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This paper describes the experimental results obtained by a broadband permeability measurement

method based on the full-wave electromagnetic (EM) analysis of a non-reciprocal transmission line.

The method offers a new experimental tool for measuring the broadband dynamic behavior of ferrites

whatever their magnetization state. The methodology and experimental setup are presented with the

aim of extracting both the permittivity and the two components (diagonal l and off-diagonal j) of

the permeability tensor. Experimental data on commercial ferrites set in different magnetization

states are presented and discussed. Furthermore, this method opens perspectives for the determination

of other useful magnetic parameters such as resonance linewidth DH. This quantity can be then

measured at different frequencies, where conventional resonant methods give a value at a fixed

frequency.VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4828876]

I. INTRODUCTION

Magnetic materials, especially ferrites, are widely used in

microwave devices such as insulators, phase-shifters, and cir-

culators because of the anisotropic nature of their electromag-

netic (EM) properties. This anisotropy can be obtained by

applying a static magnetic field to the material in order to mag-

netize it. Then the permeability of the material becomes a ten-

sor in which the diagonal and off-diagonal components depend

on both the frequency and the magnetization state. Thus the

design of ferrite-based microwave devices requires the charac-

terization of the dynamic properties of the material, i.e., the

permittivity and the permeability. Unfortunately the experi-

mental measurements of these EM properties are often limited

to the demagnetized state (coaxial-line based method) or to the

saturated state (resonance linewidth measurement using a

resonant-cavity method).1 These two special cases are not suf-

ficient to correctly describe the dynamic behavior of ferrite

materials set in their EM environment for various microwave

applications. Indeed, many applications need for partially mag-

netized materials such as tunable filters or self-biased circula-

tors. And even for conventional circulators that used saturated

ferrites, it was shown, through magnetostatic analysis, that

some regions of the ferrite sample are partially magnetized due

to the non-uniformity of the internal dc biasing field. In such a

context, we have developed a broad-band characterization

method which allows measuring the components of the perme-

ability tensor (diagonal term l and off-diagonal term j) at any

magnetization states of the material. This paper first presents

the principle of the method, the second part describes the mea-

surement cell and the experimental setup and the third part

presents measurement results performed using a commercial

ferrite sample showing well-known static magnetic properties.

II. DESCRIPTION OF THE MEASUREMENT METHOD

The method we have worked out is based on the measure-

ment of the scattering parameters (S-parameters) of a strip

transmission line partially filled with the magnetic material to

be characterized.2 As shown in Figure 1, two identical slabs of

the magnetic sample are set above and below the strip conduc-

tor. At each side of the strip two different dielectrics are placed

(respective permittivities e1 and e2) to insure the non-reciprocal

behavior (S21 6¼S12) of the line when the material under test is

magnetized. This is necessary to obtain a sufficient number of

measured complex parameters (S21, S12, S11) to be able to

retrieve the three complex EM parameters of the material under

test: the complex permittivity e, the complex diagonal term l,

and the complex off-diagonal term j of the permeability tensor.

For a better understanding of the analysis of the measurement

cell, we define the region of the line that is filled with the mag-

netic and dielectric slabs as the loaded section and the region

before and after the loaded section as the air sections. The data

processing program that we have developed to retrieve the con-

stitutive parameters e, l, and j is divided into two main stages.

The first stage is the “direct problem” in which the theo-

retical S-parameters of the line are determined as a function

of the electromagnetic properties of materials in the cell and

their geometrical dimensions. We performed an EM full-

wave analysis of the measurement cell taking into account

the contributions of the quasi-TEM dominant mode and

higher order modes which are excited at the discontinuities

between the loaded section and the air sections. For this anal-

ysis, we have proposed an equivalent model of the loaded

section based on two assumptions. First, considering the

strip’s width “a” is highly greater than the distance from the

strip to the ground plane “b,” we can conclude that the

energy in the line is mostly concentrated between the strip

conductor and the ground planes. Second, due to the symme-

try of the discontinuities only the TEn0 higher order modes

are going to be excited in the cell.3

Figure 2 depicts the equivalent model matching only

one half cross section due to the symmetry of the structure.

