea: Estimating the value of protecting deep-sea biodiversity, 1177 
Ecological Economics 97, 10-19. 1178 

Kennedy, V.S., 1984. The estuary as a filter.  ???? 1179 
Kennett, J. P., Cannariato, K. G., Hendy, I. L., and Behl, R. J. (2003) Methane hydrates 1180 

in Quaternary climate change: The clathrate gun hypothesis, American 1181 

Geophysical Union. 1182 
Koslow, J. A., and Couture, J. (2013) Ocean science: Follow the fish, Nature 502, 163-1183 

164. 1184 
Lachkar, Z. (2014) Effects of upwelling increase on ocean acidification in the California 1185 
 and Canary Current systems, Geophys. Res. Lett., 40, 1186 
 doi:10.1002/2013GL058726. 1187 



 27 

Lachkar, Z., and Gruber, N. (2013), Response of biological production and air-sea CO2 1188 

fluxes to upwelling intensification in the California and Canary Current Systems, 1189 
Journal of Marine Systems 109, 149-160. 1190 

Lassaletta, L., Romero, E., Billen, G., Garnier, J., Garcia-Gomez, H., and Rovira, J. 1191 

(2012), Spatialized N budgets in a large agricultural Mediterranean watershed: 1192 
high loading and low transfer, Biogeosciences 9, 57-70. 1193 

Lee, YJ, WR Boynton, M Li and Y Li. (2013) Role of late wnter-spring wind influencing 1194 
summer hypoxia in Chesapeake Bay. Estuaries and Coasts 36, 683-696 1195 

Lejeusne, C., Chevaldonne, P., Pergent-Martini, C., Boudouresque, C. F., and Perez, T. 1196 

(2010) Climate change effects on a miniature ocean: the highly diverse, highly 1197 
impacted Mediterranean Sea, Trends in Ecology & Evolution 25, 250-260. 1198 

Levin, L. A. (2003) Oxygen minimum zone benthos: adaptation and community response 1199 
to hypoxia, in Oceanography and Marine Biology, an Annual Review, Volume 41: 1200 

An Annual Review, edited by R. Gibson and R. Atkinson, pp. 1-45. 1201 
Levin, L. A., and Dayton, P. K. (2009) Ecological theory and continental margins: where 1202 

shallow meets deep, Trends in Ecology & Evolution 24, 606-617. 1203 
Levin, L. A., and Sibuet, M. (2012) Understanding continental margin biodiversity: a 1204 

new imperative, Annual Review of Marine Science 4, 79-112. 1205 
Levin, L. A., Boesch, D. F., Covich, A., Dahm, C., Erseus, C., Ewel, K. C., Kneib, R. T., 1206 

Moldenke, A., Palmer, M. A., and Snelgrove, P. (2001) The function of marine 1207 

critical transition zones and the importance of sediment biodiversity, Ecosystems 1208 
4, 430-451. 1209 

Levin, L., Ekau, W., Gooday, A., Jorissen, F., Middelburg, J., Naqvi, W., Neira, C., 1210 
Rabalais, N., and Zhang, J. (2009) Effects of natural and human-induced hypoxia 1211 
on coastal benthos, Biogeosciences Discussions 6, 3563-3654. 1212 

Levin, L.A., C. Frieder, M. Navarro, J. Gonzalez, T. Martz. (2013) Hypoxia, hypercapnia 1213 

and homosapiens on upwelling margins.  Oral Presentation, IMBER IMBIZO III, 1214 
Goa, India, Jan. 2013. 1215 

Limburg, K.E., C. Olson, Y. Walther, D. Dale, C. Slomp, and H. Høie  (2011) Tracking 1216 

Baltic hypoxia and cod migration over millennia with natural tags.  Proceedings 1217 
of the National Academy of Sciences of the U.S. doi:10.1073/pnas.1100684108. 1218 

Limburg, K.E., B.D. Walther, Z. Lu, G. Jackman, J. Mohan, Y. Walther, A. Nissling, 1219 
P.K. Weber, and A.K. Schmitt  (2014)  In search of the dead zone: use of otoliths 1220 

for tracking fish exposure to hypoxia.  Journal of Marine Systems. DOI: 1221 
10.1016/j.jmarsys.2014.02.014 1222 

Limburg, K. E., Walther, B. D., Lu, Z., Jackman, G., Mohan, J., Walther, Y., Nissling, A., 1223 
Weber, P. K., and Schmitt, A. K. (submitted), In search of the dead zone: use of 1224 

otoliths for tracking fish exposure to hypoxia. 1225 
Liu, K.-K., Yan, W., Lee, H.-J., Chao, S.-Y., Gong, G.-C., Yeh, T.-Y. (this issue) Impacts 1226 

of increasing dissolved inorganic nitrogen discharge from Changjiang on primary 1227 

production and sediment oxygen consumption in the East China Sea from 1970 to 1228 
2002. J. Mar. Syst. 1229 

Liu, K.K., Atknison, L., Quinones, R., Talaue-McManus, L. (Eds) (2010) Carbon and 1230 
nutrient fluxes in continental margins: A global synthesis. Springer, Heidelberg 1231 
Germany, 744 pp. 1232 



