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ABSTRACT
As embedded systems need more and more computing power,
many products require hardware platforms based on multi-
ple processors. In case of real-time constrained systems, the
use of scheduling analysis tools is mandatory to validate the
design choices, and to better use the processing capacity of
the system.

To this end, this paper presents the extension of the schedul-
ing analysis tool Cheddar to deal with multi-processor schedul-
ing. In a Model Driven Engineering approach, useful infor-
mation about the scheduling of the application is extracted
from a model expressed with an architectural language called
AADL. We also define how the AADL model must be writ-
ten to express the standard policies for the multi-processor
scheduling.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.2.4 [Software Engi-

neering]: Software/Program Verification—validation

General Terms
Performance, Reliability, Verification

Keywords
Real-Time Embedded System, Real-Time Scheduling, Multi-
Processor, Model-Driven Engineering, AADL

1. INTRODUCTION
During several decades and until recently, the processing
power supplied by sequential processors has grown more and
more quickly. The reason of this trend is the improvement in
microelectronic technologies, and the internal parallelism of
execution through architectural schemes like single or mul-
tiple pipelines, out of order instruction issues or speculative
executions. The programming model remains the sequen-
tial one, but the processors use complex strategies to au-

tomatically extract the Instruction Level Parallelism (ILP)
available inside the instruction flow.

However, integrated circuit technology and ILP exploitation
have reached a state where potential improvements seem to
be limited too. Since few years, the answer to that situation
is to increase the computing power through the parallel exe-
cution of several execution flows. Multi-task applications or
systems contain Thread Level Parallelism (TLP) and thus,
are naturally adapted to such an execution platform. Par-
allel multi-processing is today the main way to obtain more
powerful computing machines.

In the context of embedded systems, multiple processors
may be found even within small embedded systems (for in-
stance in smart phones[18]). Since a long time, complex
embedded systems, like avionic or automotive ones, rely on
a large set of processors to achieve their computation needs;
but they belong rather to the class of the distributed sys-
tems, with loosely coupled processing units. The availability
of processors or Systems on Chip (SoC) which integrate sev-
eral tightly coupled processing cores changes this view, and
shifts the programming paradigm towards the shared mem-
ory multi-processing.

Beyond the speed-up expected from the parallel comput-
ing, multi-processor systems are known to have a better
energy efficiency (trade-off performances-power). Pollask’s
rule states that the performances increase is proportional to
square root of the increase of complexity [5]. Duplicating a
core should give better performance than developing a twice
more complex core.

So, considering multi-processing is now a key feature of
the hardware platforms intended to implement high perfor-
mance embedded systems, the software engineering process
must deal with parallel computing resources. We focus our
study on applications where the software is described by a
set of periodic tasks, and a scheduler is in charge of sequenc-
ing the task releases on the system’s processors according
to extra-functional timing requirements (i.e. real-time sys-
tems). The scheduling analysis theory [14], and its extension
to the multi-processors, are theoretical frameworks that may
help the designers to validate their applications.

Another characteristic of embedded systems is that they
usually perform specific functions, and so, engineers can
optimize them by using dedicated software and hardware.



Hence, as a lot of designs are specific, there is a need for
modeling languages which encompass both the software and
hardware architecture of the system. Obviously, the models
include information about the available processing units.

In this context, the article investigates the ability of the ar-
chitectural language AADL to model different multi-processor
architectures, and to express significant information for con-
trolling a multi-processor scheduling analysis tool, called
Cheddar.

The article is structured as follows. The section 2 presents
foundation of real-time scheduling analysis on multi-processor
systems, and how the Cheddar tool has been adapted to sup-
port such kind of analysis. The section 3 defines the archi-
tecture of the parallel execution platforms that we consider
for the scheduling analysis. The section 4 binds this analysis
to a model driven development process. In the last part, af-
ter the presentation of related works, we conclude and give
some perspectives.

2. MULTI-PROCESSOR SCHEDULING

ANALYSIS WITH THE CHEDDAR TOOL
We consider real-time applications which are modeled by a
set of periodic tasks. For schedulability analysis, each task
Ti is usually defined by four temporal parameters [14]: its
first release time ri, its Worst Case Execution Time (WCET)
Ci which is the highest computation time of the task, its
relative deadline Di which is the maximum acceptable delay
between the release and the completion of any instance of the
task, and its period Pi which is the fixed delay between two
successive task release time. A task consists of an infinite
set of instances (or jobs) released at times ri + k ∗Pi, where
k ∈ N.

