
HAL Id: hal-00965533
https://hal.univ-brest.fr/hal-00965533

Submitted on 25 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Inference for Adaptive Diagnosis via Arithmetic
Circuit Compilation of Bayesian Networks

Sara Zermani, Catherine Dezan, Reinhardt Euler, Jean-Philippe Diguet

To cite this version:
Sara Zermani, Catherine Dezan, Reinhardt Euler, Jean-Philippe Diguet. Online Inference for Adaptive
Diagnosis via Arithmetic Circuit Compilation of Bayesian Networks. Designing with Uncertainty:
Opportunities & Challenges workshop, Mar 2014, York, United Kingdom. �hal-00965533�

https://hal.univ-brest.fr/hal-00965533
https://hal.archives-ouvertes.fr

Online Inference for Adaptive Diagnosis via
Arithmetic Circuit Compilation of Bayesian Networks

Sara Zermani, Catherine Dezan, Reinhardt Euler and Jean-Philippe Diguet
Lab-STICC, CNRS UMR 6285, Université de Bretagne Occidentale

Sara.Zermani@univ-brest.fr

I. INTRODUCTION AND CONTEXT

Considering technology and complexity evolution the design
of fully reliable embedded systems will be prohibitively complex
and costly. Onboard diagnosis is a first solution that can be
achieved by means of Bayesian networks [1], [2]. An efficient
compilation of Bayesian inference is proposed in [3] using
Arithmetic Circuits (AC). ACs can be efficiently implemented
in hardware to get very fast response time. This approach has
been recently experimented in Software Health Management of
aircrafts or UAVs [4]. However, there are two kinds of obstacles
that must be addressed. First, the tree complexity can lead to
intractable solutions and second, an offline static analysis cannot
capture the dynamic behaviour of a system that can have multiple
configurations and applications.

In this paper, we present our direction to solve these issues.
Our approach relies on an adaptive version of the diagnosis com-
putation for different kinds of applications/missions of UAVs.
In particular, we consider an incremental generation of the AC
structure. This adaptive diagnosis can be implemented using
dynamic reconfiguration of FPGA circuits.

II. COMPILATION OF A BAYESIAN NETWORK AND

INFERENCE COMPUTATION

Our work makes use of [3] and [5] as follows: each Bayesian
network [6] can be represented as a multi-linear function (MLF).
This MLF is transformed into an arithmetic circuit (AC) and the
probabilities are computed using this AC. The construction of
the AC is done offline but the implementation is different and
all conditional probabilities can be computed online as soon as
the evidences (indicator values) are given.

A. Bayesian Networks as MLFs

For each Bayesian network we can define a unique MLF over
two types of variables:

• Evidence indicators (λx): representing the members of a set
of evidences (binary values).

• Network parameters (θx|u): representing the parameters
concerning the probability values associated with the vari-
ables X and U .

f =
∑

x

∏

xu∼x

λxθx|u (1)

The Bayesian network of Fig.1.a) relies on two variables A
and B which have two states, a and a for A, b and b for B.
Consequently, the MLF of this network is as follows:

f = λaθaλbθb|a + λaθaλbθb|a + λaθaλbθb|a + λaθaλbθb|a

To compute the margin probability at evidence e (P(e)=f(e)),
each evidence indicator λx is replaced in f by 1 if x is consistent
with e, and by 0 otherwise. For example, if the evidence e is b,
f(e) is computed by setting λb=1, λb=0, λa=1 and λa=1. Then

+

**

aaλ aλa

++

** **

bλabbλabbλ bλ ab ab

A B

aba

a

a

a

a

b
b
b
b

BA

ab

a

a

a

AA

= 0.3

= 0.7

ab

ab

)()(abbabbaaabbabbaa λλλλλλf

A B

= 0.1

= 0.9

= 0.2

= 0.8

(a) (b)

Fig. 1. a) A Bayesian network with the factored function. b) The corresponding
arithmetic circuit

we get : f(b)= f(λa=1, λa=1, λb=0, λb=1)= θa * θb|a +θa * θb|a=

0.3* 0.9+ 0.7* 0.8= 0.83.

