
HAL Id: hal-00859316
https://hal.univ-brest.fr/hal-00859316v1

Submitted on 6 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flashmon V2: Monitoring Raw NAND Flash Memory
I/O Requests on Embedded Linux

Pierre Olivier, Jalil Boukhobza, Eric Senn

To cite this version:
Pierre Olivier, Jalil Boukhobza, Eric Senn. Flashmon V2: Monitoring Raw NAND Flash Memory
I/O Requests on Embedded Linux. EWiLi, the Embedded Operating Systems Workshop, Aug 2013,
Toulouse, France. pp.4. �hal-00859316�

https://hal.univ-brest.fr/hal-00859316v1
https://hal.archives-ouvertes.fr

Flashmon V2: Monitoring Raw NAND Flash Memory I/O

Requests on Embedded Linux
Pierre Olivier

Univ. Europeenne de Bretagne
Univ. Bretagne Occidentale,

UMR6285, Lab-STICC,
F29200 Brest, France,

pierre.olivier@univ-brest.fr

Jalil Boukhobza
Univ. Europeenne de Bretagne

Univ. Bretagne Occidentale,
UMR6285, Lab-STICC,
F29200 Brest, France,

jalil.boukhobza@univ-brest.fr

Eric Senn
Univ. Europeenne de Bretagne

Univ. Bretagne Sud,
UMR6285, Lab-STICC,
F56100 Lorient, France

eric.senn@univ-ubs.fr

ABSTRACT

This paper presents Flashmon version 2, a tool for monitoring

embedded Linux NAND flash memory I/O requests. It is designed

for embedded boards based devices containing raw flash chips.

Flashmon is a kernel module and stands for "flash monitor". It

traces flash I/O by placing kernel probes at the NAND driver

level. It allows tracing at runtime the 3 main flash operations:

page reads / writes and block erasures. Flashmon is (1) generic as

it was successfully tested on the three most widely used flash file

systems that are JFFS2, UBIFS and YAFFS, and several NAND

chip models. Moreover, it is (2) non intrusive, (3) has a

controllable memory footprint, and (4) exhibits a low overhead (<

6%) on the traced system. Finally, it is (5) simple to integrate and

used as a standalone module or as a built-in function / module in

existing kernel sources. Monitoring flash memory operations

allows a better understanding of existing flash management

systems by studying and analyzing their behavior. Moreover it is

useful in development phase for prototyping and validating new

solutions.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management – secondary

storage; D.4.8 [Operating Systems]: Performance – monitors;

D.4.8 [Memory Structures]: Semiconductor Memories

Keywords

NAND Flash Memory, Embedded Linux, Monitoring

1. INTRODUCTION
NAND flash memory is the main secondary storage media in

embedded systems. This is due to the many benefits it provides:

small size, shock resistance, low power consumption, and I/O

performance. According to Forward Insight [10], the embedded

NAND flash market is predicted to reach nearly 40 000 millions

GB in 2014, which is more than 57% of the total NAND flash

market. NAND flash presents some specific constraints that

require the implementation of dedicated and complex

management mechanisms. One of these mechanisms is

implemented by the Operating System (OS) in the form of

dedicated Flash File Systems (FFS). That solution is adopted in

devices using raw flash chips on embedded boards, such as

smartphones, tablet PCs, set-top boxes, etc. Linux is a major

operating system in such devices, and provides a wide support for

several NAND flash memory models. In these devices the flash

chip itself does not embed any particular controller.

This paper presents Flashmon version 2, a tool for monitoring

embedded Linux I/O operations on NAND secondary storage.

Monitoring such operations is essential to (1) study the behavior

of flash management mechanisms, (2) evaluate their performance,

and (3) helps in proposing optimizations. It allows to supplement

storage performance studies that are mainly based on execution

time measurements, by giving details regarding the low level flash

operations to explain performance behaviors. It also helps in

prototyping and validating new flash management systems.

Flashmon 2 is the successor of Flashmon 1 [2].

To the best of our knowledge, there is no existing tool allowing to

monitor raw NAND chips operations in embedded systems. One

of the tools which is the closest to Flashmon is Blktrace [4].

