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Abstract. Performance analysis of free-space optical (FSO) communication systems in different channel con-
ditions has gained significant attention in literature. Nevertheless, most existing studies consider uncorrelated
channel conditions. An uncorrelated channel requires sufficient spacing between transmitters and limits the
receiver field of view and link distance. However, this might not be feasible in all applications. Thereby, this
paper studies repetition code (RC) and orthogonal space time block code (OSTBC) performance in correlated
log-normal FSO channels using intensity modulation and direct detection. An approximate analytical expres-
sions using moment generating function for the average bit error probability are derived. Our simulation results
show that RCs are superior to OSTBCs in correlated channel conditions. © 2014 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.OE.53.1.XXXXXX]
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1 Introduction

Free-space optical (FSO) technology has several advantages
compared with radio frequency (RF), such as high data rates,
license-free operation, high security, and ease of deployment.
However, the performance of FSO systems can be highly
affected by fog and atmospheric turbulence.1–3 Atmospheric
turbulence can be considered as one of the main problems
facing FSO communication systems. The nonhomogeneous
changes in pressure and temperature lead to several changes
in the refractive index, which result in rapid fluctuations in
the received signal and limit the performance of the FSO
communication system.1,2,4,5

Spatial diversity has the ability to mitigate the degradation
of the bit error rate (BER) caused by atmospheric turbulence
and maximizes the data rate of the system. Furthermore, it
can improve the link reliability, decreases the blockage prob-
ability, and limits the need for active tracking due to laser
misalignment.1,4,6–10 Two codes are generally considered
in FSO spatial diversity systems. Namely, repetition codes
(RCs) and orthogonal space time block codes (OSTBCs).

In the RC system, the same signal is transmitted simulta-
neously from the available transmitters. The advantages of
such a transmission technique are very limited in RF and
FSO wireless systems using a heterodyne (coherent) recep-
tion. However, heterodyne reception is not preferred in FSO
systems due to its high cost and complexity. An alternative
and preferred transmission/reception method is intensity
modulation with direct detection (IM/DD).11 A study in
Ref. 2 considers the IM/DD RCs system with on–off keying
(OOK) modulation over FSO log-normal channels. Reported
results2 demonstrate that significant performance gains can
be achieved.

A modified version of Alamouti’s code, which allows the
use of unipolar pulsed modulation techniques for IM/DD

links is reported in Ref. 12. The main idea is to represent
the negative signal of a unipolar signal by the 1’s comple-
ment (i.e., bitwise NOT) of the positive signal. In Ref. 11, the
authors have extended the previous algorithm to handle up to
eight transmit apertures and they showed that RCs outper-
form OSTBCs using IM/DD in uncorrelated log-normal
channels. In Ref. 13, the authors show that coherent and dif-
ferential OSTBCs in FSO systems outperform their counter-
part RC systems at the expense of laborious receiver.

Previous studies have considered the case of uncorrelated
channels assuming the spacing between transmitters is larger
than the fading correlation length, but not exceeding the cap-
ture zone of the receiver, which should be less than θL m,
where θ is the field of view of the receiver in radians (rad)
and L is the link distance in meter (m).12 For example, if L ¼
1 km and θ ≅ 10 mrad, then the transmitters should be
<10 m apart. However, the last assumption may be difficult
in practice as available space for the transmitters may not be
sufficient for this requirement.4

A simple and general method to approximate the proba-
bility density functions (PDF) of uncorrelated and correlated
log-normal channels using moment generating function
(MGF) is reported in Ref. 14. Another method for log-nor-
mal channels distribution approximation can be done using
the Erlang distribution.15 The use of Erlang distribution leads
to an approximate closed-form expression of the BER with
log-normal channel variance not exceeding 3 dB. Such vari-
ance is suitable for FSO communication systems.15However,
it is generally very difficult to find an optimal Erlang PDF for
the employed log-normal channels.

Hence, the MGF approach is considered in this study to
analyze FSO system performance employing RCs and
OSTBCs using IM/DD in the presence of correlated log-
normal channel conditions. Reported results demonstrate a
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close match between numerical Monte Carlo simulations and
analytical results for a wide range of signal to noise ratio
(SNR), which corroborates the exactness of our derivation.