 28 

Liu, S. M. (submitted, this issue) Response of nutrient transports to human activities in 1233 

the ecosystem of the Bohai: under the influence of artificial floods. 1234 
Liu, S., Zhang, J., Gao, H., and Liu, Z. (2008) Historic changes in flux of materials and 1235 

nutrient budgets in the Bohai, Acta Oceanologica Sinica 27, 1-17. 1236 

Mallin, M. A., Posey, M. H., Shank, G. C., McIver, M. R., Ensign, S. H., and Alphin, T. 1237 
D. (1999) Hurricane effects on water quality and benthos in the Cape Fear 1238 
watershed: natural and anthropogenic impacts, Ecological Applications 9, 350-1239 
362. 1240 

Marba, N. and C.M. Duarte (2010) Mediterranean warming triggers seagrass (Posidonia 1241 

oceanica) shoot mortality. Global Change Biology, 16, 2366–2375. 1242 
Marchesiello, P., and P. Estrade (2009) Eddy activity and mixing in upwelling systems: 1243 

A comparative study of Northwest Africa and California regions, Int. J. Earth 1244 
Sci., 98, 299–308, doi:10.1007/s00531-007-02356. 1245 

Marić, D., Kraus, R., Godrijan, J., Supić, N., Djakovac, T., Precali, R. (2012) 1246 
Phytoplankton response to climatic and anthropogenic influence in the north-1247 

eastern Adriatic during the last four decades. Estuarine, Coastal and Shelf Science 1248 
115, 98-112.  1249 

McCay, BJ, S. Brandt, C. Creed  (2011) Human dimensions of climate change and 1250 
fisheries in a coupled system: the Atlantic surfclam case.  ICES J. Mar. Sci. 1251 
(2011) 68 (6): 1354-1367. doi: 10.1093/icesjms/fsr044 1252 

McClatchie, S., Goericke, R., Cosgrove, R., Auad, G., and Vetter, R. (2010)  Oxygen in 1253 
the Southern California Bight: multidecadal trends and implications for demersal 1254 

fisheries, Geophysical Research Letters 37, L19602. 1255 
McFarlane, G. A., Smith, P. E., Baumgartner, T. R., and Hunter, J. R. (2002)  Climate 1256 

variability and Pacific sardine populations and fisheries, American Fisheries 1257 

Society Symposium 32, 195-214. 1258 

McQuatter-Gollop, A., Gilberrt, A.J., Mee, L.D., Vermaat, J.E., Artioli, Y., Humborg, C., 1259 
Wulff, F., (2009) How well do ecosystem indicators communicate the effects of 1260 
anthropogenic eutrophication? Estuarine, Coastal and Shelf Science 82, 583e596. 1261 

Mee, L. D., Friedrich, J., and Gomoiu, M. T. (2005) Restoring the Black Sea in times of 1262 
uncertainty, Oceanography, 18, 100–111 1263 

Möllmann, C., Conversi A., Edwards M. (2011) Comparative analysis of European wide 1264 
marine ecosystem shifts: a large-scale approach for developing the basis for 1265 

ecosystem-based management. Biology Letters 7, 484-486. 1266 
Montes, E., Lomas, M., Muller-Karger, F. E., and Lorenzoni, L. (in prep) Responses of 1267 

the N cycle in the Tropical and Sub-tropical North Atlantic to modern climate 1268 
variability, Global Biogeochemical Cycles. 1269 

Mora, C., Wei, C.-L., Rollo, A., Amaro, T., Baco, A. R., Billett, D., Bopp, L., Chen, Q., 1270 
Collier, M., and Danovaro, R. (2013) Biotic and Human Vulnerability to 1271 
Projected Changes in Ocean Biogeochemistry over the 21st Century, PLoS 1272 

Biology 11, e1001682. 1273 
Morat, F., Letourneur, Y., Dierking, J., Pecheyran, C., Bareille, G., Blamart, D., 1274 

Harmelin-Vivien, M.L., (2014). The great melting pot. Common sole population 1275 
connectivity assessed by otolith and water fingerprints. PlosOne 9, e86585. 1276 
doi:86510.81371/journal.pone.0086585. 1277 



 29 

Mozetič, P., Francé, J., Kogovšek, T.; Talaber, I., Malej, A. (2012) Plankton trends and 1278 

community changes in a coastal sea: bottom-up vs. top-down control in relation to 1279 
local-scale and large-scale drivers. Estuarine, Coastal and Shelf Science 115, 138-1280 
148. 1281 

Muller-Karger, F, R. Varela, R, Thunell, R. Luerssen, C. Hu and J. Walsh. 2005) The 1282 
importance of continental margins in the global carbon cycle. Geophys. Res. 1283 
Letters, 32, DOI: 10.1029/2004GL021346 1284 

Muller-Karger, F., et al. (2013) The CARIACO Ocean Time-Series: 18 years of 1285 
international collaboration in ocean biogeochemistry and ecological research, 1286 

Ocean Carbon and Biogeochemistry Newsletter, Woods Hole Oceanographic 1287 
Institution fall edition. 1288 

Mumby, P. J.; Hastings, A.; Edwards, H.J. (2007) Thresholds and the resilience of 1289 
Caribbean coral reefs". Nature 450, 98-101. 1290 

doi:10.1038/nature06252   PMID 17972885. 1291 
Naam, R., (2012) Arctic Sea ice: What, why and what next. Scientific American, 1292 

http://blogs.scientificamerican.com/guest-blog/2012/09/21/arctic-sea-ice-what-1293 
why-and-what-next/ 1294 