We use Perfect Electric Conductor (PEC) to describe metal-

lic central strip as well as ground planes and we use Perfect
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Magnetic Conductors (PMC) at the edge of the strip in accord-

ance with the EM field pattern. The full-wave analysis con-

sists in determining the dispersion diagram of the existing

modes in the different sections of the cell.4 In the operating

frequency band [100MHz-12GHz], the dispersion diagram of

air sections is easily obtained from analytical relations as the

propagation occurs only in the air. On the other hand, in the

loaded section three materials are present (dielectric 1, ferrite

under test, and dielectric 2), the dispersion relation is more

difficult to obtain. The EM components in each material are

calculated based on their permittivity and permeability and

continuity conditions are forced in both interfaces (x¼ x1, and

x¼ x2). Then a mode matching method is used in the

z-direction to obtain theoretical S parameters. Details of this

direct problem are presented in Ref. 4. To meet the assump-

tions used on the equivalent model (a� b), the design of the

cell has led to a conductor width “a” equal to 9mm and a

height “b” equal to 1 mm leading to a characteristic imped-

ance of the stripline close to 18 X which is away from the

usual value of 50 X. We will have to make a special calibra-

tion procedure in the experimental setup to take this imped-

ance mismatch into account. Finally, the typical width of the

sample (L-h) is equal to 5mm.

The second stage is the “inverse problem”: the aim is to

find the electromagnetic parameters of the unknown material

from S-parameter measurements. As there are no direct ana-

lytical relationships between S-parameters and constitutive

parameters e, l, and j, a numerical optimization procedure is

required to match theoretical S-parameters to the measured

ones. The originality of our method is the use of a wideband

optimization procedure in which the frequency spectra of e,

l, and j of the material under test are optimized. Instead of

solving the inverse problem frequency by frequency as usu-

ally done, we have chosen an optimization simultaneously

over all the operating frequency ranges by matching only

the S-parameters modules. This optimization overcomes the

uncertainty problems related to the phases of reflection pa-

rameters that arise around dimensional resonance frequen-

cies where jSiij (i¼ 1, 2) tend to zero.

In order to start this optimization procedure, we have to

previously make a choice for the type of function of the fre-

quency for each constitutive parameters e, l, and j. We have

chosen to represent the dielectric properties of the material to

be characterized by a dispersive permittivity function e(f) given

by the Debye model. This model function is defined by three

parameters e1, estat, and s, where the relaxation time s is very

small in order to reject the relaxation very far in high frequency

and the infinite permittivity e1 is slightly lower than the static

permittivity estat. For the permeability, we selected a physical

model that describes the frequency dependence of the two com-

ponents l(f) and j(f). This model named “Generalized

Permeability Tensor”5,6 was developed in our laboratory to

describe the dynamic magnetic properties of polycrystalline fer-

rites at any magnetization state. The five input parameters of

the model are the physical properties of the material: its satura-

tion magnetization 4pMs, its anisotropy field Ha, its damping

factor a, the applied static biasing field Hdc, and the demagnet-

izing factor Ny in the direction of Hdc. Finally, the error func-

tion in the optimization procedure is defined by

FðXÞ ¼
X

fmax

fmin

�

X

i¼2

i¼1

X

j¼2

j¼1

ðjS
ðth�eoÞ
ij ðX; f Þj ÿ jS

ðmesÞ
ij ðX; f ÞjÞ2

�

where

X¼ ½eðf Þ;lðf Þ;jðf Þ�: (1)

The eight physical parameters (three for the permittivity

spectrum and five for the permeability tensor components

spectra) of the models are the input variables of the optimi-

zation vector X. Once the minimal error is found, the theo-

retical S-parameters match the measured ones and therefore

functions e(f), l(f), and j(f) match the measured effective

parameters of the material under test. We have developed a

local code in MatlabVR for these two stages.