Blktrace monitors operations at the block layer level: I/O requests

queuing, merging, completion, etc. It is thus designed for block

devices, primarily hard disks.

This paper is organized as follows: in section 2, general concepts

on NAND flash memory and its management with Linux are

presented. Flashmon version 2 implementation and features are

depicted in section 3. In section 4, case studies are presented as

examples of Flashmon usage interest. An analysis of Flashmon’s

impact on the traced system is given in section 5, before

concluding in section 6.

2. NAND FLASH MEMORY

2.1 General Concepts on Flash Memory
Flash memory is a non volatile memory based on floating gate

transistors [3, 11]. NAND flash subtype is block addressed and

offers a high storage density: it is dedicated to data storage. A

NAND flash chip architecture is organized in a hierarchical way

[5]. A chip is composed of one or more dies. A die contains one

or more planes. A plane contains a matrix of blocks, which are

composed of pages. NAND flash supports three main operations:

read and write operations are achieved at the page level, and the

erase operation is performed on a whole block. For the sake of

simplicity, in this paper we consider a flash chip as a set of blocks

containing pages. Typically, the size of today's NAND flash pages

is 2, 4 or 8 KB. Blocks contain a number of pages that is multiple

of 32 (typically 64). Average operations latencies are between 25

and 200 µs for reads, between 250 and 500 µs for writes, and up

to 2 ms for the erase operation [11].

NAND flash presents specific constraints. The first is 1) the erase-

before-write rule, which states that a page already containing data

cannot be overwritten and must first be erased. Because the target

of the erase operation is a whole block, flash management

mechanisms perform out-of-place data updates. Old data versions

are not erased synchronously but rather invalidated. A process

named the garbage collector is in charge of recycling (erasing)

invalid data to create free space. Another constraint is 2) the fact

that a flash block can only sustain a limited number of erase

operations, after which it can no longer retain data. Wear leveling

techniques are implemented by flash management mechanisms to

distribute evenly the write and erase cycles over the whole flash

array to maximize the flash memory lifetime. Blocks that are worn

out, called bad blocks, must be coped with. In addition to the

above-mentioned constraints, reading / writing the flash array may

cause some disturbance leading to random bitflips. Flash

management systems must implement Error-Correcting-Codes

(ECC) algorithms. To avoid such disturbance, writes inside a flash

block must be sequential.

2.2 Embedded Linux Raw NAND Chips

Management
Linux manages raw NAND chips in a pure software way: the flash

management algorithms are directly implemented by the OS,

mainly through the use of dedicated Flash File Systems (FFS).

Linux implements the most popular FFS [12–14].

Figure 1 depicts the embedded Linux software stack for NAND

secondary storage management. User space programs (A in Figure

1) access files using system calls (open, read, etc.). These calls are

received by the Virtual File System (VFS, B) layer. VFS is used

to abstract the underlying file systems specificities and to present

them in a unified way to the user. VFS relies on the actual file

system, which in our case is a FFS (C). To access the raw flash

chip (E), the FFS uses a NAND driver. In embedded Linux, this

driver is implemented inside the Memory Technology Device

(MTD) software layer (D).

The MTD subsystem [8, 15] roles are to provide a unified access

to various semiconductor storage memories such as flash, RAM /

ROM, etc ; and to implement drivers for all those memory

devices. Within the scope of our study, MTD can be seen as a

generic abstraction layer and drivers container for all the models

of raw flash chips supported by Linux. MTD provides various

ways to access NAND chips: 1) with a unified API exported in the

kernel, 2) as character devices, 3) as block devices. MTD also

provides partitioning support.

MTD can be seen as a software stack. The layers of this stack are

functions involved in flash I/O management, calling one another

in a top-down way. From the MTD data structures point of view,

the functions composing the MTD stack are stored in function

pointers. This allows the different flash chip designers to replace

MTD default functions by their own driver primitives. The upper

part of this stack represents abstraction and translation layers

related functions. These generic flash access functions are called

by the FFS layer. The bottom of this stack is the driver layer,

containing specific and platform dependant functions for

manipulating each of the supported flash chips. As the upper part

of the stack is constituted of generic functions, the bottom

functions are platform specific.

