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a b s t r a c t

The 15N tracer method and the benthic chamber technique were combined to evaluate NH4
+ exchanges at the

sediment–water interface. This novel approach consists in measuring NH4
+
fluxes during a single in situ incuba-

tion in a sample of water enclosed in a benthic chamber placed over the sediment and in a subsample thereof
concomitantly incubated in a bottle. Using this combined approach, the influx and efflux of NH4

+ across the sed-
iment–water interface can be simultaneously measured along with uptake and regeneration rates of NH4

+ in the
water column. Details of the experimental protocol and principles behind the calculations of N transport rates are
given. We applied this approach to a tropical reef on Reunion Island (Indian Ocean). Experiments were carried
out in triplicate at three stations with organic-poor, sandy sediments. At the three stations, the mean flux of
NH4

+ from the water column to the sediment (29.6–59.2 μmol m−2 h−1) was much higher than the mean
NH4

+ uptake rate by phytoplankton (3.0–4.0 μmol m−2 h−1) indicating that the removal of NH4
+ from the

water column must be due, for the most part, to uptake by benthic microalgae in the study area. The mean
flux of NH4

+ from the sediment to the water column (6.7–13.7 μmol m−2 h−1) was comparable to the mean re-
generation rate in the water (7.4–9.9 μmol m−2 h−1) suggesting that the sediment may constitute a significant
N source for phytoplankton in the back-reef zone on Reunion Island.

1. Introduction

Exchanges between the pelagic and benthic compartments play an
important role in the coastal nitrogen (N) cycle. For instance, in bottom
sediment, mineralisation of particulate organic matter resulting from
pelagic and benthic production leads to the formation of dissolved inor-
ganic nitrogen (DIN), in particular ammonium (NH4

+), which can then
be transferred to the water column. The role of DIN supply in pelagic
primary production is well known in shallow coastal environments
(Anderson et al., 2003; Cowan and Boynton, 1996; Harrison, 1980;
Joye and Anderson, 2008; Nixon, 1981; Rowe et al., 1975). Various
processes can prevent NH4

+ transfer to the water column. A fraction of
regenerated NH4

+ may be adsorbed onto particles through association
with ion-exchange sites (Burdige, 2006; Klump and Martens, 1983),
although adsorption is a reversible process that depends for the most
part on redox conditions (Rosenfeld, 1979). Substantial removal of
NH4

+ from sediments can also occur through oxidation to nitrite (NO2
−)

and then nitrate (NO3
−) by nitrifying microorganisms (Capone et al.,

1992; Mortimer et al., 2004; Thamdrup and Fleischer, 1998), or through
anaerobic ammonium oxidation to molecular nitrogen (N2) (Dalsgaard
and Thamdrup, 2002; Engstrom et al., 2005; Risgaard-Petersen et al.,
2004). In shallow-water with well-lit sediment surfaces, the use of sedi-
mentary NH4

+ as a source of N for autotrophic benthic organisms at the
sediment–water interface can also restrict NH4

+ release into the water
column (Anderson et al., 2003; Bartoli et al., 2003; Eyre and Ferguson,
2005; Lomstein et al., 1998; McGlathery et al., 2001; Sundbäck et al.,
2000; Veuger et al., 2007). In well-lit conditions, NH4

+ can be taken up
from the water column if sediment DIN sources are insufficient to meet
the growth demands of the benthic community (Joye and Anderson,
2008). NH4

+ exchanges between the benthic compartment and the
water column thus strongly depend on benthic algae biomass and light
availability. Although the production of NH4

+ resulting from the degrada-
tion of organic matter likely continues in the light, the removal of NH4

+

from the water column and the decrease in sedimentary NH4
+ supply

due to consumption by benthic algae can lead to a net influx of NH4
+

into the sediment (Joye and Anderson, 2008; Veuger et al., 2007).
A number of approaches have been used to study NH4

+
fluxes at the

sediment–water interface. Rates of NH4
+ release from sediments were

first studied using a geochemical approach in which the estimated
flux is based on the vertical profiles of NH4

+ concentrations in interstitial
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waters (Berner, 1974, 1977; Vanderborght et al., 1977). However, in
coastal sediments, the horizontal and vertical gradients of NH4

+ vary
with time and benthic macrofauna activity (Kristensen, 1988). Another
method consists in collecting sediment cores and monitoring the
variation in NH4

+ concentrations in the overlying water over time
(e.g. Blackburn et al., 1988; Seitzinger, 1987). One disadvantage of this
method is that the state of the sediment and its layered structure as
well as the chemical characteristics of the surrounding water can be
significantly altered during coring and sampling (Viollier et al., 2003).
With the use of in situ benthic chambers, NH4

+
fluxes between sediment

andwater at the sea floor can bemeasured directly. The changes in NH4
+

concentration in the overlyingwater over time are used to calculate the
exchanges at the sediment–water interface (e.g. Boucher and Clavier,
1990; Boucher et al., 1994; Clavier et al., 2005).Water columnprocesses
are considered negligible or are estimated during parallel incubations,
for example, in benthic chambers with bottoms that exclude the sedi-
ment (Neubauer et al., 2005). However, benthic chamber techniques
only provide the net fluxes of NH4

+, i.e. the difference between the re-
lease from the sediment and the removal from the water column.
Light and dark incubations are sometimes performed simultaneously
to distinguish between the fluxes of NH4

+ into and out the sediment
(Joye and Anderson, 2008), but the two fluxes cannot always be sepa-
rated because both microphytobenthos (MPB) and bacteria can assimi-
late N in the dark (Evrard et al., 2008). Another useful approach for
studying NH4