The remainder of this paper is organized as follows: the
FSO diversity model is presented in Sec. 2. In Sec. 3,
performance analysis is presented. Numerical results and dis-
cussions are given in Sec. 4. Finally, conclusions are sum-
marized in Sec. 5.

2 System Model

A synoptic diagram of the considered system model is
depicted in Fig. 1. The system considers Nt transmitters
and a single receiver. Source bits are modulated using
OOK and encoded by a multiple-input single-output (MISO)
encoder. The encoder considers two techniques for transmis-
sion, namely OSTBCs and RCs. In RC systems, the same
signal is transmitted simultaneously from the available trans-
mitters, whereas in OSTBCs, full-rate real orthogonal matri-
ces, G, for Nt ≤ 8, are considered.16 In Ref. 11, a linear
transformation of G matrix to OOK matrix, S, through S ¼
UþG

2
is proposed, where U denotes a unit matrix with the

same size as G.
The encoded real symbols modulate the synchronized

laser diodes. The transmitted light propagates over correlated
log-normal channel and suffers from additive white Gaussian
noise (AWGN) at the receiver input. As such, the received
signal is given by

rðtÞ ¼ sðtÞη
X

Nt

i¼1

Ii þ nðtÞ; (1)

where the received signal light intensity after turbulence, Ii is
given by2

Ii ¼ Iohi; (2)

where sðtÞ is the transmitted information symbol, η is the
optical to electrical conversion coefficient, hi ¼ expð2XiÞ
is the channel irradiance from transmitter i to the receiver
with Xi being modeled as spatially correlated identically dis-
tributed Gaussian random variable with mean μ, standard
deviation σ and variance σ2. Hence, hi is a log-normal ran-
dom variable (RV) with PDF given by17

fðhiÞ ¼
1

hi
ffiffiffiffiffiffiffiffiffiffi

8πσ2
p × exp

�

−
ðlnðhiÞ − 2μÞ2

8σ2

�

: (3)

To ensure that the fading channel does not attenuate or
amplify the average power, the fading coefficients are nor-
malized as E½hi� ¼ e2ðμþσ2Þ ¼ 1. Io in Eq. (2) is the received
average signal light intensity without considering the chan-
nel effect and nðtÞ is the AWGN at the receiver input.
The noise is mainly due to shot noise which dominates

over other noise sources such as thermal, signal-dependent
or dark noises.11

The spatial covariance matrix Γ coefficients, modeling the
spatial correlation among transmitters, are given by2

Γij ¼ σ2 × ρji−jj; (4)

where j:j stands for the absolute value, (ρ ≤ 1) is the corre-
lation coefficient, and i and j are the row and the column
indices of the covariance matrix coefficients, respectively.
According to Ref. 4, ρ is a function of the separation distance
d between transmitters,

ρ ¼ exp

�

−
d

do

�

; (5)

where the correlation length do ≈
ffiffiffiffiffiffi

λL
p

with λ being the
wavelength and L is the linear propagation distance between
the transmitters and the receiver. This correlation model
is called the exponential model18 and corresponds to the
scenario of a multichannel transmission from linearly equi-
spaced transmitters. From Eq. (5), the correlation of com-
bined signals decays by increasing the spacing between the
transmitters.

At the receiver side, maximum-likelihood decoder is con-
sidered to decode the received signals.16

3 Performance Analysis

3.1 Orthogonal Space Time Block Codes

The PDF of the instantaneous SNR γi, 1 ≤ i ≤ Nt, of corre-
lated jointly log-normal channel is given by17

fðγ1; · · · ; γNt
Þ ¼

exp
�

− 1
32
ZðΓÞ−1ZT

�

4Nt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞNtðdet½Γ�Þ
p

Π
Nt

i¼1γi
; (6)

where Z ¼ ½lnðγ1
γ̄1
Þ; · · · ; lnðγNt

γ̄Nt

Þ� − 4μ, γi is the average SNR,
ð·Þ−1 is the inverse of a matrix, ð·ÞT is the transpose of a
matrix, and det is the determinant of a matrix.