Naha Biswas,S., Godhantaraman, N.,  Sarangi, R.K., B.D. Bhattacharya, B.D., Sarkar, 1295 
S.K., Satpathy, K.K.  (2013) Bloom of the centric diatom Hemidiscus  1296 
hardmannianus (Bacillariophyceae) and its impact on water quality characteristics 1297 

and plankton community structure in Indian Sundarban mangrove wetland-  1298 
CLEAN -   Soil, Air and Water Pollution, 41 (4), 333-339. 1299 

Nam, S., Kim, H.-J., and Send, U. (2011) Amplification of hypoxic and acidic events by 1300 
La Nina conditions on the continental shelf off California, Geophysical Research 1301 
Letters 38, L22602. 1302 

Narváez, D., et al., (submitted) Long-term dynamics in Atlantic surfclam (Spisula 1303 

Solidissima) populations: The role of bottom water temperature. J. Mar. Systems 1304 
(this volume). 1305 

Ninčević Gladan, Ž., Marasović, I., Grbec, B., Skejić, S., Bužančić, M., Kušpilić, G., 1306 

Matijević, S., Matić, F., (2010) Inter-decadal Variability in Phytoplankton 1307 
Community in the Middle Adriatic (Kaštela Bay) in Relation to the North Atlantic 1308 

Oscillation. Estuaries and Coasts 33, 376-383. 1309 
Nixon, S. W., and Buckley, B. A. (2002) "A strikingly rich zone"-nutrient enrichment 1310 

and secondary production in coastal marine ecosystems, Estuaries 25, 782-796. 1311 
O'Brien, T.D. et al. (Ed.) (2012) ICES Phytoplankton and Microbial Plankton Status 1312 

Report 2009/2010. ICES Cooperative Research Report, 313. ICES: Denmark. 1313 
ISBN 978-87-7482-115-1. 196 pp  1314 

Paerl, H. W., Bales, J. D., Ausley, L. W., Buzzelli, C. P., Crowder, L. B., Eby, L. A., Fear, 1315 
J. M., Go, M., Peierls, B. L., and Richardson, T. L. (2001) Ecosystem impacts of 1316 
three sequential hurricanes (Dennis, Floyd, and Irene) on the United States' largest 1317 

lagoonal estuary, Pamlico Sound, NC, Proceedings of the National Academy of 1318 
Sciences 98, 5655-5660. 1319 

Paulmier, A., Ruiz-Pino, D., and Garçon, V. (2011) CO2 maximum in the oxygen 1320 
minimum zone (OMZ), Biogeosciences 8, 239-252. 1321 

Phrampus, B. J., and Hornbach, M. J. (2012) Recent changes to the Gulf Stream causing 1322 
widespread gas hydrate destabilization, Nature 490, 527-530. 1323 

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1038%2Fnature06252
http://en.wikipedia.org/wiki/PubMed_Identifier
http://www.ncbi.nlm.nih.gov/pubmed/17972885
http://blogs.scientificamerican.com/guest-blog/2012/09/21/arctic-sea-ice-wh


 30 

Pidgeon, N., and Fischhoff, B. (2011) The role of social and decision sciences in 1324 

communicating uncertain climate risks, Nature Climate Change 1, 35-41. 1325 
Pätsch, J., Lenhart, H.-J. (2011) Daily nutrient loads of Nutrients, Total Alkalinity, 1326 

Dissolved Inorganic Carbon and Dissolved Organic Carbon of the European 1327 

continental rivers for the years 1977-2009. Berichte aus dem Zentrum fur Meeres- 1328 
und Klimaforschung, Reihe B: Ozeanographie, 50, Zentrum für Meeres- und 1329 
Klimaforschung, Hamburg, 159 pp. 1330 

Prince, E. D., and Goodyear, C. P. (2006) Hypoxia-based habitat compression of tropical 1331 
pelagic fishes, Fisheries Oceanography 15, 451-464. 1332 

Prince, E.D., Luo, J., Goodyear, C.P., Hoolihan, J.P., Snodgrass, D., Orbesen, E.S., 1333 
Serafy, J.E., Ortiz, M., Schirripa, M.J. (2010) Ocean scale hypoxia-based habitat 1334 
compression of Atlantic istiophorid billfishes. Fish. Oceanogr. 19, 448-462. 1335 

Rabalais, N. N. (2004), Eutrophication, in: The Global Coastal Ocean Multiscale 1336 

Interdisciplinary Processes, edited by: Robinson, A. R., McCarthy, J., and 1337 
Rothschild, B. J., The Sea, Vol. 13, Harvard University Press, 819–865, 2004. 1338 

Rabalais, N. N., R. J. Diaz, L. A. Levin, R. E. Turner, D. Gilbert and J. Zhang. (2010) 1339 
Dynamics and distribution of natural and human-caused coastal hypoxia. 1340 

Biogeosciences 7: 585-619. 1341 
Rabalais, N.N., W.-J. Cai, J. Carstensen, D.J. Conley, B. Fry, X. Hu, Z. Quiñones-Rivera,  1342 