From this task model, the community has proposed various
ways to assess the schedulability of a real-time application.
Each schedulability analysis assumes a scheduling algorithm
which decides at each time the jobs that have to be run on
the processors. In the sequel, we first give an outline of real-
time multiprocessor scheduling algorithms. Then, we show
how we have implemented them in the Cheddar tool.

2.1 Multi-processor scheduling
Multi-processor scheduling is used to support multi-program-
ming (large number of independent jobs), or to support par-
allel programming (dependent jobs with multiple exchanges).
Given a set of jobs and a set of processors one of the ques-
tion a multi-processor scheduling algorithm has to answer is
how jobs can be assigned to processors [8].

We distinguish two classes of multi-processor scheduling:

• Global scheduling [3][9]. In this approach, any instance
of any task may be executed on any processor. A job
may halt its execution on one processor and resume it
on a different processor.

Consequently, this approach assumes an execution en-
vironments which allow task migrations. Classically, a
task can migrate at any time, or migration can be lim-
ited to job activation (e.g. when a task job is started

on a given processor, it is supposed to complete on the
same processor).

This class of scheduling algorithms suffers from high
run-time overhead as the number of pre-emptions and
migrations can increase significantly.

• Partitioned scheduling. With partitioned scheduling,
each task can only be executed on a dedicated proces-
sor and task migrations are not allowed.

A significant advantage of partitioned scheduling is
that it is well-understood since schedulability analysis
can be verified with uniprocessor schedulability analy-
sis methods. Then, classical scheduling such as EDF,
RM [14] can be reused.

But, finding an optimal assignment of tasks to proces-
sors is equivalent to a bin-packing problem, which is
known to be NP-hard [13]. However, many polynomial-
time heuristics have been proposed for solving this
problem [10] (First Fit, Best Fit, . . . ).

Each of these approaches described above have been ex-
tended in various studies.

2.2 Cheddar and multi-processor scheduling

support
Cheddar is a schedulability tool that implements classical
schedulability methods for uniprocessor systems [17]. To
support scheduling analysis of multi-processor architectures,
we have extended Cheddar with both partitioned and global
scheduling features.

As a partitioned system can be analyzed as a set of unipro-
cessor subsystems, most of the Cheddar features can be used
to assess schedulability of these system. Cheddar unipro-
cessor analysis features only have been extended with some
simple bin-packing algorithms in order to define processor’s
tasks. The currently supported bin-packing algorithms are
RM Next Fit, First Fit, Best Fit, Small tasks and General
Tasks [7].

For scheduling analysis with global scheduling, Cheddar of-
fers less features. For this class of multiprocessor architec-
tures, Cheddar only offers scheduling analysis by scheduling
simulation. The current Cheddar implementation proposes
a global scheduling algorithm for each uniprocessor algo-
rithm (e.g. global DM/EDF/RM/LLF/...).

3. MULTI-PROCESSING IMPLEMENTATION
In this section, we describe different implementations of the
concept of multi-processing. These implementations differ
by the resources in the architecture which are shared when
executing the instruction flows. The figure 1 illustrates the
major, although not mutually exclusive, solutions: multi-
processors, multi-cores and multi-threading.

Historically, multi-processor architectures have been the first
solution. The processors are located on different integrated
circuits, and share the memory. Memory and bus contention
is a major concern in this kind of architecture, and the off-
chip implementation of the buses limits the field of imple-
mentations that could be used to deal with this problem.



Figure 1: Architectural localization of the multi-

processing capabilities. The ability of executing

multiple threads may be provided at different levels:

by the coupling of processor chips, inside a ”proces-

sor” chip or inside the data-path.

The off-chip buses are also known to consume a significant
part of overall power budget [4].

Today’s multi-core processors are only integrated implemen-
tations of multi-processor systems. But, the technical con-
straints are not the same, and more efficient solutions may
be developed to interconnect the cores and the memory hi-
erarchy inside a chip. Multiplexed bus, crossbar switches or
Network-On-Chip are examples of interconnect architectures
that allow parallel transactions between cores, memories, or
I/O devices.