From Bayes’ theorem, we have P(x|e)=
P (x,e)
P (e) . We can see

that P(x,e)= f(e,λx=1, λb= 0) or P(x,e)= ∂f
∂λx

(e) (x not included
in e).

Computing probabilities by means of MLFs explodes when
the number of variables becomes large. For this reason, it is
proposed to compile the network into an AC in order to reduce
time and space.

B. Compilation into an AC

An arithmetic circuit is a compact graphical representation of
a function f over variables (see Fig.1.b)).

There are different ways to compile an MLF into an AC [7],
[8]. We have chosen the classical one based on factorisation and
the jointree method. We present a hierarchical method of the AC
construction.

• Arithmetic circuit by factorisation [5]
In the example of Fig.1.a): f=λa θa λb θb|a + λa θa λb θb|a
+ λa θa λb θb|a+ λa θa λb θb|a , and by factoring over A

we obtain: f= λa θa (λb θb|a+ λb θb|a) + λa θa (λb θb|a+

λb θb|a).

To have the AC of the factorised fonction, the leaves
of the arithmetic circuits are λ, θ, and the nodes of the
tree represent a multiplication (addition), respectively. The
Bayesian network and its AC structure is given in Fig.1. The
factorization is simple to obtain but it takes an exponential
space.

• Arithmetic circuit by jointree [3]
The goal is to generate the smallest possible circuit from
a given jointree. After the choice of a root cluster, the

arithmetic circuit is generated from the jointree (set of
clusters and separators) as follows:

– one output addition node f;
– one addition node for each instantiation of a separator;
– one multiplication node for each instantiation of a

cluster;
– one input node (λx) and (θx|u) (for all parents of x).

• Hierarchical building of the AC structure We observe that
an Incremental building of AC through jointree structure
can be realised. A simple illustration is given in Fig. 2.

+

**

aaλ aλa

BE(a, B)BE(a, B) BE(a, C)BE(a, C)

+

**

aaλ aλa

BE(a, B)BE(a, B)

A B

A

BC

=>

=>

Fig. 2. Hierarchical building of the AC

We propose to take advantage of this technique that can
be applied to kinds of Bayesian networks (or jointrees).
This hierarchical building avoids to store all AC structures
corresponding to the possible Bayesian networks built for
the diagnoses of the different applications running on the
embedded system. Considering the exponential growth of
the system this point is crucial.

C. Computing probabilities using AC

To compute P(x|e), we first need to evaluate f(e) and then to

compute the circuit derivatives to get f(x,e)= ∂f
∂λx

.

• Evaluating an arithmetic circuit: in an upward-pass, the
value of a node in the AC tree is computed after the
computation of the values of its children.

• Computing the circuit derivatives: in a downward-pass, the
derivative of a node is computed after the computation of
the derivative of its parent.
Let v be an arbitrary node in a circuit f, and assume that
we are interested in the partial derivative of f with respect

to node v, ∂f
∂λv

. If v is the root node (circuit output), then
∂f
∂λv

=1. If v is not the root node and has parents p, then by
the chain rule of differential calculus:

∂f

∂v
=

∑

p

∂f

∂p

∂p

∂v

Suppose now that v′ is another child of a parent p. If p is
a multiplication node, then Equation (2) applies and if p is
an addition node, then Equation (3).

∂p

∂v
=

∂v(
∏

v′ v
′)

∂v
=

∏

v′

v′

(2)

∂p

∂v
=

∂v + (
∑

v′ v
′)

∂v
= 1

(3)

With these equations, we can recursively compute the partial
derivatives of f with respect to any node v.

C

U

H

S

HS

C H U

U

U S HS

Fig. 3. The Bayesian network of a camera application (task 1) and its jointree.

Complexity: the upward-pass clearly is achieved in a time lin-
ear in the size of the circuit (number of edges in the circuit). The
downward-pass takes linear time only when each multiplication
node has a bounded number of children. The disadvantage of this
approach is that all the computations done in the upward-pass
must be saved in order to be used in the downward-pass.