The instantaneous SNR γi in Eq. (6) is given by19

γi ¼
ðηIiÞ2
No

: (7)

The conditional BER for FSO system using OSTBCs is
given by11

PðejhÞ ¼ Q

2

6

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eb

2No

X

Nt

i¼1

h2i

v

u

u

t

3

7

5
; (8)

with Eb being the average electrical energy of the transmitted
pulse at each transmitter given by11

Eb ¼
�

ηIo

Nt

�

2

: (9)

The factor Nt is included in Eq. (9) to ensure that the total
power of the considered MISO system is similar to the power
of the benchmark single-input single-output (SISO) link.

Nt

x(t) s(t) r(t)

x(t)

L

d

y(t)

n(t)

Fig. 1 Synoptic diagram of the proposed model.
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The alternative form of the Gaussian-Q function is20

QðyÞ ≜ 1
ffiffiffiffiffi

2π
p

Z

∞

y

exp

�

−
x2

2

�

dx

¼ 1

π

Z

π
2

0

exp

�

−
y2

2sin2θ

�

dθ: (10)

Substituting Eq. (9) into Eq. (8) and using Eq. (2) yields

PðejhÞ ¼ Q

0

B

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2

2NoðNtÞ2
X

Nt

i¼1

I2i

v

u

u

t

1

C

A
: (11)

Using Eq. (7), the conditional BER with respect to the
SNR becomes

PðejhÞ ¼ Q

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PNt

i¼1 γi

2ðNtÞ2

s

!

: (12)

Using the PDF of the instantaneous SNR γi in Eq. (6), the
average bit error probability of OSTBCs is given by

BER¼
Z

∞

0

···

Z

∞

0

Q

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PNt

i¼1 γi

2ðNtÞ2

s

!

fðγ1; ···;γNt
Þdγ1 ··· dγNt

:

(13)

According to Ref. 21, the MGF is defined by

ΨðsÞ¼
Z

∞

0

· · ·

Z

∞

0

fðγ1; · · · ;γNt
Þexp

�

−s
X

Nt

i¼1

γi

�

dγ1 · · · dγNt
:

(14)

With the use of Eq. (6) and after few algebraic manipu-
lations, the PDF of instantaneous branch SNR for the given
branch i, γi, is

fðγiÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffi

32πσ2
p

γi
exp

2

6

4
−

�

ln
�

γi
γ̄i

�

þ 4σ2
�

2

32σ2

3

7

5
: (15)

The MGF of the RV γi is then given by

ΨðsÞ ¼
Z

∞

0

expð−sγiÞ
1

ffiffiffiffiffiffiffiffiffiffiffiffi

32πσ2
p

γi

× exp

2

6

4
−

�

ln
�

γi
γ̄i

�

þ 4σ2
�

2

32σ2

3

7

5
dγi: (16)

Making the change of variable x ¼ ðlnðγi
γ̄i
Þþ4σ2Þ
ffiffiffiffiffiffiffi

32σ2
p yields

ΨðsÞ¼ 1
ffiffiffi

π
p
Z

∞

−∞
expð−x2Þexp

�

−sγ̄iexp
�

ffiffiffiffiffiffiffiffiffiffi

32σ2
p

x−4σ2
�

�

dx:

(17)

Using Hermite polynomial approximation gives22

Z

∞

−∞
expð−x2ÞgðxÞdx ≈

X

N

i¼1

wigðxiÞ; (18)

where wi and xi are the weights and the roots of the Hermite
polynomial, respectively.

Applying Eq. (18) on Eq. (17) yields

ΨðsÞ ≈ 1
ffiffiffi

π
p
X

N

i¼1

wi exp

�

−sγ̄i exp

�

ffiffiffiffiffiffiffiffiffiffi

32σ2
p

xi − 4σ2
��

:

(19)

Using Eqs. (19), (6), and following a similar approach as
in Ref. 14, the general form of the MGF in a correlated log-
normal channel is given by