R. Rosenberg, C.P. Slomp, R.E. Turner, M. Voss, B. Wissel, and J. Zhang. 2014.  1343 

Eutrophication-driven deoxygenation in the coastal ocean. Oceanography 1344 
27(1):172–183,  http://dx.doi.org/10.5670/oceanog.2014.21.  1345 

Rabouille, C., Conley, D.J., Dai, M.H., Cai, W.J., Chen, C.T.A., Lansard, B., Green, R., 1346 
Yin, K., Harrison, P.J., Dagg, M., McKee, B., (2008). Comparison of hypoxia 1347 
among four river-dominated ocean margins: The Changjiang (Yangtze), 1348 

Mississippi, Pearl, and Rhone rivers. Continental Shelf Research 28, 1527-1537. 1349 

Rabouille, O., O. Radakovitch, C. Estournel, X. Durrieu de Maron, C. Guieu, and R. 1350 
Sempere. (2013) The Fate of Rhone River carbon on the mediterranean 1351 
continental margin, its export to the open sea and its relation to climatic 1352 

parameters. Oral Presentation, IMBER IMBIZO, Jan. 2013, Goa, India. 1353 
Ragueneau, O., Chauvaud, L., Moriceau, B., Leynaert, A., Thouzeau, G., Donval, A., Le 1354 

Loc‘h, F. and Jean, F., (2005) Biodeposition by an invasive suspension feeder 1355 
impacts the biogeochemical cycle of Si in a coastal ecosystem (Bay of Brest,  1356 

France). Biogeochemistry, DOI 10.1007/s10533-004-5677-3. 1357 

Ragueneau, O., Conley, D.J., Ni Longphuirt, S., Slomp, C. et Leynaert, A., (2006) A 1358 
review of the Si biogeochemical cycle in coastal waters, II: anthropogenic 1359 
perturbation of the Si cycle and responses of coastal ecosystems. Dans: Land-1360 

Ocean nutrient fluxes: silica cycle. Ittekkot, V., Humborg, C., Garnier, J. (Eds.), 1361 
SCOPE Book, Island Press, pp. 197-213. 1362 

Raimonet,M., Ragueneau,  O, Jacques, V. Corvaisier, R, Moriceau, B., Khripounoff, A., 1363 

Rabouille, C. (submitted) Rapid transport and high accumulation of riverine Si in 1364 
the Congo deep sea fan (this volume). 1365 

Reid,W. V., Chen,D., Goldfarb,L., Hackmann, H., Lee,Y. T.,Mokhele,K.,Ostrom, E., 1366 
Raivio, K.,Rockström, J.,Schellnhuber, H. J., Whyte,A. (2010) Earth System 1367 
Science for Global Sustainability: Grand Challenges. Science 330, 916-917. 1368 



 31 

Ribera d'Alcalà, M., Conversano, F., Corato, F., Licandro, P., Mangoni, O., Marino, D., 1369 

Mazzocchi, M. G., Modigh, M., Montresor, M., Nardella, M., Saggiomo, V., 1370 
Sarno, D., Zingone, A. (2004) Seasonal patterns in planktonic communities in a 1371 
pluriannual time series at a coastal Meditrranean site (Gulf of Naples): an attempt 1372 

to discern recurrences and trends, Scientia Marina, 68(Suppl.1), 65-83, 1373 
Robbins LL, Wynn JG, Lisle JT, Yates KK, Knorr PO, et al. (2013) Baseline monitoring 1374 

of the Western Arctic Ocean estimates 20% of Canadian Basin surface waters Are 1375 
undersaturated with respect to aragonite. PLoS ONE 8(9), e73796. 1376 
doi:10.1371/journal.pone.0073796  1377 

Sattar, M.A., C.Kroeze, and M. STrokal. 2014. The increasing impact of food production 1378 
on nutrient export by rivers to the Bay of Bengal 1970-2050. Mar. Poll. Bull. 80: 1379 
168-178. 1380 

Schuur, E.A.G., (2013)  High risk of permafrost thaw. Lawrence Berkeley National 1381 

Laboratory. http://dx.doi.org/doi: 10.1038/480032a 1382 
Send, U., and Nam, S. (2012) Relaxation from upwelling: The effect on dissolved oxygen 1383 

on the continental shelf, Journal of Geophysical Research: Oceans (1978‚Äì2012) 1384 
117. 1385 

Soetaert, K., Middelburg, J.J., Heip, C., Meire, P., Van Damme, S., Maris, T., (2006) 1386 
Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt 1387 
estuary (Belgium, The Netherlands). Limnology and Oceanography 51 (1, Part 2), 1388 

409e423. 1389 
Srinivas, B., Sarin, M.M. and  Sarma, S.S.V.V. (submitted) Atmospheric outflow of 1390 

nutrients to the Bay of Bengal: Impact of continental sources. Journal of Marine 1391 
Systems (this volume) 1392 

Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M., Wallace, 1393 

D. W., Brandt, P., and Kortzinger, A. (2011) Expansion of oxygen minimum 1394 

zones may reduce available habitat for tropical pelagic fishes, Nature Climate 1395 
Change 2, 33-37. 1396 

Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C. (2010) Ocean oxygen 1397 

minima expansions and their biological impacts, Deep Sea Research Part I: 1398 
Oceanographic Research Papers 57, 587-595. 1399 

Swaney, D. P., Hong, B., Selvam, P., Howarth, R.W., Ramesh, R., Ramachandran, P., 1400 
(2013) Net anthropogenic nitrogen inputs and nitrogen fluxes from Indian 1401 

watersheds: a preliminary assessment, Journal of Marine Systems, submitted. 1402 
Swaney, D. P., Hong, B., Ti, C., Howarth, R. W., and Humborg, C. (2012) Net 1403 

anthropogenic nitrogen inputs to watersheds and riverine N export to coastal 1404 
waters: a brief overview, Current Opinion in Environmental Sustainability 4, 203-1405 

211. 1406 
Taylor, G.T., Muller-Karger, F.E., Thunell, R.C., Scranton, M.I., Astor, Y., Varela, R., 1407 

Ghinaglia, L.T., Lorenzoni, L., Fanning, K.A., Hameed, S., Doherty, O., (2012) 1408 

Ecosystem responses in the southern Caribbean Sea to global climate change. P. 1409 
Natl. A. Sci. USA, doi:10.1073/pnas.1207514109 1410 

Thomas, P., Rahman, M. S., Kummer, J. A., and Lawson, S. (2006) Reproductive 1411 
endocrine dysfunction in Atlantic croaker exposed to hypoxia, Marine 1412 
environmental research 62, S249-S252. 1413 

http://dx.doi.org/doi:


 32 

Thomsen, J., Gutowska, M., Saphorster, J., Heinemann, A., Trubenbach, K., Fietzke, J., 1414 

Hiebenthal, C., Eisenhauer, A., Kortzinger, A., and Wahl, M. (2010) Calcifying 1415 
invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by 1416 
high levels of future acidification, Biogeosciences 7, 3879-3891. 1417 

Trenberth, K.E., Jones, P.D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., 1418 
Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M., Soden, B., Zhai, P., 1419 
(2007) Observations: Surface and Atmospheric Climate Change. In: Climate 1420 
Change 2007: The Physical Science Basis. Contribution of Working Group I to 1421 
the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 1422 

[eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., 1423 
Tignor, M., Miller, H.I.]. Cambridge University Press, Cambridge, United 1424 
Kingdom and New York, NY, USA. 1425 

Waldbusser, G.G., E.N. Powell and R. Mann. (2013) Ecosystem effects of shell 1426 

aggregatioins and cycling in coastal waters: an example of Chesapeake Bay oyster 1427 
reefs. Ecology 94, 895-903. 1428 

Walsh, J. J., Biscaye, P. E., and Csanady, G. T. (1988) The 1983-1984 shelf edge 1429 
exchange processes (SEEP)-I experiment: hypotheses and highlights, Continental 1430 

Shelf Research 8, 435-456. 1431 
Wassmann, P. (2011) Arctic Marine ecosystems in an era of rapid climate change. 1432 

Progress in Oceanography 90: 1-17.   1433 

Wassmann, P., Lenton, T., (2012) Arctic tipping points in the Earth System perspective. 1434 
AMBIO 41(1), 1-9. 1435 

Weinberg, J. (2005)  Bathymetric shift in the distribution of Atlantic surfclams: response 1436 
to warmer ocean temperature. ICES Journal of Marine Science, 62: 1444–1453. 1437 

Whiteman, G., Hope, C., Wadhams, P., (2013) Vast costs of Arctic change.  Nature, 499: 1438 

401- 403, doi:10.1038/499401a. 1439 

Wiltshire, K. H., Malzahn, A. M., Wirtz, K., Greve, W., Janisch, S., Mangelsdorf, P., 1440 
Manly, B. F., Boersma, M. (2008) Resilience of North Sea phytoplankton spring 1441 
bloom dynamics: An analysis of long-term data at Helgoland Roads. Limnology 1442 

and Oceanography 54(4), 1294-1302.  1443 
Wishner, K.F., Outram, D. M., Seibel, B. A., Daly, K., and Williams, R. L.  (2013) 1444 

Zooplankton in the Eastern Tropical North Pacific:  Boundary effects of oxygen 1445 
minimum zone expansion.  Deep-Sea Research I 79, 122-140. 1446 

Wooster, W. S., and Zhang, C. I. (2004) Regime shifts in the North Pacific: early 1447 
indications of the 1976-1977 event, Progress in Oceanography 60, 183-200. 1448 

World Resources Institute, (2013)  Interactive map of eutrophication & hypoxia.  1449 
Available online: http://www.wri.org/resource/interactive-map-eutrophication-1450 

hypoxia (accessed 1 January, 2014). 1451 
Yan, W.J., Mayorga, E., Li, X.Y., Seitzinger, S.P., Bouwman, A.F., (2010) Increasing 1452 

anthropogenic nitrogen inputs and riverine DIN exports from the Changjiang 1453 

River basin under changing human pressures. Global Biogeochemical Cycles, 1454 
24 Gb0a06, doi: 10.1029/2009gb003575. 1455 

Yasuhara, M., Hunt, G., Breitburg, D., Tsujimoto, A., and Katsuki, K. (2012) Human-1456 
induced marine ecological degradation: micropaleontological perspectives, 1457 
Ecology and Evolution 2, 3242-3268. 1458 

http://www.wri.org/resource/interactive-map-eutrophication-hypoxia
http://www.wri.org/resource/interactive-map-eutrophication-hypoxia