3. FLASHMON VERSION 2:

IMPLEMENTATION AND FEATURES
In this section we give details on the implementation and usage of

Flashmon. The upgrades brought by the version 2 (v2) from

version 1 (v1) are also outlined.

3.1 Core concepts
Flashmon (F in Figure 1) is a Linux kernel module monitoring

function calls at the MTD level to trace flash operations. It can be

loaded and unloaded dynamically at runtime. It uses kernel probes

[7], more particularly Jprobes, placed on the MTD functions

corresponding to the page read (G in Figure 1), page write (H)

and block erase (I) NAND operations. Kernel probes are data

objects linked to a kernel function to trace. A handler in Flashmon

is associated with each of the probes and is executed each time the

probed function is called. In the handler, Jprobes provide access

to the parameters values of the probed function. This allows

Flashmon to determine the address of the corresponding operation

and then to log the event type, address and arrival time in RAM.

In fact, all the Flashmon data structures are kept in RAM in order

to keep the tool as less intrusive as possible and thus reducing the

interference with the traced I/O operations. The trace log kept in

RAM is available for output in various formats which will be

discussed further in the paper. Tracing at the MTD level allows

Flashmon to work with different FFS, and to support several

models of flash memory chips.

3.2 Probed Functions
In Flashmon v1, probed functions were the generic nand_read,

nand_write and nand_erase functions. They are located in the

upper part of the MTD stack. This allowed the tool to work on

many platforms because these are very high level MTD functions

that are directly called by the FFS. A major drawback of this

solution is that sometimes several pages are read or written

through one call of these functions. Time measurements in the

handler for the last page of the read / written set were inaccurate

when the set was important, because the handler is entirely

executed before the set of flash memory operations is launched.

V2 solves this problem by tracing lower level functions

corresponding to one unique page read / write operation.

Figure 1: Linux software involved in NAND flash storage

management, and Flashmon integration in this stack

Determining the right functions to probe is not a trivial problem:

they have to be as low level as possible to be the closest to the

actual hardware traced flash operation. They also have to be

generic enough to be called with each of the NAND chip models

supported by Linux.

In fact, in v2 the probed function names are not hard coded in the

module. At launch time, Flashmon performs a search in MTD data

structures to determine the optimal function to trace. A sub-

module of Flashmon called the “function finder” is in charge of

this work. This module follows the function pointers of the MTD

stack presented earlier to obtain the addresses of low level but still

generic functions to probe. Moreover, according to the kernel

version, it may fall back on higher level functions. Indeed, in

earlier Linux versions, low level MTD functions do not have

enough information in their parameters for Flashmon to perform a

precise trace. The function finder sub-module is written in a very

generic way allowing easy extension of Flashmon to support new

flash models and kernel code changes.

3.3 Outputs
Flashmon offers two outputs in the /proc virtual file system: the

spatial view /proc/flashmon and the temporal log

/proc/flashmon_log.

The spatial view (K on Figure 1) file contains a number of lines

equal to the number of blocks in the traced flash chip. Each line

contains 3 values representing respectively the number of page

reads, page writes, and block erasures sustained by a block. The

file is built on demand each time it is read. Spatial view is useful

to see the flash state at a given time and in particular to observe

the distribution of erase operations to evaluate the wear leveling.

The temporal log (J on Figure 1) is a novelty of v2. It is also built

on demand when it is read. Each line of the file contains four

coma separated fields corresponding to one logged event: the

arrival time of the event, the event type (page read, page write,

block erase), the targeted address (index of page read / written and

block erased), and the current process executed when the

operation was traced. One example of such a file is as follows:

13.551048336;R;22655;cat
13.552904998;W;6935;sync_supers
13.563917567;E;1025;jffs2_gcd_mtd6

To build this log, Flashmon relies on internal RAM data

structures. One of these structures is populated each time a flash

event is traced. They are all stored in a buffer whose maximum

size is configurable (the entire log is allocated at launch time): as

the number of logged events may become important on intensive

workloads, it gives the user a way to control Flashmon RAM

usage. The buffer is a circular log buffer: when it becomes full,

older entries are overwritten with newer ones. The logged time for

each event is acquired with the getnstimeofday() system call with

a nanosecond precision. The location where Flashmon’s trace is

gathered, MTD, is fully synchronous. Therefore, Flashmon is not

disturbed by concurrent accesses generated in a multi-threaded

environnement.

