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Abstract—In this paper we show that the problem of mini-
mizing the number of test frequencies necessary to detect all
possible faults in a multi-frequency test approach for linear
analog circuits can be modeled as a set covering problem. We
will show in particular, that under some conditions on the
considered faults, the coefficient matrix of the problem has the
strong consecutive-ones property and hence the corresponding
set covering problem can be solved in polynomial time. For an
efficient solution of the problem, an interval graph formulation
is also used and a polynomial algorithm using the interval graph
structure is suggested. The optimization of test frequencies for a
case-study biquadratic filter is presented for illustration purposes.
Numerical simulations with a set of randomly generated problem
instances demonstrate two different implementation approaches
to solve the optimization problem very fast, with a good time
complexity.

Index Terms—Set covering problem, Consecutive-ones prop-
erty, Analog circuit testing, Linear programming, Interval
graphs.

I. I NTRODUCTION

The optimization of test sets for integrated circuits is
critical for reducing the large costs of production testing. For
digital circuits, fault-based test pattern generation techniques
are used. This structural approach is less common for
analog circuits that are still tested using specification-based
approaches. The variety of analog and mixed-signal blocks
and the lack of general fault models have prevented a
widespread use of structural techniques. However, there is a
pressing need to adopt fault-based approaches also for analog
circuits, providing measures of fault coverage for optimized
test sets, especially in the context of SoC devices that embed
digital and mixed-signal blocks in a single chip.

Multi-frequency tests (i.e. multi-tone sinusoidal signals)
have been classically considered for the test and diagnosis
of linear analog devices such as analog filters. Since the
effect of parametric and catastrophic faults varies as a function
of frequency, it is possible to derive a minimal set of test
frequencies either for the detection or for the diagnosis of all
potential faults. To optimize the set of test frequencies, the ap-
proaches based on sensitivity analysis have typically addressed
parametric faults [1], [2]. However, these approaches are not

accurate for very large deviations, such as those that result
from catastrophic faults. On the other hand, the approaches
based on fault simulation can handle catastrophic faults, but at
the expense of very time consuming simulations when realistic
faults at transistor-level are considered. Today, it is evident
that fault simulation of analog circuits is becoming essential
in order to optimize test sets relying on new techniques to
accelerate fault simulation.

In this context, this paper proposes a new technique for the
optimization of multi-frequency tests for linear analog circuits.
Fault simulation is used to obtain the frequency intervals for
the detection of each fault. New efficient algorithms are then
presented for the selection of the optimal set of test frequencies
within these intervals for the detection of all faults. A simple
case-study is used to illustrate the algorithms. Numerical sim-
ulations with randomly generated problem instances demon-
strate the good time complexity of the proposed algorithms,
with a large improvement over previous approaches [3]. We
notice that the test optimization algorithms are general, ap-
plicable to any case-study requiring an optimization of multi-
frequency tests based on fault simulation data. This technique
is today feasible for analog filters, but it is also applicable
to other analog devices such as analog-to-digital converters or
radio-frequency front-ends requiring multi-tone tests, provided
that fault simulation data are made available.

The paper is organized as follows: in Section 2, the math-
ematical formulation of the Set Covering Problem (SCP)
is reviewed and some definitions are given. In Section 3,
we present the mathematical formulation of the problem of
minimizing the number of frequency intervals necessary to
detect the faults of an analog circuit, and we study the specific
structure of the related coefficient matrix. In Section 4, we
present two approaches for solving the problem: the Linear
Programming (LP) approach and the interval graph approach.
In Section 5, we present a case-study of testing a biquadratic
filter. In Section 6, we carry out a large-scale numerical study
in order to compare both approaches and to evaluate their
time complexity. Finally, Section 7 concludes the paper and
provides some perspectives.



II. T HE SET COVERING PROBLEM

The Set Covering Problem is one of the most important
models in combinatorial optimization. Indeed, a wide range
of real-world problems are modeled as SCP, namely: railway
crew scheduling, airline crew scheduling, facility location, etc.
The practical importance of the SCP has motivated many
researchers to develop efficient algorithms and heuristics for
finding good solutions in reasonable time. We can cite: exact
algorithms based on branch-and-bound or branch-and-cut [4],
greedy heuristics [5], Lagrangian-based heuristics [6], genetic
algorithms [7], etc. In order to test the efficiency of the
proposed algorithms, there exists a library of SCP Benchmarks
(Beasley’s OR Library [8]).

