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ABSTRACT 

This paper presents Flashmon version 2, a tool for monitoring 

embedded Linux NAND flash memory I/O requests. It is designed 

for embedded boards based devices containing raw flash chips. 

Flashmon is a kernel module and stands for "flash monitor". It 

traces flash I/O by placing kernel probes at the NAND driver 

level. It allows tracing at runtime the 3 main flash operations: 

page reads / writes and block erasures. Flashmon is (1) generic as 

it was successfully tested on the three most widely used flash file 

systems that are JFFS2, UBIFS and YAFFS, and several NAND 

chip models. Moreover, it is (2) non intrusive, (3) has a 

controllable memory footprint, and (4) exhibits a low overhead (< 

6%) on the traced system. Finally, it is (5) simple to integrate and 

used as a standalone module or as a built-in function / module in 

existing kernel sources. Monitoring flash memory operations 

allows a better understanding of existing flash management 

systems by studying and analyzing their behavior. Moreover it is 

useful in development phase for prototyping and validating new 

solutions.  

Categories and Subject Descriptors 

D.4.2 [Operating Systems]: Storage Management – secondary 

storage; D.4.8 [Operating Systems]: Performance – monitors; 

D.4.8 [Memory Structures]: Semiconductor Memories 

Keywords 

NAND Flash Memory, Embedded Linux, Monitoring 

1. INTRODUCTION 
NAND flash memory is the main secondary storage media in 

embedded systems. This is due to the many benefits it provides: 

small size, shock resistance, low power consumption, and I/O 

performance. According to Forward Insight [10], the embedded 

NAND flash market is predicted to reach nearly 40 000 millions 

GB in 2014, which is more than 57% of the total NAND flash 

market. NAND flash presents some specific constraints that 

require the implementation of dedicated and complex 

management mechanisms. One of these mechanisms is 

implemented by the Operating System (OS) in the form of 

dedicated Flash File Systems (FFS). That solution is adopted in 

devices using raw flash chips on embedded boards, such as 

smartphones, tablet PCs, set-top boxes, etc. Linux is a major 

operating system in such devices, and provides a wide support for 

several NAND flash memory models. In these devices the flash 

chip itself does not embed any particular controller. 

This paper presents Flashmon version 2, a tool for monitoring 

embedded Linux I/O operations on NAND secondary storage. 

Monitoring such operations is essential to (1) study the behavior 

of flash management mechanisms, (2) evaluate their performance, 

and (3) helps in proposing optimizations. It allows to  supplement 

storage performance studies that are mainly based on execution 

time measurements, by giving details regarding the low level flash 

operations to explain performance behaviors. It also helps in  

prototyping and validating new flash management systems. 

Flashmon 2 is the successor of Flashmon 1 [2]. 

To the best of our knowledge, there is no existing tool allowing to 

monitor raw NAND chips operations in embedded systems. One 

of the tools which is the closest to Flashmon is Blktrace [4]. 

Blktrace monitors operations at the block layer level: I/O requests 

queuing, merging, completion, etc. It is thus designed for block 

devices, primarily hard disks. 

This paper is organized as follows: in section 2, general concepts 

on NAND flash memory and its management with Linux are 

presented. Flashmon version 2 implementation and features are 

depicted in section 3. In section 4, case studies are presented as 

examples of Flashmon usage interest. An analysis of Flashmon’s 

impact on the traced system is given in section 5, before 

concluding in section 6. 

2. NAND FLASH MEMORY 

2.1 General Concepts on Flash Memory 
Flash memory is a non volatile memory based on floating gate 

transistors [3, 11]. NAND flash subtype is block addressed and 

offers a high storage density: it is dedicated to data storage. A 

NAND flash chip architecture is organized in a hierarchical way 

[5]. A chip is composed of one or more dies. A die contains one 

or more planes. A plane contains a matrix of blocks, which are 

composed of pages. NAND flash supports three main operations: 

read and write operations are achieved at the page level, and the 

erase operation is performed on a whole block. For the sake of 

simplicity, in this paper we consider a flash chip as a set of blocks 

containing pages. Typically, the size of today's NAND flash pages 

is 2, 4 or 8 KB. Blocks contain a number of pages that is multiple 

 



of 32 (typically 64). Average operations latencies are between 25 

and 200 µs for reads, between 250 and 500 µs for writes, and up 

to 2 ms for the erase operation [11]. 