Multi-threading strategies have been introduced to increase
the usage efficiency of processing units inside the pipeline
of the super-scalar processors. When the ILP is too lim-
ited and/or the execution flows are stalled, waiting for the
end of memory requests, processing units are available for
executing instructions issued from another threads.

However, the concept of multi-threading inherently leads to
the sharing of the processing units of a core/processor. In
the general case, the starting up of an additional thread im-
pacts the performances of the other threads running on the
same processor. This implicit interference between threads1

is very difficult to quantify, because it depends on the set of
instructions, coming from the candidate threads, that can
be issued at a given time towards the processor pipelines.

The next section describes how the model of a system can
take such architectures into consideration, and its exploita-
tion to drive a multi-processor scheduling analysis.

4. SCHEDULING ANALYSIS FROM AADL

MODELS
The figure 2 shows the tool chain which drives the scheduling
analysis.

OSATE, Stood or ADELE are textual and graphical model
editors for AADL. AADLInspector2 is a model processing

1The same problem exists when threads share other re-
sources like memory buses for instance.
2AADLInspector and Stood are products of Ellidiss Tech-

Figure 2: Analysis tool chain

framework that is used to analyze textual AADL specifica-
tions. It includes a set of static rule checkers and bridges
for remote verification tools, like Cheddar, or Marzhin3. Fi-
nally, Cheddar4 is a real-time scheduling tool.

In this section, after a short presentation of the AADL lan-
guage, we discuss the deployment schemes for different multi-
processor scheduling strategies. Next, the AADL model of
a system, and a scheduling analysis is shown as an example.

4.1 AADL
The Architecture Analysis & Design Language (AADL) is a
SAE standard (AS-5506), first published in 2004 [12]. AADL
is a modeling language for description and analysis of system
architecture in terms of components and their interactions.
It allows the modeling of software and execution platform
components. The deployment of a software application on
an execution platform is specified through binding proper-
ties.

An AADL component is defined by a declaration and im-
plementations. Each component relies on a category. Cat-
egories of components are related to software entities, like
process, thread or data, and hardware entities like processor,
memory, bus or device. Each component may have several
attributes called properties. The AADL standard includes
a large set of pre-declared properties to model system char-
acteristics. Moreover, new properties can be defined to pre-
cisely describe the expected system.

4.2 Modeling and Assignment of computing

units
As noticed before, AADL represents the deployment of an
application by binding properties, and hence associates soft-
ware entities to execution resources. For instance, the fol-
lowing property assigns the execution of a thread ta, belong-
ing to the process as1, to a processor p1.

Actua l Proces sor B ind ing=>( r e f e r e n c e ( p1 ) )
applies to as1 . ta ;

Now, we will explain how this binding mechanism may be
used in the multi-processing context.

Partitioned scheduling. To deal with partitioned schedul-
ing, a list of software threads may be assigned to their tar-
geted processors by duplicating the processor bindings for
all of them. As AADL defines a processor as an executing

nologies (www.ellidiss.com)
3Marzhin, a multi-agent based simulator, is a product of
Virtualys and Ellidiss Technologies.
4Cheddar may be downloaded from http://beru.
univ-brest.fr/~singhoff



platform including a scheduler that manages the sharing of
its computing resources, the system is modeled as a set of
nodes with their associated local scheduling policy . Nodes
can be connected by a bus component.

We expect that one AADL processor should be associated to
one processing unit, i.e. hardware executing one instruction
flow, regardless whether this processing unit constitutes a
core of a processor, or a processor as a whole (we postpone
the case of multi-threading later in this section); hence, an
AADL processor includes the private resources dedicated
to an instruction flow, mainly the execution pipelines and
the private cache memories (cf figure 1). Such a modeling
guideline aims to exclude of the ”processor” all the shared
resources between them, in order to define independent sub-
systems when they do not need to interact through external
resources. Shared resources are often a bottleneck in multi-
processors or multi-cores and the models should highlight
them.

Global scheduling. A global scheduler maintains a system
wide queue of ready tasks and considers a set of processors
to execute them. An AADL processor deals with a single
hardware execution flow at a given time, and cannot be used
to model a set of processors. A first approach is to group the
target processors into a system component, and to bind the
threads to this multi-processing system (smp in the example
below).