The set covering problem is known to be NP-hard [9].
However, there exist some particular forms of the SCP which
are polynomial-time solvable such as the SCP with a constraint
matrix having the consecutive-ones property (i.e., the ones in
each row appear consecutively). This particular case, denoted
in the following by SCP-C1P, can be solved efficiently with
LP algorithms.

A. Some definitions

Let M = {1, . . . ,m} and N = {1, . . . , n} be two sets of
indices. LetA = (aij , i ∈ M, j ∈ N) be a binary (m × n)-
matrix andc = (cj , j ∈ N) be an integern-vector. The value
cj , j ∈ N, represents the cost of columnj and we assume
without loss of generality thatcj > 0 for all j ∈ N . We say
that a columnj ∈ N covers a rowi ∈ M if aij = 1. A set
S ⊆ N is called acover if each rowi ∈ M is covered by at
least one columnj ∈ S. The problem of finding a coverS
of minimum cost can be formulated as an ILP (Integer Linear
Programming) problem as follows:

min z = cT x,

subject toAx ≥ 1m, x ∈ {0, 1}n,
(1)

where 1m is the m-vector of ones. Whencj = 1, for all
j ∈ N , problem (1) is called aunicost set covering problem.

Definition 1: ([10]).
• A block of 1’s (block of 0’s) in a row of a binary matrix
A is a maximal set of consecutive 1-entries (0-entries) in this
row.
• A binary matrix has thestrong consecutive-ones property
(strong C1P) if in every row the 1’s appear consecutively, that
is, if every row contains at most one block of 1’s.
• A binary matrix has theconsecutive-ones property(C1P) if
its columns can be permuted in such a way that the resulting
matrix has the strong C1P. If an ordering for the columns of a
binary matrix yields the strong C1P, it is called aC1-ordering.
• A graphG is aninterval graphif its vertices can be mapped
to intervals on the real line such that two vertices are adjacent
if and only if their corresponding intervals have non empty
intersection.
• A binary matrix is totally unimodular if every square
submatrix has determinant 0, 1, or -1.

III. M INIMIZATION OF TEST FREQUENCIES TO DETECT

ALL THE FAULTS OF AN ANALOG CIRCUIT

In [3], the problem of selecting a minimum number of test
frequencies is formally presented and solved using boolean
expressions. However, when the number of faults is large, the
technique used is not efficient. In this section, we present a
mathematical formulation of the general problem as a set cov-
ering problem. We show that, under some special conditions
on the considered faults, the coefficient matrix of the SCP
will have the C1P. Moreover, we suggest an interval graph
formulation of the problem.

A. Mathematical formulation of the problem as an SCP-C1P

Consider a given linear analog circuitC. Let F =
{F1, F2, . . . , Fm} be a set of all the possible faults which can
occur in C. Let T be a test measure which will be used in
the fault detection process. In order to detect a given faultFi

using the test measureT , test signals with maximum amplitude
and at different frequencies in the interval[fmin, fmax] are
used as inputs of the analog circuit. The fault is detected
if the test measureT exceeds a fixed thresholdτ . Fault
simulation allows then to compute, for each faultFi, the
frequency intervals for which the threshold is exceeded. These
intervals are called thedetection regionsof fault Fi. Note that
each fault can have one, two or more detection regions. Let
ni be the number of detection regions of the faultFi and
Ri = {Ri1, Ri2, . . . , Rini

} be the set of all the detection
regions of the faultFi. Note that these detection regions are
disjoint: for each two detection regionsRip andRiq, we have
Rip ∩ Riq = ∅. After that, a set ofn frequency intervals
I = {I1, I2, . . . , In} is computed as follows: we divide the
interval [fmin, fmax] into n disjoint intervals such that

[fmin, fmax] = [fmin, f1[∪[f1, f2[∪ . . . ∪ [fn−1, fmax], (2)

where fk, k = 1, . . . , n − 1, represent the lower or upper
bounds of all the detection regions sorted in increasing order
(fmin < f1 < f2 < . . . < fn−1 < fmax).