NAND flash presents specific constraints. The first is 1) the erase-

before-write rule, which states that a page already containing data 

cannot be overwritten and must first be erased. Because the target 

of the erase operation is a whole block, flash management 

mechanisms perform out-of-place data updates. Old data versions 

are not erased synchronously but rather invalidated. A process 

named the garbage collector is in charge of recycling (erasing) 

invalid data to create free space. Another constraint is 2) the fact 

that a flash block can only sustain a limited number of erase 

operations, after which it can no longer retain data. Wear leveling 

techniques are implemented by flash management mechanisms to 

distribute evenly the write and erase cycles over the whole flash 

array to maximize the flash memory lifetime. Blocks that are worn 

out, called bad blocks, must be coped with. In addition to the 

above-mentioned constraints, reading / writing the flash array may 

cause some disturbance leading to random bitflips. Flash 

management systems must implement Error-Correcting-Codes 

(ECC) algorithms. To avoid such disturbance, writes inside a flash 

block must be sequential. 

2.2 Embedded Linux Raw NAND Chips 

Management 
Linux manages raw NAND chips in a pure software way: the flash 

management algorithms are directly implemented by the OS, 

mainly through the use of dedicated Flash File Systems (FFS). 

Linux implements the most popular FFS [12–14].  

Figure 1 depicts the embedded Linux software stack for NAND 

secondary storage management. User space programs (A in Figure 

1) access files using system calls (open, read, etc.). These calls are 

received by the Virtual File System (VFS, B) layer. VFS is used 

to abstract the underlying file systems specificities and to present 

them in a unified way to the user. VFS relies on the actual file 

system, which in our case is a FFS (C). To access the raw flash 

chip (E), the FFS uses a NAND driver. In embedded Linux, this 

driver is implemented inside the Memory Technology Device 

(MTD) software layer (D). 

The MTD subsystem [8, 15] roles are to provide a unified access 

to various semiconductor storage memories such as flash, RAM / 

ROM, etc ; and to implement drivers for all those memory 

devices. Within the scope of our study, MTD can be seen as a 

generic abstraction layer and drivers container for all the models 

of raw flash chips supported by Linux. MTD provides various 

ways to access NAND chips: 1) with a unified API exported in the 

kernel, 2) as character devices, 3) as block devices. MTD also 

provides partitioning support.  

MTD can be seen as a software stack. The layers of this stack are 

functions involved in flash I/O management, calling one another 

in a top-down way. From the MTD data structures point of view, 

the functions composing the MTD stack are stored in function 

pointers. This allows the different flash chip designers to replace 

MTD default functions by their own driver primitives. The upper 

part of this stack represents abstraction and translation layers 

related functions. These generic flash access functions are called 

by the FFS layer. The bottom of this stack is the driver layer, 

containing specific and platform dependant functions for 

manipulating each of the supported flash chips. As the upper part 

of the stack is constituted of generic functions, the bottom 

functions are platform specific. 

3. FLASHMON VERSION 2: 

IMPLEMENTATION AND FEATURES 
In this section we give details on the implementation and usage of 

Flashmon. The upgrades brought by the version 2 (v2) from 

version 1 (v1) are also outlined. 

3.1 Core concepts 
Flashmon (F in Figure 1) is a Linux kernel module monitoring 

function calls at the MTD level to trace flash operations. It can be 

loaded and unloaded dynamically at runtime. It uses kernel probes 

[7], more particularly Jprobes, placed on the MTD functions 

corresponding to the page read (G in Figure 1), page write (H) 

and block erase (I) NAND operations. Kernel probes are data 

objects linked to a kernel function to trace. A handler in Flashmon 

is associated with each of the probes and is executed each time the 

probed function is called. In the handler, Jprobes provide access 

to the parameters values of the probed function. This allows 

Flashmon to determine the address of the corresponding operation 

and then to log the event type, address and arrival time in RAM. 

In fact, all the Flashmon data structures are kept in RAM in order 

to keep the tool as less intrusive as possible and thus reducing the 

interference with the traced I/O operations. The trace log kept in 

RAM is available for output in various formats which will be 

discussed further in the paper. Tracing at the MTD level allows 

Flashmon to work with different FFS, and to support several 

models of flash memory chips. 

3.2 Probed Functions 
In Flashmon v1, probed functions were the generic nand_read, 

nand_write and nand_erase functions. They are located in the 

upper part of the MTD stack. This allowed the tool to work on 

many platforms because these are very high level MTD functions 

that are directly called by the FFS. A major drawback of this 

solution is that sometimes several pages are read or written 

through one call of these functions. Time measurements in the 

handler for the last page of the read / written set were inaccurate 

when the set was important, because the handler is entirely 

executed before the set of flash memory operations is launched. 