III. EXPERIMENTAL SETUP

The measurement cell is built in brass; the geometrical

dimensions are specified in Figure 3. Two SMA connectors

are used to connect the cell to the junction cables of a net-

work analyzer. In the propagation direction, we can identify

several sections in the cell: A 50 X coaxial section at the

SMA connectors followed by a “taper” acting as the coaxial

to stripline transition and finally 18 X impedance stripline

section. The four S-parameters are measured in the fre-

quency band [100MHz-12GHz], thanks to a Vector

Network Analyzer Agilent E8364A.

FIG. 2. Equivalent representation of the cross section of the cell.

FIG. 1. Asymmetrical measurement cell.

FIG. 3. Measurement cell (side view).
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The first step of the experimental setup consists in cali-

brating the network analyzer in order to correct the systematic

errors. We perform a standard “Short Open Load Thru” cali-

bration leading to reference planes located at the end of cables

in the SMA connector’s planes R1 and R2 (see Figure 4).

The second step consists in calibrating the measurement

cell itself in order to correct imperfections due to finite con-

ductivity of the strip and impedance mismatching. This leads

to a displacement of the reference planes from R1 and R2 to

R1* and R2*. One can note that the change of reference is

required to compare the theoretical parameters to the meas-

ured ones. This step of de-embedding is performed using

conventional cascade-based method in which each section of

the cell is represented by a T matrix.7,8 Figure 5 shows as a

result of the de-embedding process that the theoretical

response fits perfectly with the measured one in the case of

the empty cell (without sample to characterize). Then the

measured S11, S12, S21, and S22 parameters of the cell loaded

with the material under test are de-embedded using the same

procedure in order to compare the measured and theoretical

S-parameters in the same reference plane.

The second step of experimental procedure aims to sim-

plify the optimization procedure. The optimization consists

in minimizing the error function F which depends on eight

parameters, three for the scalar permittivity and five for the

permeability tensor. Because of the large number of varia-

bles, the inverse problem can fail or give wrong results due

to local minima. In order to make the optimization process

more reliable, we perform the characterization of magnetic

material in two steps. The first step consists in determining

the permittivity only. For this, we consider that the magnetic

response of ferrites in demagnetized state is mainly present

in the low frequency range (less than a few gigahertz). This

assumption is well suited for the compositions that we want

to measure; it would be less suitable for materials exhibiting

a natural gyromagnetic resonance at higher frequencies such

as hexaferrites. Far enough above the gyromagnetic reso-

nance, the material shows a purely dielectric behavior. For

the permittivity determination, an asymmetric structure is

not required so the measurement is done with the cell loaded

only with the demagnetized ferrite (e2¼ e1¼ 1) which exhib-

its isotropic magnetic properties.

Figure 6 presents permittivity measurement results for a

demagnetized commercial spinel ferrite Temex CeramicsVR

U21 (4pMs¼ 2400G) in a frequency range in which the mate-

rial exhibits only a dielectric behavior. Thus, the optimization

FIG. 4. Connector reference planes R1, R2; sample reference planes R1*,

R2* (top view).

FIG. 5. Reflection (a) and transmission (b) coefficients magnitudes of the

empty cell: measured (blue), theoretical before (green), and after de-

embedding (red).

FIG. 6. Permittivity measurement of Spinel ferrite U21 in the demagnetized

state (a) reflection (b) transmission coefficients magnitudes, (c) measured

permittivity and provider’s value.
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process is performed only in the [8GHz-12GHz] range and

leads to a permittivity very close to the provider’s value.

One can note the presence of several dimensional

resonances in the measured S-parameters due to the finite

length of the ferrite sample. These resonances are error sour-

ces for a frequency by frequency optimization procedure

because of uncertainties in phase measurements in the vicinity

of the dimensional resonances. But they are very helpful for

our wideband optimization method exploiting only the

S-parameter magnitudes. Once the permittivity of the ferrite is

determined with the reciprocal cell (e2¼ e1¼ 1), we assumed

that the permittivity will not depend on the applied static mag-

netic field and will be equal to the one obtained at zero field.