+
fluxes in the benthic and pelagic compartments is the

15N tracer method. Since its introduction in the 1960s (Dugdale and
Goering, 1967), the 15N tracer method has been intensively used to
measure NH4

+ uptake by themicrobial community in thewater column.
An isotope dilution technique using a 15N tracer was later developed to
measure NH4

+ regeneration in the water column (Glibert et al., 1982).
This isotope dilution method has also been applied to estimate the
gross rate of NH4

+ production in marine sediments with the addition
of 15NH4

+ in intact sediment cores or in the overlyingwater, as described
first by Blackburn (1979) and modified by Anderson et al. (1997) and
Jochem et al. (2004). Ammonium incorporation by the sediment is
generally estimated in parallel, either indirectly from the change in
the quantity and in the 15N-content of the NH4

+ pool (Blackburn,
1979) or directly from an increase in the l5N-content of organic N
(Iizumi et al., 1982). The 15N tracer method has also been used to deter-
mine the relative contribution of bacteria and MPB to the total benthic
microbial NH4

+ uptake (Cook et al., 2007; Evrard et al., 2008; Veuger
et al., 2005) and to examine the uptake and retention of NH4

+ by
macroalgae and seagrasses (Dudley et al., 2001; Lepoint et al., 2004;
Vonk et al., 2008). Nevertheless, the use of 15N tracers is particularly
rare in studies integrating both the pelagic and benthic compartments
(Iizumi et al., 1982; Lepoint et al., 2004) and the compartments are
either studied separately (Iizumi et al., 1982) or the studies do not ac-
count for the release of NH4

+ from the sediment and its regeneration
in the water column (Lepoint et al., 2004).

Here, we present a novel approach, combining the 15N tracer
method and the benthic chamber technique, to study NH4

+ exchanges
at the sediment–water interface. Our method simultaneously measures
the fluxes of NH4

+ into and from the sediment as well as uptake and re-
generation rates of NH4

+ in the water column. We applied this method
to a tropical reef on Reunion Island (Indian Ocean).

2. Materials and methods

2.1. Method for measuring NH4
+ fluxes at the sediment–water interface

The method consists in measuring, with a 15N tracer, NH4
+

fluxes
during a single in situ incubation in a sample of water enclosed in a
benthic chamber placed over the sediment and in a subsample there-
of concomitantly incubated in a bottle. The benthic chamber experi-
ment measures total NH4

+ production, including NH4
+ regeneration by

microheterotrophs in thewater column andNH4
+ transfer from sediment

to the water column and estimates NH4
+ uptake by phytoplankton.

The concomitant bottle experiment measures NH4
+ regeneration by

microheterotrophs in the water column alone, along with NH4
+ uptake

by phytoplankton. The efflux of NH4
+ across the sediment–water inter-

face can be determined by subtracting the NH4
+ regeneration by

microheterotrophsmeasured in the bottle from the total NH4
+production

measured in the benthic chamber. The influx of NH4
+ from the water col-

umn to the sediment can be deduced by taking into account the total
NH4

+ production, the NH4
+ loss due to phytoplankton uptake and the var-

iation in NH4
+ concentration during the incubation period in the benthic

chamber. Ammonium uptake rates were estimated by the incorporation
of 15N-labelled NH4

+ into particulate organic nitrogen (PON) (Dugdale
and Goering, 1967) and NH4

+ production rates using the isotope dilution
method (Glibert et al., 1982).

2.2. Study area

Experiments were carried out on the tropical island of Reunion
(Indian Ocean). The study site was located in the back-reef zone of the
Saint Gilles-La Saline fringing reef, the largest reef on Reunion Island
(9 km long; maximal width 500 m). The experimental area features
depths varying from 1.0 to 1.5 m, depending on the tidal level, and is
protected from ocean waves by the reef flat. Experiments were carried
out around noon local time in triplicate at three stations located in the
same sector of the back-reef zone, at about 50 m downshore from the
beach (Fig. 1). At all stations, the sediment was composed of sand
scattered with coral fragments, covering a bed of limestone. All the ex-
perimentswere carried out in calmweather, therebyminimisinghydro-
dynamic forcing on the sediment surface.

2.3. Experimental protocol

The NH4
+

fluxes at the water–sediment interface were assessed
using three benthic chambers made of 0.2 m2 cylindrical PVC tubes
(Clavier et al., 2008). They were inserted into the sediment down to
the underlying hard limestone substrate (ca. 10 cm) and covered with
clear acrylic domes. The total volume varied from 47 to 63 L, depending
upon the depth of insertion. The enclosed water was homogenised by a
pump adjusted to a fixed flow rate of 2 L min−1, which was the mini-
mum value to ensure good mixing of water in the chambers. Multipa-
rameter probes (YSI 6920) measured depth, temperature and salinity
in the recirculatingflow system. The valueswere recorded every second
and averaged per minute.

The deployment of benthic chambers and samplingwere carried out
by scuba diving. Water samples were collected within the chambers
using a polyethylene syringe (0.6 L) or using the recirculating flow sys-
tem of the benthic chambers and polycarbonate flasks (2 L) (15N bottle
experiments). The benthic chambers, the recirculating flow system and
the sampling equipment (syringe, flask) were washed with HCl (10%)
and rinsed with deionised water.