3.4 Others Features
Flashmon provides various complementary features to ease and

customize the tracing process: 1) single partition tracing, 2) user

space notification, 3) tracing process control, 4) complementary

tools and kernel source integration.

As Flashmon v1 allowed only to trace the entire chip, Flashmon

v2 allows tracing only one partition if needed. Launching the v1

module required several mandatory parameters such as page and

block sizes. Flashmon v2 examines the MTD data structures at

launch time and collects itself the needed information for the

traced chip or partition: it can be launched without parameters for

a fast and simple monitoring.

When Flashmon is inserted, one can customize the tracing process

by providing optional parameters which are: (1) the index of a

partition to trace; (2) the maximum size for the temporal log and

(3) the PID of a user space process to notify each time a flash

access is traced. The notification is a feature from v1. If selected,

Flashmon will send a signal to the user space process each time a

flash access is traced. It avoids active standby for processes

monitoring the spatial view. Flashmon monitoring can be

controlled by writing commands to /proc/flashmon and

/proc/flashmon_log to stop, pause or reset the tracing process, and

to flush the temporal log.

Version 2 also comes with a set of tools to ease Flashmon usage

and format its outputs. A couple of shell scripts allow plotting the

outputs of spatial view and temporal log. The results presented in

the case study section are obtained through the use of these

scripts. Another script is provided to patch an existing kernel

source directory and integrate Flashmon in these sources.

Flashmon can then be selected as a module or as a built-in feature

using the kernel compilation configuration menu. One benefit for

selecting Flashmon as a built-in function is the fact that the tracer

is loaded before the file system driver at boot time, this allows to

trace flash operations during the kernel boot process. Results on

that topic are provided in the case study section.

Flashmon source code is about 800 lines of C. It comes with a

complete and up-to-date documentation. The provided Makefiles

should allow (cross-)compiling the module for most of the

platforms. Concerning Flashmon dependencies, the module

should be compiled against a kernel with the kprobes feature

enabled, and MTD NAND support.

4. CASE STUDIES
In this section we present results obtained with Flashmon when

tracing flash operations during (1) the kernel boot process and (2)

the execution of the Postmark [6] benchmark. These

experimentations were obtained on the Armadeus APF27

development board [1], embedding an ARM9 based Freescale

I.MX27 CPU clocked at 400 MHz and 128 MB of RAM. The

board is in particular equipped with a 256 MB Micron SLC

NAND flash chip [9] containing one die, one plane, and 2048

blocks of 64 pages each. The page size is 2KB.

4.1 The Kernel Boot Process
Flashmon was used to trace NAND operations during the boot

process, with a root file system (rootfs) stored on a flash partition.

During that process, secondary storage I/O accesses begin when

the file system driver is loaded and the rootfs mounted.

4.1.1 Methodology
We included Flashmon as a built-in feature in the 2.6.38 Linux

kernel version obtained with the Armadeus toolchain. The

Armadeus default kernel configuration was used, with the

addition of the kernel probes feature activation. A standard

embedded rootfs was flashed on an erased 50 MB partition of the

NAND chip. The kernel was launched and Flashmon results were

collected when the boot process was finished. The system was

then rebooted and a new set of results were collected for this

second boot. Two consecutive boot processes were traced to

observe the differences between the first boot after flashing a new

rootfs, and a more standard boot after a system shutdown. Indeed,

FFS perform a formatting operation during the first mount

operation. Experiments were launched on two file systems' rootfs:

JFFS2 and UBIFS.

4.1.2 Results and Discussion
Results are depicted in Figure 2. The rootfs partition goes from

page 4096 to page 29696. Before the experimentation, the

bootloader flashes sequentially the rootfs starting from page 4096

on the erased rootfs flash partition. The rootfs size is 7.5 MB for

JFFS2 and 10 MB for UBIFS, so the last page containing actual

rootfs data for the first boot is page 7936 for JFFS2 and page

9216 for UBIFS.

For each FFS and boot process we can observe several phases.