Then we perform the second step of characterization in

which we obtain the permeability tensor. The same ferrite is

now inserted in the non-reciprocal cell (e2 6¼ e1) and a new

set of non-reciprocal S-parameters are measured. For the

determination of the components l and j of the permeability

tensor of the magnetized ferrite, we use an optimization pro-

cedure in which the wideband permittivity spectrum is equal

to the one already obtained in the first step.

IV. EXPERIMENTAL RESULTS

For the permeability tensor measurement, the dielectric 2

was chosen in order to maximize the non-reciprocal behavior of

the cell: we selected the Temex CeramicVR E20

(e2¼ 20.9-j0.001). Figure 7 presents the measured S-parameters

of the non-reciprocal cell loaded by the commercial ferrite

Temex CeramicsVR Y101 (4pMs¼ 1820G) under a static mag-

netizing field of 700Oe. The non-reciprocity of the cell is evi-

denced by the difference in magnitude of the transmission

coefficients S21 6¼ S12.

From this measurement, the optimization procedure is

performed to obtain the permeability tensor of the ferrite

under test. As optimization procedures can easily lead to nu-

merical wrong results due to local minima, we have to be

very cautious on this step. We have tested several methods

in our optimization code: the Matlab sub-routine lsqnonlin

based on the interior-reflective Newton was compared to

Matlab generic algorithm. Both lead to same results. In addi-

tion, using representative physical models for the solution of

e, l, and j, we avoid solutions that are mathematically possi-

ble but are not physically correct. Figure 7 presents the com-

parison between measured and optimized S-parameters and

Figure 8 presents the corresponding tensor components l

and j. These results show a good agreement over the entire

frequency band, giving an error less than 7%.

A. Analysis

Figure 9 shows the permeability tensor components l

and j extracted from the measurements of another commer-

cial ferrite Temex CeramicsVR U21 (4pMs¼ 2400G) for vari-

ous applied static magnetic fields, from 0 up to 1000Oe.

We observe a variation of the permeability as a function

of the applied static field. The resonance frequency (related

to the maximum of the imaginary parts of the permeability

tensor components) and the static permeability (magnitude

of the real parts of the permeability tensor components at

low frequency) change with the applied static field. These

variations are induced by the change of the internal static

field which depends on the magneto-crystalline anisotropy,

FIG. 7. Non-reciprocity of the Transmission parameter for a Y101 ferrite

under 800Oe applied magnetic field (solid line: measured parameters,

dashed line: optimized parameter).

FIG. 8. Measured permeability tensor components (l and j) spectra for the

Y101 ferrite under a static applied magnetic field of 700Oe.

FIG. 9. Measured permeability tensor components spectra for the U21 ferrite

under various applied static magnetic field up to 600Oe.
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the applied magnetic field, and the demagnetizing fields.

Initially, as the static field increases, the resonance frequency

shifts toward lower frequencies and the static permeability

increases [Figs. 9(a) and 9(b)]. We explain this behavior by

macroscopic demagnetizing effects due to the planar shape

of our sample (the dimensions of the sample are x¼ 5mm,

z¼ 5mm, and y¼ 1mm). Without static field applied, the

magnetic moments organization preferentially lead to a dis-

tribution in the plane of the sample corresponding to a

demagnetizing factor along x or z axis close to 0.15.9 As the

magnetic field increases along y axis, moments gradually

switch to a direction perpendicular to the plane of the sample

corresponding to a demagnetizing factor along y axis close

to 0.7. In accordance with the Kittel law,10 the resonance fre-

quency of the switched moments shifts to lower frequencies.

Finally, for magnetic field greater than 800Oe, all mag-

netic moments have switched and see the same demagnetiz-

ing factor. Then the resonant frequency increases

proportionally when the applied magnetic field increases

[Figs. 10(a) and 10(b)]. We also note that the width of the

absorption peak decreases as the magnetization increases

due to the gradual alignment of the magnetic moments in the

applied dc field direction.