Following deployment of benthic chambers, water samples (0.6 L)
were immediately collected from inside each chamber to determine
NH4

+ and chlorophyll a (Chl a) concentrations. Chl a samples were fil-
tered on 25-mm-Whatman-GF/F-filters. The filters were stored at
−20 °C and analysed at the end of the field work. Ammonium concen-
trations were determined in triplicate on the filtrates recovered after
the filtration of the Chl a samples. The 15N tracer, in the form of
15NH4Cl (99% at %15N, CEA, France), was then inoculated at a concentra-
tion of about 1 μmol N L−1 in the benthic chambers with a syringe
(0.1 L) handled on-site by a scuba diver. After approximately 30 min, es-
timated as the time required to ensure homogenisation of the tracer, 1 L
was sampled from the benthic chambers and filtered onto 25-mm-pre-
combusted-Whatman-GF/F-filters under a vacuum of b100 mm Hg to
determine the time-zero concentration and 15N enrichment of the par-
ticulate and dissolved N pools. Filters were oven-dried at 60 °C for 24 h
and stored until PON and isotopic analyses. A fraction of the filtrate



(about 0.4 L) was used immediately for triplicate NH4
+ measurements

and the remaining stored with HgCl2 (20 μg mL−1) pending measure-
ments of 15N enrichment in theNH4

+ fraction. Outsidewaterwas allowed
to enter through a tap during sampling to avoid interstitial water release
from the sediment. This input caused a dilution of theNH4

+concentration
and 15NH4

+ enrichment. The initial enrichment of the NH4
+ pool, given

this dilution, varied from 51 to 71 atom% excess of 15N in the benthic
chambers. At the end of the incubation period (about 4 h), a sample
from each chamber (1 L) was filtered onto 25 mm pre-combusted
Whatman-GF/F-filters. The filters and the filtrates were treated as for
the time-zero filtration.

Samples for 15N bottle experiments were collected fromwithin each
chamber just after the sampling of water for the determination of NH4

+

and Chl a concentrations. The 15N tracer was added to the bottles on the
beach at the same concentration (1 μmol N L−1) as in the benthic
chamber. The samples in bottles were separated into two aliquots im-
mediately after the addition of the tracer. The first aliquot (1 L) was
used to determine the time-zero concentration and 15N enrichment of
the particulate and dissolved N pools as described above. The initial en-
richment of the NH4

+ pool ranged from 61 to 69 atom% excess of 15N.
The second aliquot was incubated in 1 L polycarbonate bottles near
the benthic chambers under in situ conditions. It was recovered at the
end of the incubation period along with samples of benthic chambers
and was treated in the same way.

At the end of each set of experiments, three sediment cores
(Ø 35 mm) were sampled by hand within each chamber to determine
the N content and 15N content in excess in the sediment. The
0–0.5 cm and 0.5–1 cm layers were cut, placed in petri dishes, frozen
and stored until analysis. Three sediment cores were also sampled
outside the chambers to assess natural 15N enrichment in the top
centimetre of sediment. Based on these measurements, together with
those done in the water column, we were able to carry out a 15N
inventory for each experiment.

2.4. Biological, chemical, and isotopic analyses

Chlorophyll a concentrations were measured fluorometrically
(Yentsch and Menzel, 1963) in a Turner Designs fluorometer with a
precision (SD) of ±0.05 μg L−1. Ammonium concentrations were
measured manually by the indo-phenol blue method (Koroleff, 1970)
with a precision (SD) of ±10 nmol L−1.

For isotopic analyses, NH4
+ was first extracted from the filtrate by

diffusion in basic pH (Kristiansen and Paasche, 1989). To 200 mL of
filtrate placed in a 500 mL Erlenmeyer flask, we added 100 mg of
MgO to raise the pH (N9) and 2 μmol N of unlabelled NH4

+ (as a carrier).
A strip of pre-combusted GF/C filter wetted with 50 μL of 0.5 N H2S04
was suspended above the sample. The flask was capped tightly and
left for 24 h at 60 °C in an oven. The strip was then removed and stored
until isotopic analyses. Sediment samples were dried (60 °C for 24 h)
and ground before analysis.

PON concentration in the water, N content in the sediment and 15N
enrichments of the PON, the sediment and the NH4

+ recovered from
the filtrate were quantified with a mass spectrometer (Delta plus,
ThermoFisher Scientific, Bremen, Germany) coupled with a C/N
analyser (Flash EA, ThermoFisher Scientific) via a type III-interface.
The standard deviations (SD) were 0.004 μmol L−1, 0.2 μmol N g dry
sed−1 and 0.0001 atom% for PON concentration, N content and 15N
enrichment, respectively.

2.5. Calculation of nitrogen fluxes

Ammonium uptake rates (μmol L−1 h−1) in bottles (ρW-BOT) and in
benthic chambers (ρW-BEN) were calculated using the equation given by
Dugdale and Wilkerson (1986) where the PON concentration is
measured at the end of the incubation. Uptake rates were corrected
for isotope dilution due to the production of 14NH4

+ during the incuba-
tion which dilutes the 15NH4

+ added at the start of the experiment

Fig. 1. Location of the study site on Reunion Island in a back-reef zone.



(Glibert et al., 1982); the correction factor varied from 1.0 to 1.1 (aver-
age: 1.05). The large amount of 15N tracer added significantly increased
the ambient NH4

+ concentration and, consequently, probably also NH4
+

uptake by phytoplankton, so, the uptake values givenmay overestimate
the actual uptake rates (Dugdale andWilkerson, 1986). Ammonium re-
generation rates in bottles (RW-BOT) and NH4

+ production rates in benthic
chambers (RBEN) (μmol L−1 h−1) were calculated from the Laws (1984)
equation or that of Glibert et al. (1982), depending upon whether there
were measurable changes in NH4

+ concentration over the course of the
experiment or not. Ammonium uptake and regeneration rates were
integrated over the water column (μmol m−2 h−1) by assuming that
there was no vertical variation.