Actua l Proces sor B ind ing=>( r e f e r e n c e (smp) )
applies to as1 . ta ;

An alternative binding method enumerates explicitly the set
of processors involved in the scheduling.

Actua l Proces sor B ind ing=>
( r e f e r e n c e (smp . p1 ) , r e f e r e n c e (smp . p2 ) )

applies to as1 . ta ;

An AADL processor includes a scheduler, of which the type
is specified by the standard property Scheduling_Protocol.
In the case of global scheduling, the value of this property
must be the same for all the processors. To remove this
consistency rule, the AADL standard could be adapted to
associate a global scheduling method to all the processing
units available within a system component.

Multi-threading. Multi-threaded processors or cores allow
the parallel execution of few tasks. The AADL hardware
model should represent each physical thread by a processor
component.

A pessimistic performance scaling factor may be defined, ac-
cording to the maximal number of physical threads per core,
in order to take into account the performance provided by a
physical thread in relation with the mono-thread core per-
formance. The AADL standard property Scaling_Factor

and Reference_Processor allow to specify the scaling fac-
tor with respect to a reference processor, and can be used
in that goal.

Now, we will illustrate this guideline by modeling a sim-
ple image processing application on a multi-core execution
platform.

4.3 Example
We have chosen the LEON4 DEMO ASIC of AEROFLEX
Gaisler [1] as a target platform for our case study. The key
features of this Multi-Processor SoC (MPSoC) are:

• Dual LEON4 cores running at 200 MHz with symmet-
ric multi-processing support. An instruction cache and
a data cache are associated to each core. The LEON4
core does not provide multi-threading capabilities.

• Many on-chip devices and IO connections: USB-2.0
host/device, SVGA, Ethernet, PCI, I2C, CAN, . . .

Figure 3 shows the general architecture of the SoC, struc-
tured around three types of buses: (1) the processor memory
bus, a 64-bit multiplexed synchronous AMBA AHB at 200
MHz, (2) the 32-bit AHB Fast I/O bus at 100 MHz, and (3)
two 32-bit low latency asynchronous APB I/O buses.

Figure 3: Simplified architecture of the SoC, mod-

eled with the AADL graphical notation. Rounded

rectangles and ”double” rectangles represent respec-

tively subsystems and devices.

Bus utilization is a major concern in the design of a SoC; bus
bandwidth and device communication requirements must be
balanced. So, the organization of the AADL model follows
the bus architecture of the SoC.

The next listing describes, with the AADL textual syn-
tax, the simplified model of the subsystem connected by
the processor memory bus. The component implementa-
tion Core.Leon4 is not detailed here; mainly it defines some
processor properties, and characteristics of its private cache
level.

system Proc Bus System
features

Proc Bus : prov ides bus access ;
Mem Bus0 : prov ides bus access ; −− bank 0
Mem Bus1 : prov ides bus access ; −− bank 1
VGA : prov ides bus access ;

end proc bus system ;
system implementation Proc Bus System . SoC Leon4
subcomponents



Core1 : processor Core . Leon4 {
Schedu l ing Protoco l=>H i gh e s t P r i o r i t y F i r s t ;

}
Core2 : processor Core . Leon4 {
Schedu l ing Protoco l=>H i gh e s t P r i o r i t y F i r s t ;

} ;
FSB : bus Communication Bus .AHB;
DDR2 Ctrl : device Mem Ctrl .DDR2;
Fb : device Framebuffer .VGA;

connections

bus access FSB <−> Core1 . Proc Bus ;
bus access FSB <−> Core2 . Proc Bus ;
bus access FSB <−> Proc Bus ;
. . .

end Proc Bus System . SoC Leon4 ;

In association with the hardware model, AADL allows us
to specify the software architecture. In our example, we
consider a simple image processing process; figure 4 outlines
the processing steps, implemented by three periodic tasks.

Figure 4: Software architecture. Rectangles and

dashed parallelograms represent respectively shared

data and execution threads. Threads communicate

through data ports, which define data dependencies.