V2 solves this problem by tracing lower level functions 

corresponding to one unique page read / write operation. 

 

Figure 1: Linux software involved in NAND flash storage 

management, and Flashmon integration in this stack 



Determining the right functions to probe is not a trivial problem: 

they have to be as low level as possible to be the closest to the 

actual hardware traced flash operation. They also have to be 

generic enough to be called with each of the NAND chip models 

supported by Linux. 

In fact, in v2 the probed function names are not hard coded in the 

module. At launch time, Flashmon performs a search in MTD data 

structures to determine the optimal function to trace. A sub-

module of Flashmon called the “function finder” is in charge of 

this work. This module follows the function pointers of the MTD 

stack presented earlier to obtain the addresses of low level but still 

generic functions to probe. Moreover, according to the kernel 

version, it may fall back on higher level functions. Indeed, in 

earlier Linux versions, low level MTD functions do not have 

enough information in their parameters for Flashmon to perform a 

precise trace. The function finder sub-module is written in a very 

generic way allowing easy extension of Flashmon to support new 

flash models and kernel code changes. 

3.3 Outputs 
Flashmon offers two outputs in the /proc virtual file system: the 

spatial view /proc/flashmon and the temporal log 

/proc/flashmon_log. 

The spatial view (K on Figure 1) file contains a number of lines 

equal to the number of blocks in the traced flash chip. Each line 

contains 3 values representing respectively the number of page 

reads, page writes, and block erasures sustained by a block. The 

file is built on demand each time it is read. Spatial view is useful 

to see the flash state at a given time and in particular to observe 

the distribution of erase operations to evaluate the wear leveling. 

The temporal log (J on Figure 1) is a novelty of v2. It is also built 

on demand when it is read. Each line of the file contains four 

coma separated fields corresponding to one logged event: the 

arrival time of the event, the event type (page read, page write, 

block erase), the targeted address (index of page read / written and 

block erased), and the current process executed when the 

operation was traced. One example of such a file is as follows: 

13.551048336;R;22655;cat  
13.552904998;W;6935;sync_supers 
13.563917567;E;1025;jffs2_gcd_mtd6 

To build this log, Flashmon relies on internal RAM data 

structures. One of these structures is populated each time a flash 

event is traced. They are all stored in a buffer whose maximum 

size is configurable (the entire log is allocated at launch time): as 

the number of logged events may become important on intensive 

workloads, it gives the user a way to control Flashmon RAM 

usage. The buffer is a circular log buffer: when it becomes full, 

older entries are overwritten with newer ones. The logged time for 

each event is acquired with the getnstimeofday() system call with 

a nanosecond precision. The location where Flashmon’s trace is 

gathered, MTD, is fully synchronous. Therefore, Flashmon is not 

disturbed by concurrent accesses generated in a multi-threaded 

environnement. 

3.4 Others Features 
Flashmon provides various complementary features to ease and 

customize the tracing process: 1) single partition tracing, 2) user 

space notification, 3) tracing process control, 4) complementary 

tools and kernel source integration.  

As Flashmon v1 allowed only to trace the entire chip, Flashmon 

v2 allows tracing only one partition if needed. Launching the v1 

module required several mandatory parameters such as page and 

block sizes. Flashmon v2 examines the MTD data structures at 

launch time and collects itself the needed information for the 

traced chip or partition: it can be launched without parameters for 

a fast and simple monitoring. 

When Flashmon is inserted, one can customize the tracing process 

by providing optional parameters which are: (1) the index of a 

partition to trace; (2) the maximum size for the temporal log and 

(3) the PID of a user space process to notify each time a flash 

access is traced. The notification is a feature from v1. If selected, 

Flashmon will send a signal to the user space process each time a 

flash access is traced. It avoids active standby for processes 

monitoring the spatial view. Flashmon monitoring can be 

controlled by writing commands to /proc/flashmon and 

/proc/flashmon_log to stop, pause or reset the tracing process, and 

to flush the temporal log. 

Version 2 also comes with a set of tools to ease Flashmon usage 

and format its outputs. A couple of shell scripts allow plotting the 

outputs of spatial view and temporal log. The results presented in 

the case study section are obtained through the use of these 

scripts. Another script is provided to patch an existing kernel 

source directory and integrate Flashmon in these sources. 