ΨðsÞ≈
X

N

n1¼1

···
X

N

nNt
¼1

�

Y

Nt

i¼1

wni
ffiffiffi

π
p
�

×exp

�

−s
X

Nt

i¼1

γ̄i

�

exp

�

ffiffiffiffiffi

32
p X

Nt

j¼1

c0ijxnj−4σ
2

���

; (20)

with N being the order of approximation of the Hermite pol-
ynomial. The values of wni

and xnj of the N’th order Hermite
polynomial are tabulated in Ref. 22 (Table 25.10), and c 0

kj is
the (k; j)’th coefficient of Γsq ¼ Γ

1∕2.
Using Eq. (20) and assuming that all the average

SNR from the transmitters are equal, i.e., γ̄i ¼ γ̄; ∀i ¼
1; · · · ; Nt, an approximate novel expression of the BER
of OSTBCs over correlated log-normal channel, after
some manipulations, is derived as

BER ≈
X

N

n1¼1

· · ·
X

N

nNt
¼1

�

Y

Nt

i¼1

wni
ffiffiffi

π
p
�

×Q

0

B

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ̄

2N2
t

X

Nt

i¼1

�

exp

�

ffiffiffiffiffi

32
p X

Nt

j¼1

c 0
ijxnj − 4σ2

��

v

u

u

t

1

C

A
:

(21)

3.2 Repetition Codes

The conditional BER of FSO system using RCs is given by11

PðejhÞ ¼ Q

�

ffiffiffiffiffiffiffiffiffi

Eb

2No

s

X

Nt

i¼1

hi

�

: (22)

Using the alternative definition of the Q-function in
Eq. (10), the BER of RC systems over correlated log-normal
channel is given by

BER ¼ 1

π

Z

∞

0

· · ·

Z

∞

0

Z

π
2

0

exp

0

B

@
−

�

PNt

i¼1

ffiffiffiffi

γi
p �

2

4N2
t sin

2θ

1

C

A

× fðγ1; · · · ; γNt
Þdθdγ1 · · · dγNt

: (23)

Let us note that the MGF approach cannot be used to re-
present Eq. (23), since it is directly proportional to ð ffiffiffiffi

γi
p Þ2.

However, under the condition that σ2 ≪ 1, the following
approximation can be used

Optical Engineering XXXXXX-3 January 2014 • Vol. 53(1)

Abaza et al.: Diversity techniques for a free-space optical communication system. . .



I1 ¼
�

X

Nt

i¼1

ffiffiffiffi

γi
p
�2

≈ I2 ¼ Nt

X

Nt

i¼1

γi: (24)

Monte Carlo simulation results with 105 samples are con-
ducted to verify the validity of the proposed approximation
in Eq. (24). The relative estimation error percent, ξ ¼
100 × ðI1−I2

I1
Þ ≤ 8.2%, is calculated for different σ values.

Let us note that the maximum value of σ for log-normal
channel corresponds to the maximum scintillation index
(SI) value for log-normal channel, which is ≤ 0.75.20 The
relation between SI and σ is defined in Ref. 17 as σ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðSIÞþ1
p

2

�

. Hence, σ should be ≤ 0.374. Estimation error

percents for different values of σ are tabulated in Table 1,
where it is shown that the maximum error is ≤8.2%.

Hence, substitute Eq. (24) in Eq. (23) and using Eq. (14)
yields

BER ≈
1

π

Z

π
2

0

Ψ

�

1

4Ntsin
2θ

�

dθ: (25)

From Eqs. (20) and (25) and assuming that all SNR aver-
ages from the transmitters are equal, an approximate novel
expression for the BER of RC systems over correlated log-
normal channels, after some manipulations, is derived as

BER ≈
X

N

n1¼1

· · ·
X

N

nNt
¼1

�

Y

Nt

i¼1

wni
ffiffiffi

π
p
�

×Q

0

B

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ̄

2Nt

X

Nt

i¼1

�

exp
�

ffiffiffiffiffi

32
p X

Nt

j¼1

c 0
ijxnj − 4σ2

�

�

v

u

u

t

1

C

A
:

(26)

It is important to note that even though the derived expres-
sions in Eqs. (21) and (26) are for correlated log-normal
channels, they can be applied to uncorrelated log-normal
channels by setting ρ ¼ 0 in c 0

ij.

