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Abstract—In this paper we show that the problem of mini- accurate for very large deviations, such as those that result
mizing the number of test frequencies necessary to detect all from catastrophic faults. On the other hand, the approaches
possible faults in a multi-frequency test approach for linear paqeq on fault simulation can handle catastrophic faults, but at
analog circuits can be modeled as a set covering problem. We . . ) - S
will show in particular, that under some conditions on the the expense ofvery time consumlng simulations W'hejn rea_‘“s“c
considered faults, the coefficient matrix of the problem has the faults at transistor-level are considered. Today, it is evident
strong consecutive-ones property and hence the correspondingthat fault simulation of analog circuits is becoming essential

set covering problem can be solved in polynomial time. For an in order to optimize test sets relying on new techniques to
efficient solution of the problem, an interval graph formulation accelerate fault simulation.

is also used and a polynomial algorithm using the interval graph
structure is suggested. The optimization of test frequencies for a  |n this context, this paper proposes a new technique for the
case-study biquadratic filter is presented for illustration purposes. o timization of multi-frequency tests for linear analog circuits.
Numerical simulations with & set of randomly generated problem Fault simulation is used to obtain the frequency intervals for
instances demonstrate two different implementation approaches : = _y
to solve the Optimization pr0b|em very fast’ with a good time the deteCt|0n Of eaCh fault. New eﬁ:|C|ent a.lgonthms are then
complexity. presented for the selection of the optimal set of test frequencies
Index Terms—Set covering problem, Consecutive-ones prop- within these intervals for the detection of all faults. A simple
erty'hA”alog circuit testing, Linear programming, Interval  case study is used to illustrate the algorithms. Numerical sim-
grapns. ulations with randomly generated problem instances demon-
l. INTRODUCTION strate the good time complexity of the proposed algorithms,
The optimization of test sets for integrated circuits ig\/ith a large improvement over previous approaches [3]. We

critical for reducing the large costs of production testing. FcprOtlce that the test optimization algorithms are general, ap-

digital circuits, fault-based test pattern generation techniq plicable to any case-study requiring an optimization of multi-

ues : : ) )
. ; requency tests based on fault simulation data. This technique
are used. This structural approach is less common for . . o X

L . . e iS ,today feasible for analog filters, but it is also applicable
analog circuits that are still tested using speC|f|cat|on-baSﬁd

) ; : 0 other analog devices such as analog-to-digital converters or
approaches. The variety of analog and mixed-signal blocks . - ) ;
radio-frequency front-ends requiring multi-tone tests, provided
and the lack of general fault models have prevented . a . . .
. . .that fault simulation data are made available.
widespread use of structural techniques. However, there is a
pressing need to adopt fault-based approaches also for analobhe paper is organized as follows: in Section 2, the math-
circuits, providing measures of fault coverage for optimizeematical formulation of the Set Covering Problem (SCP)
test sets, especially in the context of SoC devices that embedreviewed and some definitions are given. In Section 3,
digital and mixed-signal blocks in a single chip. we present the mathematical formulation of the problem of
minimizing the number of frequency intervals necessary to
Multi-frequency tests (i.e. multi-tone sinusoidal signalsjetect the faults of an analog circuit, and we study the specific
have been classically considered for the test and diagnosiicture of the related coefficient matrix. In Section 4, we
of linear analog devices such as analog filters. Since theesent two approaches for solving the problem: the Linear
effect of parametric and catastrophic faults varies as a functiBrogramming (LP) approach and the interval graph approach.
of frequency, it is possible to derive a minimal set of tesh Section 5, we present a case-study of testing a biquadratic
frequencies either for the detection or for the diagnosis of dilter. In Section 6, we carry out a large-scale numerical study
potential faults. To optimize the set of test frequencies, the dp-order to compare both approaches and to evaluate their
proaches based on sensitivity analysis have typically addrestiete complexity. Finally, Section 7 concludes the paper and
parametric faults [1], [2]. However, these approaches are mobvides some perspectives.