The AADL standard supplies a set of properties to qual-
ify the behavior of real-time tasks. These properties give
the information to define the parameters of the task model
presented in the beginning of section 2.

process Edge Detect ion end Edge Detect ion ;
process implementation Edge Dectect ion . impl
subcomponents

Get Line : thread IO {
Dispatch Protoco l => Per i od i c ;
Per iod => 20 us ;
Compute Execution Time => 2 us . . 4 us ;
Deadl ine => 20 us ;
P r i o r i t y => 10 ;

} ;
Sharp : . . .

end Edge Dectect ion . impl ;

Finally, the root of the model hierarchy brings together the
hardware and the software view of the embedded system in
a system component.

system Product ; end Product ;
system implementation Product . impl
subcomponents

Hard : system Soc . Soc Leon4 ;
So f t : process Edge Detect ion . impl ;
. . .

properties

−− deployment ( see below )
end Product . impl ;

The deployment properties complete the model and bind the
software entities to components of the execution platform.

The binding properties below define that the three threads of
our application may be executed on the two cores of the SoC.
We implement a global scheduling multi-processor strategy
here.

Actua l Proces sor B ind ing =>
( r e f e r e n c e (Hard . Proc Bus System ) )

applies to Sof t . Get Line ;
Actua l Proces sor B ind ing =>

( r e f e r e n c e (Hard . Proc Bus System ) )
applies to Sof t . Sharp ;

−− or with an e x p l i c i t l i s t o f processors
Actua l Proces sor B ind ing =>

( r e f e r e n c e (Hard . Proc Bus System . Core1 ) ,
r e f e r e n c e (Hard . Proc Bus System . Core2 ) )

applies to Sof t . Edge ;

The Gantt diagram shown in figure 5 is the partial result of
a simulation performed by the Cheddar tool. Information
provided by the AADL model (component hierarchy, prop-
erty values, and the deployment bindings) are transformed
into Cheddar’s Architecture Description Language (ADL).
The three time-lines represent the instants when tasks are
released.

Figure 5: Result of a Cheddar simulation. The

Cheddar ADL groups in a ”Cpu” the set of process-

ing units managed by a global scheduling algorithm.

5. RELATED WORKS
Other works focus on the integration of a scheduling analysis
in a MDE approach. They differ from our proposition by the
expressiveness of the ADL and the analysis method that has
been chosen.

UML/Modeling and Analysis of Real-Time and Embedded
System (MARTE) profile currently supports mono and multi-
processor scheduling algorithms, but only for a partitioned
approach. [15] has proposed various updates for MARTE
metamodels of specialization and generalization stereotype
in order to support global scheduling approaches, allowing
task migrations. Those changes allow a schedulable resource
to be executed on different computing resources in the same
period.

The work in [2] describes an approach to combine MARTE
and EAST-ADL2 to overcome EAST-ADL2 limitation of no-
tions for modeling the timing features. EAST-ADL2 is an
architecture description language defined as a domain spe-
cific language for the development of automotive electronic
systems. The MAST toolset is integrated in the MDE pro-
cess to perform the scheduling analysis.

An approach to extend the AADL standard properties to
support the modeling and specification of embedded multi-
core system was also proposed in [11]. Analysis is performed



with a Monte-Carlo and scheduling simulation mixed ap-
proach.

In [6], a verification framework for schedulability of multi-
core systems, called MoVES, is described. MoVES provides
a simple specification language to define a system. It can
model software components and execution platform; how-
ever, the architecture seems to be restricted to only one
processor bus. The analysis method is based on timed au-
tomata.

6. CONCLUSION
This article has shown how scheduling analysis may be han-
dled in a MDE process. The AADL language provides the
means to express the basic information required to control
a multi-processor scheduling tool. The availability of multi-
ples processing units extend the design space and engineers
need help at the early stages of the design to check their
choice about their assignment to the tasks.

For our future work, we plan an extension of the Cheddar
simulation framework to consider uniform processors, i.e.
processors with equal capabilities but different speeds. Es-
pecially, this feature will help to integrate some of the ef-
fects related to the multi-threaded processors in the results.
After that, a key point in the multi-processor analysis is
to consider the sharing of resources, like buses or shared
caches, which introduces implicit inter-processor dependen-
cies. Extensions of the Cheddar tool to deal with some of
these aspects will be useful, and once again precise architec-
tural models of the computing and memory resources [16]
will be required.
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