Ammonium production measured in benthic chambers (RBEN)
included regeneration in the water by microheterotrophs (RW-BEN) and
transport of NH4

+ from the sediment to the water column (FSW):

RBEN ¼ RW‐BEN þ FSW: ð1Þ

Ammonium regeneration in the water by microheterotrophs was
necessarily the same in the benthic chambers (RW-BEN) and in the bottles
(RW-BOT), because the two incubation systems contained the samewater.
Ammonium flux from the sediment to the water column can then be
calculated using the following equation:

FSW ¼ RBEN−RW‐BOT: ð2Þ

Ammonium transfer from the water column to the sediment (FWS)
was determined by taking into account the variation in concentration
and the fluxes measured inside the benthic chambers. The variation in
NH4

+ concentration (ΔNH4
+) resulted from the different fluxes in

water (ρW-BEN and RW-BEN) and sediment–water interface (FSW and FWS):

ΔNH4
þ ¼ RW‐BEN þ FSW–ρW‐BEN–FWSð Þ � ΔT ð3Þ

where ΔT is the length of the incubation period (h).
The variation in NH4

+ concentration (ΔNH4
+), the NH4

+ production
(RBEN = RW-BEN + FSW) and the NH4

+ loss due to phytoplankton uptake
(ρW-BEN) were directly measured in the benthic chambers. The transfer
from the water column to the sediment (FWS) can then be calculated
using the following equation:

FWS ¼ RW‐BEN þ FSW−ρW‐BENð Þ−ΔNH4
þ
=ΔT: ð4Þ

The fluxes FSW and FWS represent the quantities of NH4
+ exchanged

between the water column and the sediment per litre of sea water
enclosed in the benthic chamber and are expressed in μmol L−1 h−1.
They were converted into μmol m−2 h−1 based on the volume of the
chamber and its exchange surface with the sediment (0.2 m2).

To determine the mass balance of the 15N tracer in each bottle and
chamber, we calculated the 15N content in excess (in μmol L−1 for bot-
tles and in μmol for chambers) in the dissolved and particulate pools of
the water column and in the sediment by multiplying the 15N atom%

excess enrichment by the nitrogen content. The amount of 15N tracer
in excess in the sediment was estimated for each chamber by taking
themean of the triplicatemeasurements in the 0–0.5 and 0.5–1 cm sur-
face layers. The 15N in excess recovered at the end of the incubation pe-
riod was compared to the 15N in excess added at the beginning of the
experiment.

Paired-sampleWilcoxon signed-rank tests were used to test wheth-
er the differences observed during the experiments were statistically
significant (p b 0.05). Non-parametric tests were used due to the
small number of replicates and their non-normal distribution.

3. Results

3.1. Environmental parameters

The physical, chemical and biological characteristics of the water
enclosed in the chambers are presented in Table 1. The initial tempera-
ture and salinity in the water were, respectively, about 25 °C and 35
whatever the station. There were no significant variations in tempera-
ture (Wilcoxon signed-rank test, n = 9, p N 0.05) or salinity (Wilcoxon
signed-rank test, n = 6, p N 0.05) during the incubations, indicating
that environmental conditions were stable in the chambers during the
experiments. The mean NH4

+ concentration varied from 0.30 to
0.37 μmol L−1 depending on the station. The mean Chl a and PON con-
centrations ranged, respectively, from0.11 to 0.13 μg L−1 and from0.25
to 0.30 μmol L−1. PON concentrations did not vary significantly
(Wilcoxon signed-rank test, n = 9, p N 0.05)within chambers between
the beginning and the end of the incubation period, indicating that the
flow rate of the recirculating flow system was high enough to prevent
sedimentation of particles, but low enough not to resuspend the sedi-
ment. All the parameters were very similar in the three chambers at
each station (coefficient of variation (CV) ≤ 10%) and varied little
among stations (CV ≤ 17%) (Table 1).

3.2. Nitrogen flux

Mean NH4
+ uptake rates measured in bottles ranged from 2.7

to 3.3·10−3 μmol L−1 h−1 depending on the station, with a mean
CV for triplicate measurements of 14.3% (Table 2). Mean NH4

+ re-
generation rates from the bottle experiments ranged from 6.2 to
9.0 10−3 μmol L−1 h−1 with a mean CV of 17.8% (Table 2). Mean
ammonium uptake and regeneration rates integrated over the water
column varied from 3.0 ± 0.4 to 4.0 ± 0.7 μmol m−2 h−1 and from
7.4 ± 1.5 to 9.9 ±1.7 μmol m−2 h−1, respectively (Fig. 2).

Mean NH4
+ uptake rates measured in benthic chambers (2.9–

5.1 · 10−3 μmol L−1 h−1) were not significantly different from
those observed in the bottle experiments (Wilcoxon signed-rank
test, n = 9, p N 0.05) and the mean CV (15.8%) was comparable to
that found in the bottle experiments (Table 2). NH4

+ production
rates, which included water regeneration by microheterotrophs
and transport from the sediment, ranged on average from 35.9 to

Table 1
Environmental parameters (mean ± SD, n = 3) in thewater enclosed in the chambers at the three sampling stations. The values of the parametersmeasured at the end of the incubation
period are given in parentheses.

Date Depth
(m)

Temperature
(°C)

Salinity NH4
+

(μmol L−1)
Chl a

(μg L−1)
PON

(μmol L−1)

01/09/2005 1.1 24.87 ± 0.06 nda 0.30 ± 0.03 0.13 ± 0.01 0.30 ± 0.03
(26.22 ± 0.2) nda (0.26 ± 0.02)

02/09/2005 1.1 25.16 ± 0.10 34.54 ± 0.45 0.34 ± 0.01 0.11 ± 0.01 0.25 ± 0.02
(26.27 ± 0.09) (34.60 ± 0.46) (0.25 ± 0.01)

03/09/2005 1.2 24.98 ± 0.20 35.07 ± 0.09 0.37 ± 0.01 0.11 ± 0.01 0.25 ± 0.01
(26.28 ± 0.08) (35.14 ± 0.04) (0.25 ± 0.01)

a Not determined.