II. THE SET COVERING PROBLEM IIl. M INIMIZATION OF TEST FREQUENCIES TO DETECT

ALL THE FAULTS OF AN ANALOG CIRCUIT
The Set Covering Problem is one of the most important , .
models in combinatorial optimization. Indeed, a wide range " [3]: the problem of selecting a minimum number of test
of real-world problems are modeled as SCP, namely: railwdyduencies is formally presented and solved using boolean
crew scheduling, airline crew scheduling, facility location, et&XPressions. However, Whe_n the number of _faults is large, the
The practical importance of the SCP has motivated ma hnlque_used is not_ efficient. In this section, we present a
researchers to develop efficient algorithms and heuristics fgpthematical formulation of the general problem as a set cov-
finding good solutions in reasonable time. We can cite: exdeind Problem. We show that, under some special conditions

algorithms based on branch-and-bound or branch-and-cut @T the considered faults, the coefficient matrix of the SCP

greedy heuristics [5], Lagrangian-based heuristics [6], gene‘ﬁ’al,II have the C1P. Moreover, we suggest an interval graph

algorithms [7], etc. In order to test the efficiency of thdormulation of the problem.

proposed algorithms, there exists a library of SCP Benchmaiks vathematical formulation of the problem as an SCP-C1P

(Beasley's OR Library [8]). Consider a given linear analog circuft. Let F =
The set covering problem is known to be NP-hard [9] g 9 ) N

However, there exist some particular forms of the SCP WhiéhFl’ FQ.’ -2 Fm} be asetof all the possple faglts which can
octcur inC. Let T' be a test measure which will be used in

are polynomial-time solvable such as the SCP with 2 constrafﬂe fault detection process. In order to detect a given fAult
matrix having the consecutive-ones property (i.e., the ones In '

. : . ys&wg the test measufg test signals with maximum amplitude
each row appear consecutively). This particular case, denote . . .
. h e and at different frequencies in the intendl,.;n,, finaz| are
in the following by SCP-C1P, can be solved efficiently with . - ¢
LP algorithms gsed as inputs of the analog cwcylt. The fault is detected
' if the test measurel’ exceeds a fixed threshold. Fault
simulation allows then to compute, for each fadl, the
frequency intervals for which the threshold is exceeded. These
Let M = {1,...,m} and N = {1,...,n} be two sets of intervals are called thdetection regionsf fault F;. Note that
indices. LetA = (a;;,i € M,j € N) be a binary €2 x n)- each fault can have one, two or more detection regions. Let
matrix andc = (c;,j € N) be an integen-vector. The value 7: be the number of detection regions of the fafit and
¢j,j € N, represents the cost of columnand we assume Ri = {Ri1, Ri2,..., Rin,} be the set of all the detection
without loss of generality that; > 0 for all j € N. We say regions of the faultF;. Note that these detection regions are
that a columnj € N covers a rowi € M if a;; = 1. A set disjoint: for each two detection regioris,, and R;,, we have
S C N is called acoverif each rowi € M is covered by at Rip N Rig = 0. Afte_r that, a set ofn frequency |r_1t_ervals
least one columiy € S. The problem of finding a cove§ Z = {[1,12,...,I,} is computed as follows: we divide the

of minimum cost can be formulated as an ILP (Integer Lineddterval [fmin, fmaz] into n disjoint intervals such that
Programmin roblem as follows:
g g) p [fminv.fmam} = [.fmin7f1[u[f17f2[u---u[fn—hfmam]; (2)
T

min z = ¢’ , 1) Where fi, k = 1,...,n — 1, represent the lower or upper
subject toAz > 1 0,1} (1) ; . o .
ubj z 2 1y, x€{0,1}", bounds of all the detection regions sorted in increasing order

where 1,,, is the m-vector of ones. Wher; = 1, for all (frmin < f1 < f2 <... < fn-1 < frnaa)-

. ; : ; We denote byA = (a;;,i =1,...,m, j =1,...,n) the
N, problem (1) is called anicost set covering problem _ L NN D B
JE ! p ) ()] I Vernng p matrix which is defined as follows:
Definition 1: ([10]).

A. Some definitions

e A block of 1's (block of 0's) in a row of a binary matrix )1, ifdke {1,...,n:}: I; € Ry; 3
A is a maximal set of consecutive 1-entries (0-entries) in this ij 0, otherwise. ®)
row.

e A binary matrix has thestrong consecutive-ones property The problem consists in finding a minimal cardinality set
(strong C1R if in every row the 1's appear consecutively, tha®f frequency intervals’ C 7 which can detect all the possible

is, if every row contains at most one block of 1's. considered faults. One frequency for each selected frequency
o A binary matrix has theonsecutive-ones proper(@ll:a if interval (typlcally in the middle of the interval) can be used
its columns can be permuted in such a way that the resultitigthe optimized test set. This problem can be formulated as
matrix has the strong C1P. If an ordering for the columns oféa Unicost set covering problem: for ea¢hC 7 and each

binary matrix yields the strong C1P, it is calle€Ca-ordering frequency intervall;, j € {1,...,n}, we define a binary
e A graph( is aninterval graphif its vertices can be mappedVvariable as follows:

to intervals on th(=T real line such thgt two vertices are adjacent 1, if I, belongs to the se$;

!f and only if their corresponding intervals have non empty x; { 0. otherwise.

intersection.

e A binary matrix is totally unimodular if every square Now, if 2 = (z;,7 = 1,...,n) is any vector of binary

submatrix has determinant O, 1, or -1. variables, then the mathematical model corresponding to this



problem will be given by: A. LP Approach

min r = 17z, 4 Let us recall the following results:
St Ar > 1y, z € {0,1}, 4) " Theorem 1:([12)).
m An (m x n)-matrix A with entries 0, 1 and -1 is totally

Remark 1:The matrixA cannot have more thah) ©.” | n;

unimodular if and only if each collection of columns from
columns.