Flashmon can then be selected as a module or as a built-in feature 

using the kernel compilation configuration menu. One benefit for 

selecting Flashmon as a built-in function is the fact that the tracer 

is loaded before the file system driver at boot time, this allows to 

trace flash operations during the kernel boot process. Results on 

that topic are provided in the case study section. 

Flashmon source code is about 800 lines of C. It comes with a 

complete and up-to-date documentation. The provided Makefiles 

should allow (cross-)compiling the module for most of the 

platforms. Concerning Flashmon dependencies, the module 

should be compiled against a kernel with the kprobes feature 

enabled, and MTD NAND support. 

4. CASE STUDIES 
In this section we present results obtained with Flashmon when 

tracing flash operations during (1) the kernel boot process and (2) 

the execution of the Postmark [6] benchmark. These 

experimentations were obtained on the Armadeus APF27 

development board [1], embedding an ARM9 based Freescale 

I.MX27 CPU clocked at 400 MHz and 128 MB of RAM. The 

board is in particular equipped with a 256 MB Micron SLC 

NAND flash chip [9] containing one die, one plane, and 2048 

blocks of 64 pages each. The page size is 2KB. 

4.1 The Kernel Boot Process  
Flashmon was used to trace NAND operations during the boot 

process, with a root file system (rootfs) stored on a flash partition. 

During that process, secondary storage I/O accesses begin when 

the file system driver is loaded and the rootfs mounted. 

4.1.1 Methodology 
We included Flashmon as a built-in feature in the 2.6.38 Linux 

kernel version obtained with the Armadeus toolchain. The 

Armadeus default kernel configuration was used, with the 

addition of the kernel probes feature activation. A standard 

embedded rootfs was flashed on an erased 50 MB partition of the 



NAND chip. The kernel was launched and Flashmon results were 

collected when the boot process was finished. The system was 

then rebooted and a new set of results were collected for this 

second boot. Two consecutive boot processes were traced to 

observe the differences between the first boot after flashing a new 

rootfs, and a more standard boot after a system shutdown. Indeed, 

FFS perform a formatting operation during the first mount 

operation. Experiments were launched on two file systems' rootfs: 

JFFS2 and UBIFS. 

4.1.2 Results and Discussion 
Results are depicted in Figure 2. The rootfs partition goes from 

page 4096 to page 29696. Before the experimentation, the 

bootloader flashes sequentially the rootfs starting from page 4096 

on the erased rootfs flash partition. The rootfs size is 7.5 MB for 

JFFS2 and 10 MB for UBIFS, so the last page containing actual 

rootfs data for the first boot is page 7936 for JFFS2 and page 

9216 for UBIFS. 

For each FFS and boot process we can observe several phases. 

First, when the file system is mounted the entire rootfs partition is 

scanned (A on Figure 2), represented by a succession of 

sequential read requests. That scan takes considerably more time 

with JFFS2. One can see in Flashmon trace that JFFS2 reads each 

page of the partition while UBIFS scans only the first page of 

each block (not visible on the plot because of the scale). Next, 

comes a set of mainly read operations (B in Figure 2). It is the 

/etc/rcS boot script which loads a set of scripts to initialize various 

services (network interfaces, ssh server, etc.). Flash accesses 

consist mostly in reading and writing configuration files for these 

services. After some time, the login prompt is available on the 

serial output, represented by the double-headed arrow on the x 

axis. 

JFFS2 mount process consists of a two phase scan. The partition 

is first fully scanned (A), then a kernel thread performs in the 

background a meticulous scan of all existing file data to check the 

file system consistency (CRC scan). This background process 

starting just after the end of the first scan up to 65 seconds can 

seriously degrade performance of I/O requests occurring during its 

execution. UBIFS mount operation is done considerably faster 

than JFFS2. 

For the first boot process, a formatting phase can be observed in 

both FFS (C). The partition blocks that do not contain data are 

erased sequentially. This is done just after the first scan with 

UBIFS, and with the background kernel thread after the login 

prompt for JFFS2. It is interesting to note that even though the 

partition was fully erased before the flash of the rootfs (in the 

bootloader), the FFS still re-erases the blocks that do not contain 

data. Differences in the logging prompt appearance time between 

the first and the second boot are mainly due to the generation of 

keys by the SSH server, done only during the first boot process. 