First, when the file system is mounted the entire rootfs partition is

scanned (A on Figure 2), represented by a succession of

sequential read requests. That scan takes considerably more time

with JFFS2. One can see in Flashmon trace that JFFS2 reads each

page of the partition while UBIFS scans only the first page of

each block (not visible on the plot because of the scale). Next,

comes a set of mainly read operations (B in Figure 2). It is the

/etc/rcS boot script which loads a set of scripts to initialize various

services (network interfaces, ssh server, etc.). Flash accesses

consist mostly in reading and writing configuration files for these

services. After some time, the login prompt is available on the

serial output, represented by the double-headed arrow on the x

axis.

JFFS2 mount process consists of a two phase scan. The partition

is first fully scanned (A), then a kernel thread performs in the

background a meticulous scan of all existing file data to check the

file system consistency (CRC scan). This background process

starting just after the end of the first scan up to 65 seconds can

seriously degrade performance of I/O requests occurring during its

execution. UBIFS mount operation is done considerably faster

than JFFS2.

For the first boot process, a formatting phase can be observed in

both FFS (C). The partition blocks that do not contain data are

erased sequentially. This is done just after the first scan with

UBIFS, and with the background kernel thread after the login

prompt for JFFS2. It is interesting to note that even though the

partition was fully erased before the flash of the rootfs (in the

bootloader), the FFS still re-erases the blocks that do not contain

data. Differences in the logging prompt appearance time between

the first and the second boot are mainly due to the generation of

keys by the SSH server, done only during the first boot process.

4.2 Postmark Benchmark
Postmark [6] is a synthetic macro benchmark designed to

reproduce the behavior of a file system containing many short

lived small files under a heavy load. One execution of Postmark

consists in several phases. First, a set of initial files are created,

distributed in subdirectories. In the next phase, transactions are

performed on those files. A transaction consists of two operations:

the creation or deletion of a random file, then a read or append

operation on another random file. Once the transaction phase is

complete, all the created files are deleted. As one could argue that

Postmark is not a specifically embedded FS benchmark, we think

that it is generic enough to reproduce the behavior of many of

today’s embedded applications.

Figure 2: NAND operations during the Linux kernel boot process. The x axis range is different for JFFS2 and UBIFS.

4.2.1 Methodology
The Postmark configuration presented in Table 1 was used.

Created files and transactions counters parameters have to be

large enough to generate a significant number of flash operations:

A too small workload would be in majority absorbed by the Linux

page cache. Using synchronous I/O or bypassing the page cache

through the O_SYNC or O_DIRECT open / mount flags is not an

option because the FFS layer does not support such features. Note

that most of the FFS compress data before writing on the flash

media so one cannot guarantee that a 4 KB high level read / write

request will end up as a 4 KB flash read / write request.

Table 1. Used Postmark configuration

Parameter Value

Number of files created initially 800

Created files size
Between 512 bytes and 10

KB

Number of transactions 3000

Size of all read and write requests 4 KB

Transaction read / append ratio 50 %

Transaction create / delete ratio 50 %

Number of subdirectories 10

Postmark was launched on a clean 50 MB dedicated flash

partition. The experimentation was repeated on a JFFS2, YAFFS2

and UBIFS partition. The kernel was patched to support YAFFS2.

After the end of the benchmark we waited several seconds

because of potential asynchronous garbage collection processes,

and then dumped the Flashmon temporal log. Postmark reports for

this configuration a total of 9.25 MB read and 14.45 MB written

data volume.

4.2.2 Results
Results are depicted on Figure 3. The Y axis represents the entire

address space of the test partition. For each of the FFS we can

clearly observe the creation phase (A on Figure 3), which consists

in a majority of write requests. The fact that the partition is clean

allows FFS to perform sequential writes. The transaction phase

comes next (B), as a set of read and write requests. Writes (file

creations and updates) continue to be performed sequentially,

illustrating the out-of-place updates feature of each FFS. During

this transaction phase, read requests are also performed: they

correspond to 1) regular read requests and 2) read requests

performed by the file system to gather data / metadata in order to

satisfy write requests. Read requests are performed on previously

written data.