As there is no magnetic standard material to validate our

approach, we have compared our experimental results with

those given by a well-known theoretical model: the Polder’s

model11 that gives accurate results in the limit case of a satu-

rated sample. In order to account demagnetizing effects, the

Polder’s formulation becomes for an applied static field in

the y direction

v ¼
xm:ðxo þ xmðNz ÿ NyÞÞ þ jxaxm

ðxo þ xmðNz ÿ NyÞÞ:ðxo þ xmðNx ÿ NyÞÞ ÿ x2ð1þ a2Þ þ 2jxaxo

: (2)

j ¼
x:xm

ðxo þ xmðNz ÿ NyÞÞ:ðxo þ xmðNx ÿ NyÞÞ ÿ x2ð1þ a2Þ þ 2jxaxo

; (3)

where xm ¼ 2pcMS, xo ¼ 2pcHapp, c¼ 2.8MHz/Oe, Ni

are the demagnetizing factors, a the damping factor and

x¼ 2pf.

We consider the comparison only for the limit case

Happ¼ 1000G close to the saturation state. Figure 11 com-

pares the measured permeability tensor components of

the U21 sample with theoretical tensor components of

Polder’s model filled with the provider’s specifications

(4pMs¼ 2400G and DH¼ 290Oe leading to a¼ 0.04) and

demagnetizing factor for our samples Nx¼Nz¼ 0.15 and

Ny¼ 0.7. As one can see the measured spectra are in good

agreement with the theoretical ones. We still observe some

discrepancy: first a small shift in the resonance frequency

which may be due to the indetermination of the true internal

field in the sample and then an enlargement of measured

losses which probably reflects the heterogeneity of the mag-

netization in our polycrystalline samples.

B. Application of the method

Beyond the dynamic permeability tensor measurement,

the presented method can be a complementary alternative to

conventional methods for the ferromagnetic resonance

(FMR) linewidth (DH) measurements. Thus once the satu-

rated state is reached, from the frequency spectra of imagi-

nary permeability v
00(f) obtained for each value of the

applied field we can extract for a given frequency the varia-

tion v
00(H) according to the applied static field. Compared to

conventional mono frequency methods such as resonant cav-

ities or shorted waveguide12 in which samples should be

small so as not to disturb too much EM field pattern, the pro-

posed method presents the advantage of being broadband
FIG. 10. Measured permeability tensor components spectra for the U21 fer-

rite under various applied static magnetic field up to 1000Oe.
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and using more practicable samples. In addition, compared

to broadband methods such as VNA–FMR13 which rely on

the quasi-static assumption and consider in the experimen-

tal setup only the transmission parameter S21, our method is

more rigorous thanks to a dynamic electromagnetic analysis

taking into account higher order modes that necessary occur

within the magnetized sample. Moreover we use not only

the transmission coefficient S21, but the four S-parameters

to extract the permeability tensor. However, we should take

care to correct the value of the internal magnetic field

within the sample considering the macroscopic demagnetiz-

ing effects due to their rectangular shape. In addition, the

non-ellipsoidal form may give rise to some dispersion due

to the inhomogeneity of the magnetization in the sample.

V. CONCLUSION

The proposed method offers a new experimental tool for

measuring the broadband dynamic behavior of ferrites what-

ever their magnetization state. The measured parameters are

the permittivity e(f) and the permeability tensor components

l(f) and j(f) spectra in the [100MHz-12GHz] frequency

band. The data processing program relies on a full-wave

analysis to take into account higher order modes (propagated

in the loaded section and evanescent in the air sections of the

measurement cell) and a specific broadband optimization

procedure in order to avoid the uncertainties increasing of

the measured phases of the S-parameters due to the dimen-

sional resonances. In addition, the experimental setup is per-

formed in two steps (first determining the permittivity then

the permeability) in order to guarantee accurate results.

Thanks to this broad-band EM characterization method

which gives access directly to the constitutive parameters of

magnetized ferrites appearing in the Maxwell equations, new

additional procedures could be developed to determine mag-

netic parameters of ferrites materials such as the resonance

linewidth (DH, DHeff) not only at one frequency as it is usu-

ally done with the resonant standard method but also in a

wide frequency band.
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