4.2 Postmark Benchmark 
Postmark [6] is a synthetic macro benchmark designed to 

reproduce the behavior of a file system containing many short 

lived small files under a heavy load. One execution of Postmark 

consists in several phases. First, a set of initial files are created, 

distributed in subdirectories. In the next phase, transactions are 

performed on those files. A transaction consists of two operations: 

the creation or deletion of a random file, then a read or append 

operation on another random file. Once the transaction phase is 

complete, all the created files are deleted. As one could argue that 

Postmark is not a specifically embedded FS benchmark, we think 

that it is generic enough to reproduce the behavior of many of 

today’s embedded applications.  

 

Figure 2: NAND operations during the Linux kernel boot process. The x axis range is different for JFFS2 and UBIFS. 



4.2.1 Methodology 
The Postmark configuration presented in Table 1 was used. 

Created files and transactions counters parameters have to be 

large enough to generate a significant number of flash operations: 

A too small workload would be in majority absorbed by the Linux 

page cache. Using synchronous I/O or bypassing the page cache 

through the O_SYNC or O_DIRECT open / mount flags is not an 

option because the FFS layer does not support such features. Note 

that most of the FFS compress data before writing on the flash 

media so one cannot guarantee that a 4 KB high level read / write 

request will end up as a 4 KB flash read / write request. 

Table 1. Used Postmark configuration 

Parameter Value 

Number of files created initially 800 

Created files size 
Between 512 bytes and 10 

KB 

Number of transactions 3000 

Size of all read and write requests 4 KB 

Transaction read / append ratio 50 % 

Transaction create / delete ratio 50 % 

Number of subdirectories 10 

 

Postmark was launched on a clean 50 MB dedicated flash 

partition. The experimentation was repeated on a JFFS2, YAFFS2 

and UBIFS partition. The kernel was patched to support YAFFS2. 

After the end of the benchmark we waited several seconds 

because of potential asynchronous garbage collection processes, 

and then dumped the Flashmon temporal log. Postmark reports for 

this configuration a total of 9.25 MB read and 14.45 MB written 

data volume. 

4.2.2 Results 
Results are depicted on Figure 3. The Y axis represents the entire 

address space of the test partition. For each of the FFS we can 

clearly observe the creation phase (A on Figure 3), which consists 

in a majority of write requests. The fact that the partition is clean 

allows FFS to perform sequential writes. The transaction phase 

comes next (B), as a set of read and write requests. Writes (file 

creations and updates) continue to be performed sequentially, 

illustrating the out-of-place updates feature of each FFS. During 

this transaction phase, read requests are also performed: they 

correspond to 1) regular read requests and 2) read requests 

performed by the file system to gather data / metadata in order to 

satisfy write requests. Read requests are performed on previously 

written data.  

At the end of the transaction phase (end of B), the Postmark 

process returns after having deleted all the created files. We can 

then observe for JFFS2 and YAFFS2 an asynchronous garbage 

collection (C) phase, which consists in erasing the blocks 

containing data invalidated by the files deletion. The garbage 

collector (GC) is generally implemented in the form of a kernel 

thread. GC execution is based on various thresholds such as the 

quantity of clean space available, and the amount of invalid data. 

According to these thresholds the YAFFS2 GC can be launched 

with more or less “aggressiveness”: we can clearly observe an 

aggressive GC phase (C1) followed by a soft GC phase (C2). Note 

that YAFFS2 soft GC continues for 7 minutes after the ending of 

Postmark. Finally, we can see that UBIFS does not perform any 

GC, because of the low quantity of data written during the 

benchmark. UBIFS is a strongly buffered FFS as compared to 

JFFS2 and YAFFS2 that are more synchronous. UBIFS buffers 

absorb a large amount of the Postmark workload. JFFS2 and 

especially YAFFS2 write a lot more data, and it impacts strongly 

the execution time of Postmark. The number of flash operations 

performed by each FFS is also present on Figure 3. We can see 

that YAFFS2 performs twice the number of page writes and block 

erasures as JFFS2. UBIFS performs 20 times less write operations 

than YAFFS2. 

Those results show that Flashmon can supplement performance 

evaluation, based on execution times, with essential knowledge 

concerning the actual flash operations occurring during the tests: 

their types, numbers, and distribution. It helps in explaining 

execution time related results that can be affected by 

asynchronous processes, caches, etc. The impact of such elements 

can be hard to detect and characterize without tracing tools. 

5. AN ANALYSIS OF FLASHMON 

IMPACT ON THE TRACED SYSTEM 
In the monitored system, Flashmon is not intrusive in terms of 

number of flash I/O operations performed because it keeps all its 

internal structures in RAM. In order to give a realistic trace, the 

overhead of Flashmon on I/O performance must be minimal. 

Moreover, as it is primarily designed to be used in embedded 

systems, the RAM footprint of the tool must be controllable. 