 33 

Yu, P. C., Matson, P. G., Martz, T. R., and Hofmann, G. E. (2011) The ocean 1459 

acidification seascape and its relationship to the performance of calcifying marine 1460 
invertebrates: Laboratory experiments on the development of urchin larvae 1461 
framed by environmentally-relevant pCO2/pH, Journal of Experimental Marine 1462 

Biology and Ecology 400, 288-295. 1463 
Zhai, W.-D., Zheng, N., Huo, C., Xu, Y., Zhao, H.-D., Li, Y.-W., Zang, K.-P., Wang, J.-1464 

Y., and Xu, X.-M. (2013) Subsurface low pH and carbonate saturation state of 1465 
aragonite on China side of the North Yellow Sea: combined effects of global 1466 
atmospheric CO2 increase, regional environmental changes, and local 1467 

biogeochemical processes, Biogeosciences Discussions 10, 3079-3120. 1468 
Zhai, W.D., Dai, M.H., Chen, B.S., Guo, X.H., Li, Q., Shang, S.L., Zhang, C.Y., Cai, W.J., 1469 

Wang, D.X., 2013b. Seasonal variations of sea–air CO2 fluxes in the largest 1470 
tropical marginal sea (South China Sea) based on multiple-year underway 1471 

measurements. Biogeosciences, 10(11): 7775-7791 1472 
Zhang, C. I., and Gong, Y. (2005) Effect of ocean climate changes on the Korean stock of 1473 

Pacific saury, Cololabis saira (Brevoort), Journal of Oceanography 61, 313-325. 1474 
Zhang, J., Yu, Z., Raabe, T., Liu, S., Starke, A., Zou, L., Gao, H., and Brockmann, U. 1475 

(2004)  Dynamics of inorganic nutrient species in the Bohai seawaters, Journal of 1476 
Marine Systems 44, 189-212. 1477 

Zhu, Z.-Y., Zhang, J., Wu, Y., Zhang, Y.-Y., Lin, J., Liu, S.-M., (2011) Hypoxia off 1478 

the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter 1479 
decomposition. Marine Chemistry 125, 108–116. 1480 

Zillén, L., D.J. Conley, T.Andren, E. Andren, S. Bjorck (2008) Past occurrences of 1481 
hypoxia in the Baltic Sea and the role of climate variability, environmental 1482 
change and human impact. Earth-Science Reviews 91, 77-92. 1483 

Zingone, A., Dubroca, L., Iudicone, D., Margiotta, F., Corato, F., Ribera d‘Alcalà, M., 1484 

Saggiomo, V., Sarno, D., (2010) Coastal phytoplankton do not rest in winter. 1485 
Estuaries and Coasts 33, 342-361. 1486 

 1487 



 34 

Consequences & 

regional 

responses 

(Supplements*)
Land use 

change

Damming, diking, 

water diversion
Alien species 

Anthropogenic nutrients & 

pollutants

Energy & 

mineral 

extractions 

from the sea

Overfishing
Changes in 

water cycle

Rising sea 

level
Warming Climate change & oscillation

General 

consequences 

Changes in soil 

qual. & erosion 

in watershed

Sed. retention, decr. 

runoff

Change in 

ecosystem 

structure

Eutrophication, change in 

nutrient ratios & plankton 

community, HAB, hypoxia

Change in 

seascape & 

marine 

environments

Decr. fish stock, 

trophic 

cascades

Extreme 

weather, 

flooding, 

drought

Lowland 

flooding, salt 

water intrusion

Incr. 

stratification, 

drop in O2, incr. 

vulnerability

Change in ocean circulation, 

upwelling, 

Cariaco Basin

(B1)

Chesapeake Bay

(B2)

San Francisco 

Bay

(B3)

Bohai Sea

(B4)

Mediterranean - 

N. Adriatic Sea

(B5)

North Sea

(B6)

*Note: More descriptions and references about the case studies are presented in electronic supplements listed under each case heading.

 Increase in N*. Whether this is due to increased N fixation is being explored

Drivers of environmental change on continental margins from regional to global scale

Actions taken

American margins

Collapse of 

Spanish sardine 

(Sardinella 

aurita )

Freshening of 

surface waters 

due to higher 

regional 

precipitation

>1oC incr. since 

1995

Decr. upwelling, PP and 

phytoplankton biomass; incr. 

N*	., change in ecosystem 

structure; Increasing zooplankton 

biomass

extirpation of 

sturgeon, 

collapse of 

oyster fishery

Decreased sediment 

supply, shrinking 

mudflats, incr. 

salinity

Decreased 

phytopl. PP due 

to Asian clams

Degrading water quality

Degrading 

water qual. & 

clarity

Blocked migratory 

pathways for 

anadromous fish

Decreased 

oyster 

populations and 

increased 

piscivory

Seasonal hypoxia, decline  

of SAV, fish advisories

1972 Clean Water 

Act

Salinity drop 

following 

Tropical Storm 

Agnes

Rate of sea 

level rise much 

higher than 

average

Change in water exchange rate

Acts for reducing 

nutrients & 

restoring SAV, 

oysters; removing 

blockages to fish 

Drought and 

water diversion 

trigger invasion

Change in bio-community

Asian margins

Changes in tidal 

regime

Massive drop in 

water discharge and 

sediment load, 

fishery collapse in 

1990s

High N, low P and Si, 

decrease in diatom/ 

dinoflagellate ratio 

Decrease in fish 

biomass; 

dominant fish 

species 

changed from 

bottom to 

pelagic fish

0.011oC per 

year increase 

during the 

1960s-1990s

Artificially controlled 

water discharge in 

Yellow River

European margins

N/P increase, anoxic events 

(1970s-1980s), loss of 

macrobenthos; trend 

reversed recently.