A can be partitioned into two column sets such that in each

H Proposition dl:tlf 7;7 = 1, for Z;{h: l’th"méﬁe"_”eﬁm ft?]'“'lt row the sum of the entries of the first set and the sum of the
as a unique detection region, then the matwill have the o ies of the second set differ by at most 1.

strong consecutive-ones property. Theorem 2:(13
Proof: Let F;,i € M, be a given detected fault and ([13))-

R;1 = [a;,b;] be the unique detection region of fault By

ponstructlon,Ril can be written as a union df consecutive | o ot if and only if A is totally unimodular.

intervals I, I;,. ..., I, where a; is the lower bound of "“por 4> 110))

I;, and b; is the upper bound of;,. (Two intervals are Q ’ ’

consecutive if they have a common bound). Since the interv Reorem 1 and. hence. is totally unimodular

I, correspond to the ponsecgtive columag. of A for Following Theorem 2 and Remark 2, any basic feasible

Tf: L...,k, the dgtecnon reg|?ns correspond 0 the rowg, tion of the LP problem (6) represents a cover for the SCP-

of 4, andl;, € Riy, i.8.04, =1forr=1,....k. C1P (5). Therefore, we can find an optimal solution using LP

. I\_lote that' the previous proposition Is very 'mpor,tam_b_ecayaf'gorithms such as the primal or dual simplex method [14],

It gives a swpple sufficient condition for the matrix arising Mhe support method [15], etc. However, it is more efficient to

our application to have the strong C1P. . transform the SCP-C1P into a min-cost network flow problem
In the following we consider only problems with faults[lo]

having one detection region. Let us make the Veinott-Wagner transformations [17] for

Following Proposition 1, ILP problem (4) is a unicost Sefyo \ariaples of problem (6): we introduce the variabjes
covering problem with a coefficient matrix having the str0n9 —1 n+ 1 such thate, = —y; + g1, j = 1 .
=1,..., ==Y +Yi+1, J=1,...,n.

C1P (SCP-C1P). More precisely, it is given by: Hence, we obtain the following equivalent LP problem:

Let A be anm x n integral matrix. Then the polyhedron
defined byAz < b andx > 0 is integral for every integral

ny matrix A having the C1P fulfills the conditions of

. n
min 2= Y7 @,

min 2 = —Y1 + Yn+1,
ra(i) > . . y (5) )
s.t. Zj:lm(i) Ty = ]'7 &S M’ zj € {07 1}’J € N’ s.t. — Yl (i) + Yra(i)+1 > 13 (S Ma (8)
where for each row, lz(i) denotes the leftmost indeixfor —y; +yj+1 =0, j €N.
which a; = 1 and rz(i) the r_ightmost indexr for which  1he qual of the above problem has + n variables
iy = 1. To get the LP_-reIaxa_tlon of the_above problem, W81,02, . Umin andn + 1 constraints and it is given by
simply exchange the integrality constraints against the non- m
negativity constraints [11]. Thus, we get the following LP ™1t W = =21V
. m—+n
problem: ) sty Mayn =1, ©
min z = ., @, ) Z;’:rl” aj;v; =0,i=2,...,n,
s.t. Zj:lm(i) zj>1,1€M, z; >0,j € N. ZJ_:JFI a’l(n+1)jvj =1,v;>0,j=1,...,m+n.