We denote byA = (aij , i = 1, . . . ,m, j = 1, . . . , n) the
matrix which is defined as follows:

aij =

{

1, if ∃k ∈ {1, . . . , ni}: Ij ⊆ Rik;

0, otherwise.
(3)

The problem consists in finding a minimal cardinality set
of frequency intervalsS ⊆ I which can detect all the possible
considered faults. One frequency for each selected frequency
interval (typically in the middle of the interval) can be used
in the optimized test set. This problem can be formulated as
a unicost set covering problem: for eachS ⊆ I and each
frequency intervalIj , j ∈ {1, . . . , n}, we define a binary
variable as follows:

xS
j =

{

1, if Ij belongs to the setS;

0, otherwise.

Now, if x = (xj , j = 1, . . . , n) is any vector of binary
variables, then the mathematical model corresponding to this



problem will be given by:

min r = 1
T
nx,

s.t. Ax ≥ 1m, x ∈ {0, 1}n.
(4)

Remark 1:The matrixA cannot have more than2
∑m

i=1 ni

columns.
Proposition 1: If ni = 1, for i = 1, . . . m, i.e., each fault

has a unique detection region, then the matrixA will have the
strong consecutive-ones property.

Proof: Let Fi, i ∈ M, be a given detected fault and
Ri1 = [ai, bi] be the unique detection region of faulti. By
construction,Ri1 can be written as a union ofk consecutive
intervals Ij1 , Ij2 , . . . , Ijk

, where ai is the lower bound of
Ij1 and bi is the upper bound ofIjk

. (Two intervals are
consecutive if they have a common bound). Since the intervals
Ijr

correspond to the consecutive columnsajr
of A for

r = 1, . . . , k, the detection regions correspond to the rows
of A, andIjr

⊆ Ri1, i.e. aijr
= 1 for r = 1, . . . , k.

Note that the previous proposition is very important because
it gives a simple sufficient condition for the matrix arising in
our application to have the strong C1P.

In the following we consider only problems with faults
having one detection region.

Following Proposition 1, ILP problem (4) is a unicost set
covering problem with a coefficient matrix having the strong
C1P (SCP-C1P). More precisely, it is given by:

min z =
∑n

j=1 xj ,

s.t.
∑rx(i)

j=lx(i) xj ≥ 1, i ∈ M, xj ∈ {0, 1}, j ∈ N,
(5)

where for each rowi, lx(i) denotes the leftmost indexl for
which ail = 1 and rx(i) the rightmost indexr for which
air = 1. To get the LP-relaxation of the above problem, we
simply exchange the integrality constraints against the non-
negativity constraints [11]. Thus, we get the following LP
problem:

min z =
∑n

j=1 xj ,

s.t.
∑rx(i)

j=lx(i) xj ≥ 1, i ∈ M, xj ≥ 0, j ∈ N.
(6)

B. Graph formulation of the problem

Previously, we have formulated the problem of minimizing
frequency intervals to detect all the faults of an analog circuit
using an ILP model. In this subsection, we suggest a new
formulation based on the concept of interval graph: we denote
the detection region of faulti by the interval[ai, bi] for i ∈ M .
Let the interval graphG = (F,EF ) be defined as follows:

F = {[ai, bi], i ∈ M}, EF = {FiFj :]ai, bi[∩]aj , bj [6= ∅}.
(7)

In the next section we will suggest a polynomial algorithm
using this interval graph for solving the considered problem.

IV. A PPROACHES FOR SOLVING THE MINIMIZATION

PROBLEM OF FREQUENCY INTERVALS

In this section, we suggest two approaches for solving the
problem of minimizing frequency intervals necessary to detect
all the faults of an analog circuit.

A. LP Approach

Let us recall the following results:
Theorem 1:([12]).

An (m × n)-matrix A with entries 0, 1 and -1 is totally
unimodular if and only if each collection of columns from
A can be partitioned into two column sets such that in each
row the sum of the entries of the first set and the sum of the
entries of the second set differ by at most 1.

Theorem 2:([13]).
Let A be an m × n integral matrix. Then the polyhedron
defined byAx ≤ b and x ≥ 0 is integral for every integral
vectorb if and only if A is totally unimodular.

Remark 2: ([10]).
Any matrix A having the C1P fulfills the conditions of
Theorem 1 and, hence, is totally unimodular.

Following Theorem 2 and Remark 2, any basic feasible
solution of the LP problem (6) represents a cover for the SCP-
C1P (5). Therefore, we can find an optimal solution using LP
algorithms such as the primal or dual simplex method [14],
the support method [15], etc. However, it is more efficient to
transform the SCP-C1P into a min-cost network flow problem
[10].