In the next section, we propose a simpler method for the AC
computation without any downward-pass for the diagnosis of
an application. We also propose to use a reconfiguration of AC
when the application and its diagnosis have to change in time.

III. THE ADAPTIVE DIAGNOSIS OF A UAV EMBEDDED

SYSTEM THROUGH MISSIONS

We want to define an adaptive diagnosis for a set of different
applications (or tasks) by modifying the AC associated with the
diagnosis of one of them.

A. The Bayesian network corresponding to a task

Consider a UAV including an embedded system with a task
that consists in taking photos upon receipt of a demand. The
system can take a photo only if is has enough memory. The
scenario is the following: if it can’t take a photo and it has
got enough memory, or if it can take a photo and it doesn’t
have enough memory, then the functionality is turned to bad.
We assume that the space in the memory is computed with a
logical sensor, which can produce state ok or bad.

A Bayesian network associated with this task can be defined
as follows:

• Nodes:
Command(C): representing the demand of taking a photo.
It takes the values Y es or No (notation (c or c)).
State(U): indicating whether the photo is taken or not. It
can have the values Y es or No (notation (u or u))..
Health(H): representing the health of the system associated
to the internal state U . It takes the value Ok or Bad.
(notation (h or h)).
Sensor(S): indicating whether the capacity of the memory
is sufficient or not. It takes the value Y es or No. (notation
(s or s)).
Health-Sensor:(HS) representing the health of the Sensor.
It takes the value Ok or Bad (notation (hs or hs)),
depending on the reliability of the sensor S.

• Edges:
C, H → U : U depends on C and H . U is commanded by
C and monitored by H .
U , HS → S: S depends on H and U . U is observed by S
which is monitored by HS.
The detailed Bayesian network of this example and its
jointree is given in Fig. 3.

B. Computing the Health probability
P (Health|Sensor, Command)

The goal is to diagnose the current state of the system by
evaluating the node H representing its health. This evaluation is
done upon the knowledge of some evidences (the value c is the
evidence associated with the command C and the value s the
evidence associated to the sensor S) and it corresponds to the
computation of P (h|s, c).

We know that:

P (h|s, c) =
P (h, s, c)

P (s, c)
P (h, s, c) =

∂f

∂(h)
(s, c)

P (s, c) = f(s, c)

Considering node H as the root node of the AC, we obtain at
the last step of the upward-pass:

f(s, c) = f(λh = 1) + f(λh = 1)

and

f(h, s, c) = f(λh = 1) + f(λh = 0) = f(λh = 1)

We can see that if we take H as the root node of the AC, we
don’t need the downward-pass any more. We can apply this to the
other node HS. In general, for a health node HX , we compute
as indicated until reaching λhx and λhx and with λhx=1, we
get f(e, hx) and by adding f(e,λhx=1) we get f(e). After this
step, we continue by taking into account the two computations
for each node.

C. Reconfiguration of an AC for adaptive diagnosis

Now, assume that our UAV has some missions related to
different type of applications (or tasks). There are two types
of task: the static one (executed from the beginning to the end
of the mission, as for example path-planning) and the temporary
one (executed at a certain time, as for example taking photos,
then writing into a file the external and the internal temperature,
and finally writing into the same file the altitude measures using
both barometric and laser altimeter).

The goal is to monitor the health of the system at any
time. The complete arithmetic circuit for static and temporary
tasks of the whole system has to be computed in a static way
before the mission. Nevertheless, some parts of the diagnosis
(or AC structure) could be done more on-the-fly, especially the
temporary tasks.