53.5 ·10−3 μmol L−1 h−1 and the mean CV for triplicate measure-
ments was 24.1% (Table 2). These production rates are 4 to 9 times
higher than the regeneration rates measured in bottles, indicating
high NH4

+ input from the sediment. The mean flux of NH4
+ from the

sediment to the water column (FSW), estimated with Eq. (2), varied
from 27.7 to 47.3 · 10−3 μmol L−1 h−1 (mean CV = 28.3%) (Table 2),
giving a mean flux per surface unit ranging from 6.7 ± 2.6 to 13.7 ±
2.4 μmol m−2 h−1 (Fig. 2). The mean flux of NH4

+ from the water
column to the sediment (FWS), calculated with Eq. (4), varied from 122.3
to 203.9 · 10−3 μmol L−1 h−1 with a mean CV of 26.7% (Table 2),
corresponding to a mean flux per surface unit from 29.6 ± 3.6 to
59.2 ± 22.5 μmol m−2 h−1 (Fig. 2).

3.3. N content and 15N content in the sediment

The mean N content in the sediment collected in each chamber
at the end of the incubation period varied from 12.2 to 16.4 μmol N g
dry sed−1 in the 0–0.5 cm layer and from 11.8 to 16.5 μmol N g dry
sed−1 in the 0.5–1 cm layer (Table 3). The variation among triplicate
measurements in each chamber was relatively low, with a mean CV of

4.8% and 5.9% for the 0–0.5 cm and 0.5–1 cm layers, respectively, as
was the variation among chambers at each sampling station, with a
mean CV of 7.3% and 7.7% for the 0–0.5 cm and 0.5–1 cm layers,
respectively.

The mean 15N content in excess in the sediment at the end of
the incubation period ranged from 1.9 to 4.9 μmol 15N g dry sed−1 in
the 0–0.5 cm layer and from 0.6 to 1.6 μmol 15N g dry sed−1 in the
0.5–1 cm layer (Table 3). In contrast to the N content, the 15N content
in excess varied considerably among the three cores sampled in each
chamber (mean CV of 39.2% and 41.4% for the 0–0.5 cm and 0.5–1 cm
layers, respectively) as well as among chambers at each sampling
station (mean CV of 43.6% and 38.6% for the 0–0.5 cm and 0.5–1 cm
layers, respectively).

Table 2
Ammonium uptake and regeneration rates in bottles (ρW-BOT and RW-BOT) and NH4

+ uptake and production rates in benthic chambers (ρW-BEN and RBEN), changes in NH4
+ concentration

during the incubation period (ΔNH4
+) and NH4

+
fluxes from the sediment to the water column (FSW) and from the water column to the sediment (FWS) for each replicate at the three

sampling stations.

Date Replicate Vol. chambera

(L)
ΔTb

(h)
ρW-BOT

(10−3 μmol L−1 h−1)

RW-BOT

(10−3 μmol L−1 h−1)

ρW-BEN

(10−3 μmol L−1 h−1)

RBEN

(10−3 μmol L−1 h−1)

ΔNH4
+

(μmol L−1)

FSW

(10−3 μmol L−1 h−1)

FWS

(10−3 μmol L−1 h−1)

01/09/2005 1 46.6 4.1 3.3 9.5 2.8 50.9 −0.39 41.4 143.2
2 48.5 4.1 2.7 7.9 3.0 27.9 −0.39 20.0 120.0
3 50.5 4.1 2.9 7.2 3.1 28.8 −0.32 21.6 103.7

Mean 3.0 8.2 3.0 35.9 −0.37 27.7 122.3
SD 0.3 1.2 0.2 13.0 0.04 11.9 19.9

CV (%) 10.0 14.6 6.7 36.2 10.8 43.0 16.3

02/09/2005 1 62.5 4.1 2.3 9.9 1.8 63.4 −0.46 53.5 173.8
2 61.6 4.1 2.8 9.9 3.2 49.0 −0.31 39.1 121.4
3 60.3 4.1 3.0 7.2 3.6 41.4 −0.29 34.2 108.5

Mean 2.7 9.0 2.9 51.3 −0.35 42.3 134.6
SD 0.4 1.6 0.9 11.2 0.09 10.0 34.6

CV (%) 14.8 17.8 31.0 21.8 25.7 23.6 25.7

03/09/2005 1 58.1 4.1 2.7 5.0 5.3 55.4 −0.97 50.4 286.7
2 57.6 4.0 3.6 6.0 4.6 60.0 −0.55 54.0 192.9
3 58.6 4.0 3.7 7.5 5.5 45.0 −0.37 37.5 132.0

Mean 3.3 6.2 5.1 53.5 −0.63 47.3 203.9
SD 0.6 1.3 0.5 7.7 0.31 8.7 77.9

CV (%) 18.2 21.0 9.8 14.4 49.2 18.4 38.2

a Volume of water enclosed in the chamber.
b Duration of the incubation.

NH4
+NH4
+

RW-BOT

FSWFWS

W-BOT

7.4 - 9.9 3.0 – 4.0

6.7 – 13.729.6 – 59.2

Fig. 2. Ranges of average NH4
+ uptake and regeneration rates in bottles (ρW-BOT and RW-BOT)

integrated over the water column (in μmol m−2 h−1) and NH4
+
fluxes per surface unit

(in μmol m−2 h−1) from the sediment to the water column (FSW) and from the water
column to the sediment (FWS) for the three sampling stations.