Let us make the Veinott-Wagner transformations [17] for
the variables of problem (6): we introduce the variablesyj ,
j = 1, . . . , n + 1 such thatxj = −yj + yj+1, j = 1, . . . , n.
Hence, we obtain the following equivalent LP problem:

min z = −y1 + yn+1,

s.t. − ylx(i) + yrx(i)+1 ≥ 1, i ∈ M,

−yj + yj+1 ≥ 0, j ∈ N.

(8)

The dual of the above problem hasm + n variables
v1, v2, . . . , vm+n andn + 1 constraints and it is given by:

min w = −
∑m

j=1 vj ,

s.t.
∑m+n

j=1 a′

1jvj = −1,
∑m+n

j=1 a′

ijvj = 0, i = 2, . . . , n,
∑m+n

j=1 a′

(n+1)jvj = 1, vj ≥ 0, j = 1, . . . ,m + n.

(9)

whereA′ = (a′

ij , i = 1, . . . , n + 1, j = 1, . . . ,m + n); andA′

has exactly one 1 and one -1 in each column. Remark that the
LP problem (9) is a min-cost network flow problem. Thus, it
can be solved by the network simplex method.

The scheme of the LP approach to solve the problem is
described in the following steps:

Step 1.Compute the frequency intervals necessary to detect
the different faults using relation (2);

Step 2.Compute the constraint matrix of the SCP-C1P
using relation (3);

Step 3.Make the Veinott-Wagner transformations. LetV be
the constraint matrix of the LP problem (8);

Step 4.Compute the constraint matrixA′, the(n+1)-vector
of right-hand-sidesb′ and the cost(m + n)-vector
c′ of the min-cost network flow problem (9):A′ =

V T , b′ = (−1, 0, . . . , 0, 1)T , c′ =

(

−1m

0n

)

;



Figure 1. Biquadratic Filter

Step 5.Solve the min-cost network flow problem with the
network simplex algorithm.

B. Interval graph approach

In order to solve the problem using the interval graphG

defined by (7), we suggest the following algorithm:
Algorithm 1:

1. Let L be the list of vertices of the graphG. Sort the vertices
Fi, i = 1, . . . ,m by increasing order of their upper boundsbi;
2. Sets = m andS = ∅;
3. For i = 1 to s

3.1. Let k be the index verifyingbi = fk,
wherefk is computed by (2);

3.2. For j = i + 1 to s

If Fj is adjacent toFi in G, then
- deleteFj from L;
- sets = s − 1 andS = S ∪ {[fk−1, fk[};

endif
endfor

endfor
The input of this polynomial algorithm is the interval graph

G and the output is a minimal cardinality setS of frequency
intervals, which detects all the faults.

Note that it is not necessary to construct the whole interval
graph, we can use only its vertices, i.e., detection regions of
the different faults, and replace the test ”IfFj is adjacent to
Fi in G” by the test ”If aj < bi ≤ bj”.

Remark 3:Contrarily to the LP approach, the interval graph
approach uses the detection regions of the considered faults
directly, i.e. without transforming the problem.

V. CASE-STUDY

To illustrate our approach, similar to [3], we will now
present a case-study biquadratic filter as shown in Figure 1.
There are 6 test measures for this circuit that correspond to
the common-mode signal at the input and at the output of
each operational amplifier. For simplicity, only catastrophic
(10 MOhm open and 1 Ohm short) faults in the passive
components are considered. Due to the differential design, only
16 different faults need to be considered.

Figure 2. Output signals using test measureT1

We denote the test measures byT1, T2, . . . , T6 and the faults
by F1, F2, . . . , F16. Figure 2 shows the frequency behavior
of test measureT1 for some of these faults. The detection
regions of each faultFi, i = 1, 2, . . . , 16 using test measures
Tk, k = 1, 2, . . . , 6 are computed using the fault simulator
developed in [18], [19]. Note that the simulation results
obtained in [18] indicate that test measuresT2, T4 andT6 do
not detect any fault. Hence, we only consider test measures
T1, T3 and T5. For simplicity also, we have only considered
nominal simulations of the catastrophic faults. In practice,
Monte Carlo simulations of each catastrophic fault should
be considered, and worst-case detection regions be computed
(that is, the intersection of the detection regions for each Monte
Carlo instance).