At the end of the transaction phase (end of B), the Postmark

process returns after having deleted all the created files. We can

then observe for JFFS2 and YAFFS2 an asynchronous garbage

collection (C) phase, which consists in erasing the blocks

containing data invalidated by the files deletion. The garbage

collector (GC) is generally implemented in the form of a kernel

thread. GC execution is based on various thresholds such as the

quantity of clean space available, and the amount of invalid data.

According to these thresholds the YAFFS2 GC can be launched

with more or less “aggressiveness”: we can clearly observe an

aggressive GC phase (C1) followed by a soft GC phase (C2). Note

that YAFFS2 soft GC continues for 7 minutes after the ending of

Postmark. Finally, we can see that UBIFS does not perform any

GC, because of the low quantity of data written during the

benchmark. UBIFS is a strongly buffered FFS as compared to

JFFS2 and YAFFS2 that are more synchronous. UBIFS buffers

absorb a large amount of the Postmark workload. JFFS2 and

especially YAFFS2 write a lot more data, and it impacts strongly

the execution time of Postmark. The number of flash operations

performed by each FFS is also present on Figure 3. We can see

that YAFFS2 performs twice the number of page writes and block

erasures as JFFS2. UBIFS performs 20 times less write operations

than YAFFS2.

Those results show that Flashmon can supplement performance

evaluation, based on execution times, with essential knowledge

concerning the actual flash operations occurring during the tests:

their types, numbers, and distribution. It helps in explaining

execution time related results that can be affected by

asynchronous processes, caches, etc. The impact of such elements

can be hard to detect and characterize without tracing tools.

5. AN ANALYSIS OF FLASHMON

IMPACT ON THE TRACED SYSTEM
In the monitored system, Flashmon is not intrusive in terms of

number of flash I/O operations performed because it keeps all its

internal structures in RAM. In order to give a realistic trace, the

overhead of Flashmon on I/O performance must be minimal.

Moreover, as it is primarily designed to be used in embedded

systems, the RAM footprint of the tool must be controllable.

5.1 Impact on I/O Latency
To study Flashmon impact on I/O performance we launched

several I/O intensive experimentations without and with

Flashmon. Then we observed the execution time differences.

A first set of experimentations consisted in erasing a 100 MB

flash partition, write a 5 MB file containing random data in this

partition then read this file. Those operations were done through

the use of the MTD utilities flash_erase, nandwrite and

nanddump, [8] which allow bypassing the file system layer and

Figure 3: Postmark results – The total number of read / write / erase operations is indicated under the title of each picture.

address directly physical flash pages and blocks. Each operation

was launched with and without Flashmon several times, execution

times were measured with the gettimeofday() system call, and

mean values were computed.

Another set of experimentations consisted in launching the

Postmark configuration presented in the previous section (See

Table 1) and measuring the execution time. Once again, mean

values from several executions, with and without Flashmon, were

used to compute the tool overhead. Those experimentations were

launched on JFFS2, YAFFS2 and UBIFS. Results from both

experimentation sets are presented on Table 2. All those results

show that Flashmon overhead on I/O performance in the traced

system stays under 6%.

Table 2. Flashmon performance impact

First set of experimentations

Experiment

Mean execution time (s)
Overhead

(%) Without

Flashmon

With

Flashmon

Erase 100 MB 0.470 0.489 3.85

Write 5 MB 1.498 1.570 4.79

Read 5 MB 2.386 2.515 5.40

Second set of experimentations

FFS

Postmark mean exec. time (s)
Overhead

(%) Without

Flashmon

With

Flashmon

JFFS2 10,523589 10,628663 3,08

YAFFS2 19,793678 20,626676 4,21

UBIFS 4,690151 4,754635 1,37

5.2 Flashmon Memory Footprint
One can model Flashmon memory usage as the sum of the static

and dynamic parts of the memory used by the module. The static

part is all the statically allocated memory. It can be obtained by

observing the Flashmon entry in /proc/modules. For the current

version it is 8861 bytes. The dynamic part consists in memory

allocated with vmalloc() (the malloc() kernel equivalent).

The dynamic part is divided into (1) the counters for the spatial

view and (2) the temporal log data structures. For (1), there is one

set of three counters for each of the flash blocks of the traced

partition / chip, one counter for each type of operation (R/W/E).