Table 3
Mean (±SD, n = 3) N content and 15N content in excess in the 0–0.5 and 0.5–1 cm sed-
iment layers enclosed by each chamber at the end of the incubation period at the three
sampling stations.

Date Replicate μmol N g dry sed−1 10−3 μmol 15N g dry sed−1

0–0.5 cm 0.5–1 cm 0–0.5 cm 0.5–1 cm

01/09/2005 1 10.5 ± 0.5 10.9 ± 0.4 1.7 ± 0.1 0.2 ± 0.2
2 13.4 ± 0.4 12.7 ± 1.5 1.2 ± 0.3 0.5 ± 0.4
3 12.7 ± 1.6 11.8 ± 0.3 2.8 ± 0.7 1.2 ± 0.2
Mean 12.2 11.8 1.9 0.6

SD 1.5 0.9 0.8 0.5
CV (%) 12.3 7.6 42.1 83.3

02/09/2005 1 15.7 ± 0.9 15.9 ± 1.5 2.2 ± 1.7 1.0 ± 0.4
2 14.0 ± 0.5 14.3 ± 0.3 1.4 ± 0.9 0.8 ± 0.2
3 16.2 ± 0.9 16.5 ± 0.6 3.7 ± 3.1 1.2 ± 0.2
Mean 15.3 15.6 2.4 1.0

SD 1.2 1.1 1.1 0.2
CV (%) 7.8 7.1 45.8 20.0

03/09/2005 1 16.1 ± 0.7 14.9 ± 0.7 7.3 ± 2.0 1.8 ± 0.5
2 16.7 ± 0.3 17.4 ± 0.5 3.8 ± 0.2 1.4 ± 0.2
3 16.4 ± 0.3 17.3 ± 2.1 3.6 ± 1.4 1.4 ± 0.2
Mean 16.4 16.5 4.9 1.6

SD 0.3 1.4 2.1 0.2
CV (%) 1.8 8.5 42.9 12.5



3.4. 15N mass balance

Results from the 15N inventories for the bottle experiments are
shown in Table 4. The total amount of 15N tracer in excess recovered
at the end of the incubationwas on average (±SD) 99.5 ± 1.1%. Almost
all of the initially added tracer was accounted for in the NH4

+ pool
(98.4 ± 1.1%) whereas only 1.0 ± 0.2% was found in the particulate
pool.

In the benthic chambers, 24.6 to 72.9% (mean ± SD = 59.1 ±
15.7%) of the 15N initially added was recovered in the water column
and the highest percentage (57.8 ± 15.9%) was observed in the dis-
solved pool (Table 5). The mean amount of 15N tracer in excess
recovered in the sediment (0–1 cm) represented 7.4 to 40.1 (mean ±
SD = 16.8 ± 10.1%) of the 15N in excess in the chambers at the begin-
ning of the incubation depending on the experiment (Table 5). The total
amount of 15N tracer in excess recovered in the chambers, taking into
account both the water column and the sediment, ranged from 61.6 to
89.9% (mean ± SD = 75.9 ± 10.0%) (Table 5).

4. Discussion

Ammonium fluxes between the benthic and pelagic compartments
have often been measured (reviews by Bronk and Steinberg, 2008 and
Joye and Anderson, 2008), but the techniques used generally only pro-
vide the net fluxes of NH4

+. Our method distinguishes the influx from
the efflux of NH4

+ across the sediment–water interface by measuring
the uptake and production of NH4

+ during a single in situ incubation,
using the 15N tracer technique in a sample ofwater enclosed in a benthic
chamber placed over the sediment and in a subsample thereof concom-
itantly incubated in a bottle.

Results from 15N experiments showed that NH4
+ uptake rates mea-

sured in chamberswere not significantly different from thosemeasured
in bottles (Table 2). The reproducibility of the NH4

+ uptake rates in
benthic chambers was also comparable to that obtained for uptake
and regeneration rates in bottle incubations (Table 2). The similarity
of uptake rates measured in the bottle and chamber experiments
indicates that incubation under benthic chambers is appropriate for

Table 4
Isotopic mass balance in bottle experiments: amount (μmol L−1) of 15N in excess added as NH4

+ at the beginning of the experiment (15N initial) and amount of 15N in excess recovered in
NH4

+ and PON pools at the end of the incubation for each replicate at the three sampling stations.

Date Experiment 15N initial
(μmol L−1)

15N recovered

15NH4
+ 15PON Totala

(μmol L−1) (%)b (μmol L−1) (%)b (μmol L−1) (%)b

01/09/2005 1 0.821 0.817 99.5 0.009 1.1 0.826 100.6
2 0.830 0.817 98.4 0.008 1.0 0.825 99.4
3 0.825 0.809 98.1 0.009 1.1 0.818 99.2

02/09/2005 1 0.824 0.825 100.1 0.007 0.8 0.832 101.0
2 0.848 0.824 97.2 0.008 0.9 0.832 98.1
3 0.843 0.814 96.6 0.009 1.1 0.823 97.6

03/09/2005 1 0.847 0.839 99.1 0.008 0.9 0.847 100.0
2 0.854 0.837 98.0 0.010 1.2 0.847 99.2
3 0.856 0.845 98.7 0.011 1.3 0.856 100.0

Mean 0.839 0.825 98.4 0.009 1.0 0.834 99.5
SD 0.014 0.012 1.1 0.001 0.2 0.013 1.1

a Total amount of 15N recovered.
b % of tracer initially added.

Table 5
Isotopic mass balance in benthic chamber experiments: amount (μmol) of 15N in excess added as NH4

+ at the beginning of the experiment (15N initial) and amount of 15N in excess
recovered in NH4

+ and PON pools and in the sediment at the end of the incubation period for each replicate at the three sampling stations.