4 Numerical Results and Discussions

In Fig. 2, the relation between the correlation effect and the
separation distance between the transmit units is studied.
The selected wavelength is λ ¼ 1550 nm and different
propagating distances and correlation lengths are considered.
Simulation results show that if a correlation coefficient of
ρ ≤ 10−3 is to be maintained, then the distance between

the transmit units should be at least seven times the correla-
tion length.

In Figs. 3–6, a target BER for the FSO system of 10−9 is
assumed.19 The diversity branches are assumed to be iden-
tically distributed, and low or high correlation values are con-
sidered (ρ ¼ 0.25 and 0.5).

In Fig. 3, correlated log-normal channel with σ ¼ 0.1 and
Nt ¼ 2 is employed. Analytical results with N ¼ 10 are
compared to Monte Carlo simulation results. Results demon-
strate the close match for a wide range of SNR values. It is
revealed that RCs are more power efficient than OSTBCs by
about 3 dB for the two considered cases, ρ ¼ 0.25 and 0.5.

Figures 4–6 study the performance of RCs and OSTBCs
for different parameters σ, ρ, and Nt. In Fig. 4, the number of
transmitters increases to three, Nt ¼ 3. It is shown that RCs
with Nt ¼ 3 requires 0.6 and 0.5 dB less SNR for ρ ¼ 0.25
and 0.5 as compared to RCs with Nt ¼ 2, respectively.
However, increasing the number of transmitters degrades the
performance of OSTBCs by 1 and 1.3 dB for 0.25 and 0.5,
respectively. Performance degradation can be noticed when
comparing the results in Fig. 3 with the results in Fig. 4.

In Figs. 5 and 6, a different log-normal parameter
σ ¼ 0.374 with Nt ¼ 2 is employed. Figure 5 shows that
increasing the atmospheric turbulence degrades the BER per-
formance of the FSO system severely. The required SNR to
achieve the target BER increases by 18.9 and 21 dB for RCs
and by 19.3 and 21.5 dB for OSTBCs codes with ρ ¼ 0.25
and 0.5, respectively, compared to σ ¼ 0.1 with Nt ¼ 2.
Simulation results show that RCs still outperform OSTBCs
by about 3 dB.

Figure 6 shows results for Nt ¼ 3 and σ ¼ 0.374. An
interesting observation is the behavior of OSTBCs results,
where increasing the number of transmitters enhances the
performance, unlike the reported behavior in Fig. 4. As com-
pared to the results in Fig. 5, OSTBCs show an SNR gain of
1.95 and 2 dB for ρ ¼ 0.25 and 0.5, respectively.

The behavior of OSTBC at low turbulence in FSO can be
attributed to the fact that the channel paths from different
transmitters to the receiver are highly correlated at low tur-
bulence. In fact, if there is no turbulence, then the channel
will be Gaussian and no diversity gain will be achieved. For
Gaussian channels, the best system configuration is an SISO
system, since in OSTBCs, the overall transmit power will
be divided among the transmit antennas. Thereby, OSTBC
systems with a low number of transmitters at low turbulence

Table 1 Error due to approximation.

σ ρ ξð%Þ

0.1 0.5 0.4

0.1 0.25 0.7

0.374 0.5 5.9

0.374 0.25 8.2
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Fig. 2 Correlation effect versus distance between transmit units for
difference propagation distances.
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channel conditions outperform their counterpart systems
with a higher number of transmitters.

The required SNR, under more severe turbulence, to
achieve the target BER increases by 14.5 and 17.7 dB for
RCs and 15.4 and 17.6 dB for OSTBCs with ρ ¼ 0.25
and 0.5, respectively, compared to σ ¼ 0.1 with Nt ¼ 3.

5 Conclusions

The novel performance analysis of RCs and OSTBCs in an
FSO system is investigated in this paper over correlated log-
normal channels. Both schemes are shown to be useful in
mitigating the turbulence fading effect and improving the
BER performance. However, results revealed that RC sys-
tems always outperform their counterpart OSTBC systems.
Furthermore, it is shown that the SNR gain of RC systems
always increases with increasing the number of transmitters.
On the contrary, increasing the number of transmitters of
OSTBCs system does not always achieve higher SNR gain
and the achieved gain depends on the channel conditions.
Analytical and simulation results are shown to match over
wide range of SNR and for different system parameters.
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