First, we start by minimizing the frequency intervals under
the test measureT1: the faults detected using test measure
T1 are F1, F2, . . . , F8. The detection regions of the different
faults are:
R11 = [1, 105], R21 = [85, 3732], R31 = [85, 3732],
R41 = [1, 2685], R51 = [1, 3442], R61 = [336, 1566],
R71 = [1, 1014] andR81 = [647, 105].

When we sort in increasing order the bounds of the different
detection regions, we find the following series of numbers
fi, i = 1, . . . , 10:
1; 85; 336; 647; 1014; 1566; 2685; 3442; 3732; 105.

Therefore, the frequency intervals are:
I1 = [1, 85[, I2 = [85, 336[, I3 = [336, 647[,
I4 = [647, 1014[, I5 = [1014, 1566[, I6 = [1566, 2685[,
I7 = [2685, 3442[, I8 = [3442, 3732[, I9 = [3732, 105[.

The constraint matrix of the SCP (4) is then:

A =

























1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0 0
0 0 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1

























,



where each rowi, i = 1, . . . , 8 corresponds to the detection
region Ri1 and each columnj, j = 1, . . . , 9 corresponds to
the frequency intervalIj .

Since the matrixA has the consecutive-ones property (each
fault has a unique detection region), the optimal solution
of the SCP (4) can be obtained using the network simplex
method. In our example, this leads to the following optimal
solution: x∗ = (0, 0, 0, 1, 0, 0, 0, 0)T andr∗ = 1, i.e., a
minimal cardinality set of intervals detecting all the faults
is S = {I4}. Therefore, it is sufficient to use a single test
frequency belonging to the interval[647Hz, 1014Hz[ to detect
all the faultsF1, F2, . . . , F8.

Similarly, when we use the test measureT3, we detect
the faultsF9, F10, F11 and F12. The corresponding detection
regions are:
R91 = [159, 7957[, R10,1 = [1, 1740[,
R11,1 = [1, 1739[ andR12,1 = [159, 7940[.

The different frequency intervals are:
I ′1 = [1, 159[, I ′2 = [159, 1739[, I ′3 = [1739, 1740[,
I ′4 = [1740, 7940[ andI ′5 = [7940, 7959[.

The constraint matrix of the SCP is

A =









0 1 1 1 1
1 1 1 0 0
1 1 0 0 0
0 1 1 1 0









.

Hence, for the test measureT3, the solution of the SCP
(4) is obvious, that is, a single test frequency belonging to
the interval I ′2 = [159Hz, 1739Hz[ detects all the faults
F9, F10, F11 andF12.

Finally, with test measureT5, we detect the faults
F13, F14, F15 and F16. The corresponding detection regions
are:
R13,1 = [1, 2798[, R14,1 = [1, 1413[, R15,1 = [1, 1412[,
andR16,1 = [1, 2794[.

The different frequency intervals are:
I ′′1 = [1, 1412[, I ′′2 = [1412, 1413[, I ′′3 = [1413, 2794[
andI ′′4 = [2794, 2798[.

The constraint matrix of the SCP is

A =









1 1 1 1
1 1 0 0
1 0 0 0
1 1 1 0









.

Thus, for the test measureT5, the solution is obvious again,
that is, the frequency interval which detects all the faults
F13, F14, F15 and F16 is I ′′1 = [1Hz, 1412Hz[, and a single
test frequency belonging to this interval is required.

VI. N UMERICAL EXPERIMENTS

In order to compare the efficiency of the two approaches
presented in Section IV (LP approach and the interval graph
one), we have implemented them in C++ programming lan-
guage and carried out large-scale numerical experiments on
a set of randomly generated test instances using an Intel(R)

Core(TM)2 Duo CPU P8600 @ 2.40GHz machine with 4 GB
of RAM.

We have generated 60 problems with number of faultsm =
500, 000; 600, 000; 700, 000; 800, 000; 900, 000; 1, 000, 000.
The detection region bounds are generated in the interval
[1Hz, 105Hz]. For each class of test problems withm faults,
we generate ten problems. We have solved the different
instances with the LP approach (LPA) using the network
simplex method of the LP and ILP solver CPLEX [20] and
the suggested interval graph algorithm (IGA). The CPU time
of the two approaches IGA and LPA are reported in Table I.