Date Replicate 15N initial
(μmol)

15N recovered

15NH4
+ 15PON 15SEDa Totalb

(μmol) (%)c (μmol) (%)c (μmol) (%)c (μmol) (%)c

01/09/2005 1 50.50 34.50 68.3 0.40 0.8 4.05 ± 0.72 8.0 ± 1.4 38.95 77.1
2 50.78 33.88 66.7 0.51 1.0 3.74 ± 0.67 7.4 ± 1.3 38.13 75.1
3 50.81 36.51 71.9 0.51 1.0 8.65 ± 1.15 17.0 ± 2.3 45.67 89.9

02/09/2005 1 46.97 22.90 48.8 0.36 0.8 5.66 ± 4.07 12.1 ± 8.7 28.92 61.6
2 48.85 31.34 64.2 0.59 1.2 4.35 ± 2.63 8.9 ± 5.4 36.28 74.3
3 51.43 35.43 68.9 0.65 1.3 9.27 ± 4.95 18.0 ± 9.6 45.35 88.2

03/09/2005 1 41.56 9.47 22.8 0.74 1.8 16.68 ± 4.38 40.1 ± 10.5 26.89 64.7
2 45.29 20.99 46.3 0.73 1.6 9.38 ± 1.16 20.7 ± 2.6 31.10 68.7
3 49.80 31.22 62.7 0.93 1.9 9.53 ± 5.06 19.1 ± 10.2 41.68 83.7

Mean 48.44 28.47 57.8 0.60 1.3 7.92 16.8 37.00 75.9
SD 3.27 8.96 15.9 0.18 0.4 4.09 10.1 6.84 10.0

a Mean (±SD, n = 3) amount of 15N tracer recovered in the 0–1 cm surface layer of the sediment.
b Total amount of 15N recovered.
c % of tracer initially added.



measuring N fluxes in the water column with the 15N tracer method.
The total NH4

+ production rates determined in chambers at each
sampling station and, consequently, the calculated fluxes between the
sediment and the water column generally showed higher CVs than
those obtained for the uptake and regeneration rates (Table 2). NH4

+

production rates also showed relatively large differences between sam-
pling stations compared toNH4

+ uptake and regeneration rates, suggest-
ing that the variation observed at each station probably resulted from
variability in fluxes at the sediment–water interface rather than low
measurement reproducibility. This variability was confirmed for the
influx of NH4

+ by the variability in the amount of 15N recovered in the
sediment at the end of each incubation period, which varied among
stations, among chambers at each sampling station and even within
each chamber as shown by the high SD values of the triplicatemeasure-
ments (Table 3). These variations influxes involving exchangeswith the
sediment are not surprising and probably reflect the heterogeneity of
the biological processes in the benthic compartment.

We assessed our data for 15Nmass balance, i.e. we checkedwhether
the amount of 15N added as 15NH4

+ at the beginning of the experiments
was recovered at the end in the NH4

+ and PON pools of the water col-
umn or in the sediment in the case of the chamber experiments. Tracer
inventories showed that the 15N mass balance was virtually attained in
the bottle experiments, as on average 99.5% (±1.1%) of the 15NH4

+

added at the beginning of the experiments was ultimately recovered
in the NH4

+ and PON pools (Table 4). Individual values of 15N recovery
were within the range of those published for 15N inventories in phyto-
plankton uptake experiments (Bronk et al., 1994; Slawyk and
Raimbault, 1995). A large percentage (75.9 ± 10.0%) of the 15NH4

+ ini-
tially added to the benthic chambers was also recovered at the end of
the incubation period (Table 5). The 15N tracer was mainly retrieved
in the NH4

+ and PON pools of the water column (mean ± SD =
59.1 ± 15.7%) and the fraction not found in the water column was
mainly observed in the 0–1 cm layer of the sediment (mean ±
SD = 16.8 ± 10.1%). However, mass balance of 15N tracer was not
completely attained in the chambers because an average 24% (10.1 to
38.4%, 24.1 ± 10.0%) of the 15N added remained undetected at the
end of the chamber experiments (Table 5). For the bottle experiments,
almost all the 15N added was recovered in the NH4

+ and PON pools at
the end of the incubation period, indicating that the removal of the trac-
er from the water column resulted essentially from uptake processes
and that losses due to, for example, DON release from PON subsequent
to NH4

+ uptake or nitrification—the usual explanations for vanishing
15N in uptake experiments (Bronk et al., 1994; Slawyk and Raimbault,
1995)—were negligible. These losses were probably also negligible for
the chamber experiments. Therefore, the apparent 15N loss observed
in chambers must be due in large part to insufficient sampling of the
benthic compartment. The 15N content in excess in the sediment varied
greatly in each chamber depending on the core sampled (Table 3), indi-
cating that triplicatemeasurements were insufficient to assess the actu-
al transfer of 15NH4

+ from the water column to the sediment. In some
chambers, the 15N mass balance would have been completely attained
based on only the largest value of the three measurements. In addition,
only the first centimetre of the sediment was analysed for 15N content.
The mean 15N content in the 0.5–1 cm layer represented on average
36.9 ± 13.0% (11.8–57.1%) of that found in the 0–0.5 cm layer
(Table 3), suggesting that some 15N content could be located even
deeper in the sediment. Accordingly, there have been reports that viable
MPB may be found at depths of several centimetres, especially in sandy
sediments (MacIntyre et al., 1996). Moreover, some of the 15N-enriched
sediment in the benthic chamber experiments could have been trans-
ferred to the benthic macrofauna that was not sampled. Additionally,
some of the unrecovered 15N tracer may have been partially exchanged
with outside water. In permeable shelf sediments, such as sandy sedi-
ment, waves, tides and horizontal pressure gradients at the sediment
surface can generate non-negligible advective replacement of pore-
water by supernatant waters (Huettel and Gust, 1992). An advective

process may have induced the replacement of part of the 15N-enriched
water in the benthic chambers by external non-enriched water and
explain some of the 15N losses. Nevertheless, advection should be limited
because the chambers were deeply inserted into the sediment
(ca. 10 cm). Moreover, the study area was protected from waves by the
reef flat and has a low tidal amplitude.