Loss of 

demersal fish, 

small pelagic 

fish and top 

predators

Reduced river 

flow, salinity rise

Mandates of 

reduction in P 

loading

Altered mudflat

Massive coastal 

environment deterioration in 

1980s

Massive wind 

farming

EU wide mitigation, 

Marine Strategy 

Framework 

Directive 

Temporally and 

regionally faster 

than global 

mean, provoked 

ecosystem shift

NAO state determines circulation 

mode and nutrient inventories

Table 1. Environmental drivers and ecosystem responses on continental margins: Case studies 1488 
 1489 
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 1490 

Table 2. The temporal trends of the environmental variables presented in Fig. 3. All 1491 
trends are statistically significant except those shown in italics. (For more detailed 1492 

information on the linear regressions see Supplement A.) 1493 

 1494 

Site 
SST 

(
o
C yr-1) 

SSS 

(yr
-1

) 

Q 

(km
3
 yr

-1
) 

DIN 

(Kt yr
-1

) 

DIP 

(Kt yr
-1

) 

Chl 

(mg m
-3

 

yr
-1

) 

O2 

saturation 

(% yr
-1

) 

Bohai Sea 
0.0022  0.0632 -0.75

(1)
      

Cariaco 

Basin 

0.0895  -0.0097     -0.0462 -0.105 

East China 

Sea 

0.0282   3.34  26.1   0.0135  -0.536  

North Sea 
0.0376

(2)
  0.0007  -7.44  -12.1  -2.3    

SF Bay 
-0.0290

(3)
  0.0427     0.131  -0.290

(3)
  

Notes: (1) Water discharge of the Yellow River that empties into the Bohai Sea. (2) The 1495 
mean temperature of the top 10 m in the North Sea in winter months (DJF). (3) The 1496 

bottom temperature of the USGS Station 18 in the San Francisco Bay. 1497 
 1498 

 1499 

  1500 
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Figure Captions 1501 

 1502 
Figure 1. Map showing locations of time-series observations that exemplify the interplay 1503 
of natural variability, CO2-driven climate change and human activities to shape margin 1504 

ecosystems.  Each area is discussed in the manuscript or summarized in Table 1.  1505 
1. Arctic Sea; American margins: 2. Cariaco Basin, 3. Chesapeake Bay, 4. Gulf of 1506 
Mexico off Louisiana, 5. San Francisco Bay, 6. Southern California Bight; African 1507 
margins: 7. Canary Current System, 8. Congo River Submarine Canyon; Asian seas: 9. 1508 
Bay of Bengal, 10. Bohai Sea, 11. East China Sea; European seas: 12. Baltic Sea, 13. 1509 

Black Sea, 14. Mediterranean - Corsica (Liguran Sea), 15. Mediterranean - N. Adriatic 1510 
Sea, 16. North Sea.  1511 
 1512 
Figure 2.  Data plots of O2 and pH illustrating time scales of natural hydrographic 1513 

variability in the nearshore southern California Bight, USA.  (a) Decadal scale suggesting 1514 
regime shifts (modified from McClatchie et al., 2010).  (b) Interannual scale illustrating 1515 

effects of ENSO at a site 6 km from Del Mar (from Nam et al., 2011)   (c) Seasonal scale 1516 
combining CalCOFI data at line 93 and continuous mooring measurements  (from Send 1517 

and Nam, 2012), (d) Event (week) scale illustrating upwelling (blue) and relaxation 1518 
(green) phases (modified from Send and Nam, 2012), (e) semi-diurnal and diurnal scale 1519 
variations in the La Jolla Kelp Forest during upwelling phase (blue) when there are strong 1520 

semidiurnal signals and relaxation phase (green) when kelp influences the oxygen and pH 1521 
variability (Frieder et al., unpublished). 1522 

   1523 
Figure 3. Time series of sea surface temperature (SST) (a), sea surface salinity (SSS) (b), 1524 
nutrient loads (c), riverine discharge (d), chlorophyll-a (e), and saturation of dissolved 1525 

oxygen (f) from the Cariaco Basin and San Francisco Bay (SF Bay) in the Americas, the 1526 

East China Sea (ECS) and Bohai Sea (BH) in Asia, and the North Sea (NS) in Europe 1527 
(See Fig. 1 for location of time-series stations). SST time series include values obtained 1528 
from satellite remote sensing monthly composites (lines without symbols) from NOAA‘s 1529 