Let [ai, bi] be the detection regions of the faultsFi, i =
1, . . . ,m. In the following, we give the implementation details
for the LP approach:

Step 1.Compute the set of frequency intervalsI as follows:
- sort the bounds of the detection regions in increas-
ing order: letd be the vector of these sorted bounds;
- delete duplicate elements fromd, and letn + 1 be
the dimension ofd;
- setI = {Ij = [dj , dj+1[, j = 1, . . . , n};

Step 2.Compute the constraint(m×n)-matrix of the SCP-
C1P as follows:
- setfmax = d(n + 1) and compute the vectort of
dimensionfmax as follows:
- set t(k) = 0, for k = 1, . . . , fmax;
- set t(d(j)) = j, for j = 1, . . . , n + 1;
- set lx(i) = t(ai) and rx(i) = t(bi) − 1 for i =
1, . . . ,m;

Step 3.Make the Veinott-Wagner transformations: compute
the constraint matrixV of the LP problem (8) as
follows:
-for i = 1, . . . ,m; for j = 1, . . . ,m + n:

Vij =







−1, if j = lx(i);
1, if j = rx(i) + 1;
0, otherwise;

-for i = m + 1, . . . , n + 1; for j = 1, . . . ,m + n:

Vij =







−1, if j = i − m;
1, if j = i − m + 1;
0, otherwise;

Step 4.Compute the constraint matrixA′, the(n+1)-vector
of right-hand-sidesb′ and the cost(m + n)-vector
c′ of the min-cost network flow problem (9):A′ =

V T , b′ = (−1, 0, . . . , 0, 1)T , c′ =

(

−1m

0n

)

;

Step 5.Solve the min-cost network flow problem with the
network simplex algorithm.

Note that the efficient implementation presented above
computes the constraint matrices of the SCP-C1P and the
min-cost network flow problem of the LP approach in small
CPU times (less than 1 second on average for all the test
problems). That is why we have not reported the CPU times
of computing the constraint matrices of the SCP-C1P and the
min-cost network flow problem in Table I.

The optimal values found by the two approaches IGA and
LPA for the different test problems are the same; the average
optimal values for each class of test problems are shown in



m OptVal IGA LPA Ratio
500,000 560,80 4,10 3,18 1,29
600,000 611,90 5,30 3,52 1,51
700,000 672,50 6,70 3,85 1,74
800,000 704,90 9,40 4,30 2,19
900,000 762,90 12,00 4,53 2,65

1,000,000 809,10 16,30 4,76 3,42
Mean 8,97 4,02 2,13

Table I

Figure 3. CPU time of the two approaches: IGA and LPA

column OptVal. We compute the ratios of the CPU time of IGA
over LPA. These ratios are shown in column Ratio. Finally,
the CPU time of the two approaches are plotted in Figure 3.
The LPA shows a time complexityO(m), while IGA shows
a time complexityO(m2), wherem is the number of faults.

The graphs of Figure 3 indicate that transforming the
problem into a min-cost network flow problem and solving
it with the network simplex method is more efficient than the
interval graph algorithm. Indeed, LPA is, on average, two times
faster than IGA. However, the computation time is very small
even for problems with an extremely large number of faults.
Therefore, the interval graph algorithm can also be used in
practice by test engineers because of its easy implementation,
the good CPU times (an average of 16 seconds for optimizing
the test of analog circuits with 1,000,000 faults), and the fact
that it solves the original problem directly.

VII. C ONCLUSION

In this work, we have formulated as a SCP the problem of
minimizing the number of test frequencies for detecting a set
of faults injected into an analog circuit. We have shown that
when the considered faults have a unique detection region, the
constraint matrix of the SCP will have the strong consecutive-
ones property. After that, we have reformulated this special
case using interval graphs and an algorithm working directly
with this graph is suggested. In order to solve the problem
efficiently, two approaches are compared: an LP approach and
an interval graph approach. The obtained numerical results
show that the approach which transforms the problem into

a min-cost network flow problem to solve it by the network
simplex method is the most efficient. However, the interval
graph approach can also be used by test engineers because
it solves the original problem directly; its implementation is
very easy and it is extremely fast with CPU times of a few
tenths of seconds even for large-scale problems. Future work
will focus on the case when the faults have more than one
detection region. We will study the complexity of the related
problem and develop a branch-and-cut algorithm which takes
into account the specific structure of the problem.
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