The NH4
+ uptake rates measured in the back-reef zone on Reunion

Island fall in the range of values reported for oligotrophic environment
with comparably low N concentrations (see the review by Mulholland
and Lomas, 2008). The rates of NH4

+ regeneration in the water column
are also close to those obtained by Hopkinson et al. (1987, 1991) in sim-
ilar coral reef environments and to those generally measured in oligo-
trophic conditions (for review, see Bronk and Steinberg, 2008). Both
uptake and regeneration rates of NH4

+ were relatively similar at the
three sampling stations, indicating some consistency in the pelagic
compartment of the study area.

The fluxes of NH4
+ from the water column to the sediment (29.6 to

59.2 μmol m−2 h−1) are in the upper part of the range of values gener-
ally measured in the light in comparable shallow sandy littoral zones
(Eyre and Ferguson, 2002; Ferguson et al., 2004; Joye and Anderson,
2008; Reay et al., 1995; Sundbäck et al., 2000). The influx of NH4

+ into
the sediment must be due, for the most part, to uptake by benthic
microalgae. Accordingly, MPB has a relatively large biomass in the
back-reef zone on Reunion Island (Taddei et al., 2008). Heterotrophic
bacteria can also contribute significantly to NH4

+ uptake in the sediment
(Veuger et al., 2005), but uptake by bacteria is probably very low com-
pared to uptake by MPB, which is enhanced in the well-lit sediments of
the study area. At the three stations, the mean flux of NH4

+ from the
water column to the sediment was much higher than the mean NH4

+

uptake rate in thewater (Fig. 2), which suggests thatMPB is responsible
formost of theNH4

+ removal from thewater column. The important role
of MPB in controlling the DIN flux at the sediment–water interface has
been demonstrated by numerous studies in shallow-water sediments
(e.g. Joye and Anderson, 2008 and references therein). The activity of
MPB in well-lit conditions has been shown to reduce the efflux of
NH4

+ from the sediment or to lead to an influx from the water column
to the sediment, as observed in our study. However, the values reported
in the literature do not accurately represent the actual NH4

+
flux into the

sediment because, conventional methods, based on changes in concen-
tration, provide only the net fluxes of NH4

+. In contrast to the method
proposed here, conventional methods cannot distinguish NH4

+ removal
from the water column and its release from the sediment. The efflux of
NH4

+ is likely to continue in the light as observed in our study; thefluxes
measured by the conventional methods therefore, inmost cases, proba-
bly underestimate the influx into the sediment. In our study, NH4

+ influx
would have been 16 to 32% lower if the efflux had been subtracted. On
the other hand, our values may be overestimated due to the addition of
the 15N tracer, which increases the ambient level of NH4

+ in the benthic
chambers. Furthermore, the uptake of NH4

+ by MPB has been shown to
increase with an increase in concentrations (Clavier et al., 2005;
Sakamaki et al., 2006). In particular, this increase in uptake may occur
if sediment N sources are insufficient to meet MPB growth demands
and if MPB growth is N-limited. Such N limitation was recently
highlighted for benthic diatoms in coastal Georgia (Porubsky et al.,
2008) and could also be the case for MPB in sandy sediments of the
back-reef zone on Reunion Island, which is poor in organic matter and
probably has reduced N sources (see below).

The fluxes of NH4
+ from the sediment to thewater columnmeasured

at the different stations (6.7 to 13.7 μmol m−2 h−1)were relatively low
compared to those generally reported for shallow estuarine and coastal
marine sediments (see the review by Bronk and Steinberg, 2008). How-
ever, the release of NH4

+ from the sediment is generallymeasured in the
dark to minimise light-dependent uptake. In our experiments, which
were performed in the light, a fraction of the transferable NH4

+ was
probably captured by benthicmicroalgae. Thismay explain, at least par-
tially, the relatively low efflux rates observed. These low rates may also



be related to the fact that the sediment of the study area is poor in or-
ganic matter (Taddei et al., 2008), which is confirmed by the lowN con-
tent found at the three sampling stations (Table 3). The mean efflux of
NH4

+ at each station, despite its relatively low level, was comparable
to the regeneration rates in the water (Fig. 2), suggesting that the sedi-
ment may constitute a significant N source for phytoplankton in the
back-reef zone on Reunion Island.

5. Conclusion

Using the approach we described here that combines the 15N tracer
method and benthic chamber technique, we were able to quantify si-
multaneously, from a single in situ incubation, the influx and efflux of
NH4

+ at the sediment–water interface and the uptake and regeneration
rates of NH4

+ in the water column. The results obtained in a back-reef
zone on Reunion Island show that the method is sufficiently sensitive
for organic-poor, sandy sediments and oligotrophic waters where
NH4

+
fluxes are expected to be low. The distinction between the removal

and the release of NH4
+ from the sediment is a real improvement com-

pared to conventional methods which only provide a net flux. The use
of our combined approach in benthic studies should significantly
enhance theunderstanding of the coupling between thebenthic and pe-
lagic compartments. This combined approach will be useful for future
studies of the exchanges of other N compounds, such as nitrate or
urea, which can also be extracted from seawater for isotopic analyses.
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