We propose to compile the arithmetic circuit of the static tasks
offline. For each new temporary task, we reconfigure the AC by
deleting the nodes of the previous task and adding the node of the
current one in real time. We assume that the UAV should execute
task 1 ’take photos’ presented in Fig. 3 for a specific time slot
and in a context of other static tasks. For the temporary task 2,
we look at the computation of the altitude using 3 sensors (laser
sensor, barometer sensor and IMU). The Bayesian networks for
the diagnosis of these two tasks and their jointrees are given in
Fig. 3 and Fig. 4. Since we have a large common part within
the two jointrees, we can use the AC of task 1 to obtain the
complete AC of task 2. For this we use the hierarchical building
as illustrated in Fig. 2.

• For the cluster (U, S-IMU), these steps are as follows:

1) go to all (*) of U;
2) add a (+) node for each (*) node and add an arc

for BE(U|HC,S-IMU), where U |HC corresponds to any

U

The same AC of Fig.3

U S-IMUU H-Bar S-Bar U

C H U

U H-Laser S-Laser

H C

H-Bar

S-Bar
S-IMU S-Laser

H-Laser

Fig. 4. The Bayesian network of an altitude application (task 2) and its jointree

instantiation of U , H and C for the computation of the
probability U |HC.

• For the cluster (U, H-Bar, S-Bar), these steps are as follows:

1) go to all (*) of U;
2) add a (+) node and two (*) nodes for each (*) node of U.

For the first (*) node, add an arc for λH−Bar, θH−Bar

and BE(U|HC, S-Bar). For the second (*) node, add an
arc for λH−Bar, θH−Bar and BE(U|HC, S-Bar) for the
corresponding instantiation.

This method can be generalised to any Bayesian network by
adding corresponding constraints.

IV. CONCLUSION AND PERSPECTIVES

In this paper, we have applied adaptive diagnosis to a number
of independent tasks. The next step will consist in applying
adaptive diagnosis to tasks with interactions (e.g., being ex-
ecuted in the same or different contexts or sharing specific
ressources). We also study the efficient hardware implementation
of such configurable diagnosis engines that can offer very
short response times. FPGAs provide the kind of parallelism
that fit with Bayesian networks but architectures with different
performances/area tradeoff are possible. We explore this design
space, with two different approaches. The first one is based on
partial/dynamic reconfigurations of Xilinx FPGAs. The second
one is an application specific processor to be also implemented
as a soft core on a FPGA.

REFERENCES

[1] O. J. Mengshoel, A. Darwiche, and S. Uckun, “Sensor validation using
Bayesian networks,” in Proceedings of the 9th International Symposium
on Artificial Intelligence, Robotics, and Automation in Space (iSAIRAS-08),
(Los Angeles, CA), Feb. 2008.

[2] B. W. Ricks and O. J. Mengshoel, “The diagnostic challenge competition:
Probabilistic techniques for fault diagnosis in electrical power systems,” in
Proceedings of the 20th International Workshop on Principles of Diagnosis
(DX-09), (Stockholm, Sweden), 2009.

[3] A. Darwiche, “A differential approach to inference in bayesian networks,”
J. ACM, vol. 50, no. 3, pp. 280–305, 2003.

[4] J. Schumann, K. Y. Rozier, T. Reinbacher, O. J. Mengshoel, T. Mbaya, and
C. Ippolito, “Towards real-time, on-board, hardware-supported sensor and
software health management for unmanned aerial systems,” in Proceedings
of the 2013 Annual Conference of the Prognostics and Health Management
Society (PHM2013), October 2013.

[5] A. Darwiche, “A differential approach to inference in bayesian networks,”
in UAI, pp. 123–132, 2000.

[6] R. G. Cowell, Probabilistic networks and expert systems: Exact computa-
tional methods for Bayesian networks. Springer Science & Business, 2006.

[7] Z. Lian, Y. Jinsong, W. Jiuqin, and X. Wei, “Real time diagnosis with
compiling bayesian networks,” in Industrial Electronics and Applications
(ICIEA), 2011 6th IEEE Conference on, pp. 542–546, June 2011.

[8] M. Chavira and A. Darwiche, “Compiling bayesian networks using variable
elimination.,” in IJCAI (M. M. Veloso, ed.), pp. 2443–2449, 2007.