National Climatic Data Center (See Supplement A),  and in situ observations (lines with 1530 
symbols). Statistically significant regression (p < 0.1) results are shown as solid straight 1531 

lines; insignificant ones are shown as dashed lines. (See text).  1532 
 1533 

Figure 4. The relationship between nitrogen loading and fisheries landings as a function 1534 
of hypoxic area for mobile species in estuaries and semi-enclosed seas.  Modified from 1535 
Breitburg et al., 2009b. 1536 

 1537 

 1538 

  1539 
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Figure 1 1540 

 1541 

 1542 
  1543 
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Figure 2 1544 
 1545 
 1546 

 1547 
 1548 

 1549 
  1550 
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Figure 3.  1551 

 1552 

  1553 
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Figure 4. 1554 
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Table A1. Locations of margin time series observations and data sources. 1642 

 1643 

Sites Coordinates Data sources Remarks 

Bohai Sea 
37-41°N, 117-

121°E 

SSS: Lin et al. (2001) 

Discharge: Liu et al. (2012); 

Liu (this issue) 

Domain for satellite SST 

data retrieval 

Cariaco Basin 
10.2-11.0°N, -

64~66°W 
SST: See text 

Domain for satellite SST 

data retrieval 

CARIACO 

Sta 

10° 30'N 64° 

40'W 

(http://imars.marine.usf.edu/car

iaco/cariaco-ocean-time-series-

program) 

In situ observations 

East China 

Sea 

28-32°N, 121-

125°E 

SST: See text 

Discharge, DIN load: Liu et al. 

(this issue) 

Domain for satellite SST 

data retrieval 

North Sea 
53~57°N, 

4~8.6°E 

SST, SSS: 

(http://www.ices.dk/marine-

data/dataset-

collections/Pages/default.aspx) 

accessed on March 31, 2014 

Discharge, nutrient loads: 

Pätsch and Lenhart (2011) 

ICES data 

North Sea (L) 
53-59°N, -

2~8°N 
SST: See text 

Larger domain for satellite 

SST data retrieval 

San 

Francisco 

Bay  

38°50.8'N, 

121°25.3'W 

(http://sfbay.wr.usgs.gov/access

/wqdata/index.html) 

USGS Sta 18 (Point 

Blunt) 

Water depth = 43.0 

Coastal zone 

adjacent to 

SF Bay 

36.2-38.1°N, 

122.5-

124.7°W 

SST: See text 
Domain for satellite SST 

data retrieval 

 1644 
  1645 

http://www.ices.dk/marine-data/dataset-collections/Pages/default.aspx
http://www.ices.dk/marine-data/dataset-collections/Pages/default.aspx
http://www.ices.dk/marine-data/dataset-collections/Pages/default.aspx
http://sfbay.wr.usgs.gov/access/wqdata/index.html
http://sfbay.wr.usgs.gov/access/wqdata/index.html
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Table A2. Results of linear regression analysis of margin time series data.  The 1646 

statistically insignificant trends, defined as those with p > 0.1, are shown in italics. 1647 

Variables Site Period 
Trend 

(per year) 
n R

2
 p 

 Bohai Sea 1970-2012 0.0022  43 0.004  0.6830  

 Cariaco Basin 1970-2012 0.0303  43 0.548  <0.001 

 Cariaco Basin 1995-2012 0.0351  18 0.168  0.0917 

 CARIACO Sta 1995-2013 0.0895  198 0.058  <0.001 

SST (
o
C) East China Sea 1970-2012 0.0282  43 0.438  <0.001 

 
North Sea 

(winter) 
1976-2013 0.0376  38 0.160  0.0129 

 North Sea (L) 1970-2012 0.0301  43 0.493  <0.001 

 SF Bay  1990-2013 -0.0126  288 0.002  0.498 

 Adj. SF Bay 1970-2012 -0.0087  43 0.053  0.138 

 
SF Bay bottom 

water 
1990-2013 -0.0290  285 0.011  0.071 

 CARIACO Sta 1995-2013 -0.0097  188 0.048  0.0025 

SSS 
North Sea 

(winter) 
1976-2013 0.0007  38 0.001  0.846  

 SF Bay 1990-2013 0.0427  287 0.004  0.300 

 Bohai Sea 1960-1999 0.0632  40 0.287  <0.001 

Discharge Changjiang 1970-2002 3.34  33 0.068  0.142 

(km
3
 yr

-1
) Huanghe 1960-2009 -0.750  40 0.251  <0.001 

 North Sea 1977-2010 -7.43  34 0.103  0.064 

DIN load Changjiang 1970-2002 0.0261  33 0.671  <0.001 

(kt yr
-1

) North Sea 1977-2010 -0.0121  31 0.601  <0.001 

DIP load 

(Kt yr
-1

) 
North Sea 1981-2010 -2.28  30 0.596  <0.001 

 

Chl (mg m
-3

) 
CARIACO Sta  1995-2013 -0.0462  201 0.039  0.005 

 East China Sea 1997-2010 0.0135  152 0.021  0.073 

 SF Bay  1990-2013 0.131  279 0.151  <0.001 

 CARIACO Sta 1995-2013 -0.105  180 0.009  0.198 

O2 satu. (%) East China Sea 1981-2006 -0.536  9 0.390  0.072 

 SF Bay bottom 1993-2013 -0.290  251 0.042  0.001 

 1648 
 1649 

  1650 
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