5.1 Impact on I/O Latency 
To study Flashmon impact on I/O performance we launched 

several I/O intensive experimentations without and with 

Flashmon. Then we observed the execution time differences.  

A first set of experimentations consisted in erasing a 100 MB 

flash partition, write a 5 MB file containing random data in this 

partition then read this file. Those operations were done through 

the use of the MTD utilities flash_erase, nandwrite and 

nanddump, [8] which allow bypassing the file system layer and 

 

Figure 3: Postmark results – The total number of read / write / erase operations is indicated under the title of each picture. 



address directly physical flash pages and blocks. Each operation 

was launched with and without Flashmon several times, execution 

times were measured with the gettimeofday() system call, and 

mean values were computed. 

Another set of experimentations consisted in launching the 

Postmark configuration presented in the previous section (See 

Table 1) and measuring the execution time. Once again, mean 

values from several executions, with and without Flashmon, were 

used to compute the tool overhead. Those experimentations were 

launched on JFFS2, YAFFS2 and UBIFS. Results from both 

experimentation sets are presented on Table 2. All those results 

show that Flashmon overhead on I/O performance in the traced 

system stays under 6%.  

Table 2. Flashmon performance impact 

First set of experimentations 

Experiment 

Mean execution time (s) 
Overhead 

(%) Without 

Flashmon 

With 

Flashmon 

Erase 100 MB 0.470 0.489 3.85 

Write 5 MB 1.498 1.570 4.79 

Read 5 MB 2.386 2.515 5.40 

Second set of experimentations 

FFS 

Postmark mean exec. time (s) 
Overhead 

(%) Without 

Flashmon 

With 

Flashmon 

JFFS2 10,523589 10,628663 3,08 

YAFFS2 19,793678 20,626676 4,21 

UBIFS 4,690151 4,754635 1,37 

5.2 Flashmon Memory Footprint 
One can model Flashmon memory usage as the sum of the static 

and dynamic parts of the memory used by the module. The static 

part is all the statically allocated memory. It can be obtained by 

observing the Flashmon entry in /proc/modules. For the current 

version it is 8861 bytes. The dynamic part consists in memory 

allocated with vmalloc() (the malloc() kernel equivalent).  

The dynamic part is divided into (1) the counters for the spatial 

view and (2) the temporal log data structures. For (1), there is one 

set of three counters for each of the flash blocks of the traced 

partition / chip, one counter for each type of operation (R/W/E). 

Each counter is an unsigned 32 bits integer. Regarding (2), for 

each flash event inserted in the temporal log a data object is 

inserted in a buffer which maximum size is configurable at launch 

time. The entire buffer is allocated when Flashmon is inserted. 

One can obtain the size of one entry with sizeof(), for the current 

version it is 20 bytes + 16 bytes to store the task name for each 

entry. 

Flashmon memory usage can then be modeled as follows: 

static+dynamic = 8861 + 3*4*NFlashBlocks + 36*MaxLogSize bytes 

NFlashBlocks is the number of flash blocks in the traced partition and 

MaxLogSize the maximum number of entries present in the 

temporal log. Flashmon memory usage is primarily impacted by 

the number of log entries. The configuration of Flashmon used in 

the case studies was the following: with 2048 blocks traced and a 

max log size of 40000 elements, Flashmon uses 1.4 MB of RAM. 

The fact that the current task name is logged with each event 

impacts greatly the memory usage, so an option is provided to 

disable this feature. A solution to reduce memory usage is also to 

limit the maximum log size and to flush regularly the results in a 

non intrusive way, for example over the network. 

6. CONCLUSION 
In this paper, Flashmon version 2 is presented. This Linux kernel 

module monitors at runtime NAND flash operations on embedded 

raw flash chips. Flashmon employs kernel probes. It can be used 

to study today’s flash management mechanisms behavior and 

performance, and propose optimizations. Flashmon allows 

completing performance evaluations based on execution time with 

essential qualitative knowledge on events occurring in the flash 

layer. It can also help in prototyping and validating new flash 

management systems in real conditions. Flashmon is generic as it 

is designed to be used with all Flash File Systems.  It is very 

flexible as it allows to easily customize and control the tracing 

process. Flashmon is non intrusive and has a low overhead on the 

performance (under 6% on the tested workloads) of the traced 

system. Its memory footprint is also configurable. Flashmon 

comes with a complete documentation and is available under the 

GPL license: http://sourceforge.net/projects/flashmon/. 
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