Each counter is an unsigned 32 bits integer. Regarding (2), for

each flash event inserted in the temporal log a data object is

inserted in a buffer which maximum size is configurable at launch

time. The entire buffer is allocated when Flashmon is inserted.

One can obtain the size of one entry with sizeof(), for the current

version it is 20 bytes + 16 bytes to store the task name for each

entry.

Flashmon memory usage can then be modeled as follows:

static+dynamic = 8861 + 3*4*NFlashBlocks + 36*MaxLogSize bytes

NFlashBlocks is the number of flash blocks in the traced partition and

MaxLogSize the maximum number of entries present in the

temporal log. Flashmon memory usage is primarily impacted by

the number of log entries. The configuration of Flashmon used in

the case studies was the following: with 2048 blocks traced and a

max log size of 40000 elements, Flashmon uses 1.4 MB of RAM.

The fact that the current task name is logged with each event

impacts greatly the memory usage, so an option is provided to

disable this feature. A solution to reduce memory usage is also to

limit the maximum log size and to flush regularly the results in a

non intrusive way, for example over the network.

6. CONCLUSION
In this paper, Flashmon version 2 is presented. This Linux kernel

module monitors at runtime NAND flash operations on embedded

raw flash chips. Flashmon employs kernel probes. It can be used

to study today’s flash management mechanisms behavior and

performance, and propose optimizations. Flashmon allows

completing performance evaluations based on execution time with

essential qualitative knowledge on events occurring in the flash

layer. It can also help in prototyping and validating new flash

management systems in real conditions. Flashmon is generic as it

is designed to be used with all Flash File Systems. It is very

flexible as it allows to easily customize and control the tracing

process. Flashmon is non intrusive and has a low overhead on the

performance (under 6% on the tested workloads) of the traced

system. Its memory footprint is also configurable. Flashmon

comes with a complete documentation and is available under the

GPL license: http://sourceforge.net/projects/flashmon/.

7. REFERENCES
[1] Armadeus Systems 2012. APF27 Board Datasheet.

[2] J. Boukhobza, I. Kethib and P. Olivier. Flashmon : un outil

de trace pour les accès à la mémoire flash NAND.

Proceedings of the Embed With linux Workshop, 2011.

[3] J. Brewer and M. Gill. Nonvolatile memory technologies

with emphasis on flash: a comprehensive guide to

understanding and using flash memory devices. Wiley-

IEEE Press, 2008.

[4] A. Brunelle. Blktrace User Guide. 2007.

[5] Y. Hu, H. Jiang, D Feng, L Tian, H. Luo and S. Zhang.

2011. Performance impact and interplay of SSD

parallelism through advanced commands, allocation

strategy and data granularity. Proceedings of the

international conference on Supercomputing, 2011.

[6] J. Katcher. PostMark: A New File System Benchmark.

1997.

[7] J. Keniston, P. S. Panchamukhi, M. Hiramatsu. Linux

Kernel Probes Documentation. 2010.

[8] Linux Memory Technology Device Website.

http://www.linux-mtd.infradead.org/

[9] Micron. MT29F2G16ABDHC-ET:D NAND Flash

Memory Datasheet. 2007.

[10] Micron. NAND Flash 101: An Introduction to NAND

Flash and How to Design It In to Your Next Product. 2006.

[11] P. Olivier, J. Boukhobza and E. Senn. Flash based Storage

in Embedded Systems. Encyclopedia of Embedded

Computing Systems. IGI Global, 2013.

[12] A. Schierl, G. Schellhorn, D. Haneberg, W. Reif. Abstract

Specification of the UBIFS File System for Flash Memory.

FM 2009: Formal Methods, 2009.

[13] D. Woodhouse. JFFS: The Journalling Flash File System.

Ottawa Linux Symposium, 2001.

[14] Wookey. YAFFS : a NAND Flash File System. 2004.

[15] K. Yaghmour, J. Masters, G. Ben-Yossef, P. Gerum.

Building Embedded Linux Systems. O’Reilly Media, 2008.

http://sourceforge.net/projects/flashmon/