B. Graph formulation of the problem where A’ = (a);,i=1,...,n+1,j=1,...,m+n); and A’
Previously, we have formulated the problem of minimizinpas exactly one 1 and one -1 in each column. Remark that the

frequency intervals to detect all the faults of an analog circuiP problem (9) is a min-cost network flow problem. Thus, it

using an ILP model. In this subsection, we suggest a naan be solved by the network simplex method.

formulation based on the concept of interval graph: we denoteThe scheme of the LP approach to solve the problem is

the detection region of faultby the intervalla;, b;] fori € M. described in the following steps:

Let the interval grapi = (F, Er) be defined as follows: Step 1.Compute the frequency intervals necessary to detect
F ={[a;,b;], i € M}, Ep = {F,F; :]a;,b;[N)a;, b;[# 0}. the different faults using relation (2);
(7 Step 2.Compute the constraint matrix of the SCP-C1P
In the next section we will suggest a polynomial algorithm using relation (3);

using this interval graph for solving the considered problem. Step 3.Make the Veinott-Wagner transformations. llebe
the constraint matrix of the LP problem (8);

V. APPROACHES FOR SOLVING THE MINIMIZATION Step 4.Compute the constraint matrix’, the (n+1)-vector

PROBLEM OF FREQUENCY INTERVALS of right-hand-sides’ and the costm + n)-vector

In this section, we suggest two approaches for solving the ¢ of the min-cost network flow problem (9{’ =
problem of minimizing frequency intervals necessary to detect VT, = (~1,0 0,1)7, ¢ = ( -1, \.
all the faults of an analog circuit. R PR S B 0, /'
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Figure 1. Biquadratic Filter Figure 2. Output signals using test measilie
Step 5.Solve the min-cost network flow problem with the e denote the test measuresBy 75, . . . , T and the faults
network simplex algorithm. by Fi,F,,...,Fi. Figure 2 shows the frequency behavior
B. Interval graph approach of test measureél; for some of these faults. The detection

regions of each fault;,: = 1,2,...,16 using test measures
Ty, k = 1,2,...,6 are computed using the fault simulator
developed in [18], [19]. Note that the simulation results
obtained in [18] indicate that test measuflesT, andTg do

not detect any fault. Hence, we only consider test measures
T:,T5 and Ts. For simplicity also, we have only considered
nominal simulations of the catastrophic faults. In practice,
Monte Carlo simulations of each catastrophic fault should
be considered, and worst-case detection regions be computed
(that is, the intersection of the detection regions for each Monte
Carlo instance).

First, we start by minimizing the frequency intervals under
the test measur&y: the faults detected using test measure
T, are F1, Fs, ..., F3. The detection regions of the different

faults are:
endfor
endfor R =1, 105}, Ro1 = [85,3732], R31 = [85,3732],

The input of this polynomial algorithm is the interval grapl"ﬁ41 = [1,2685], Rs1 = [1,3442], Igﬁl = [336,1566],
G and the output is a minimal cardinality sgtof frequency Rp = [1,1014] and Ry, = [647,10°].
intervals, which detects all the faults. When we sort in increasing order the bounds of the different
Note that it is not necessary to construct the whole intervdgtection regions, we find the following series of numbers
graph, we can use only its vertices, i.e., detection regions.of ¢ =1,...,10:
the different faults, and replace the test Hf is adjacent to 1; 85; 336; 647; 1014; 1566; 2685; 3442; 3732; 10°.
F; in G” by the test "If a; < b; < b;”. Therefore, the frequency intervals are:
Remark 3: Contrarily to the LP approach, the interval graply, = [1,85[, I, = [85, 336[, Is = [336, 647,
approach uses the detection regions of the considered faylts- [647,1014[, Is = [1014, 1566[, I = [1566, 2685,
directly, i.e. without transforming the problem. I = [2685, 3442], Iy = [3442, 3732|, Iy = [3732,10°].

V. CASE-STUDY The constraint matrix of the SCP (4) is then:
11 1

In order to solve the problem using the interval gragh
defined by (7), we suggest the following algorithm:
Algorithm 1:
1. Let L be the list of vertices of the grapgh. Sort the vertices
F;,i=1,...,m by increasing order of their upper boungs
2. Sets =m and S = 0);
3.Fori=1tos
3.1.Let k& be the index verifying; = f,
where f; is computed by (2);
32. Forj=¢+1tos
If F; is adjacent taF; in G, then
- delete F; from L,
-sets=s—1andS = SU{[fi-1, fx[};
endif

To illustrate our approach, similar to [3], we will now
present a case-study biquadratic filter as shown in Figure 1.
There are 6 test measures for this circuit that correspond to
the common-mode signal at the input and at the output of
each operational amplifier. For simplicity, only catastrophic
(10 MOhm open and 1 Ohm short) faults in the passive
components are considered. Due to the differential design, only
16 different faults need to be considered.
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where each row,i = 1,...,8 corresponds to the detectionCore(TM)2 Duo CPU P8600 @ 2.40GHz machine with 4 GB
region R;; and each column,j = 1,...,9 corresponds to of RAM.
the frequency interval;. We have generated 60 problems with number of faults:
Since the matrix4 has the consecutive-ones property (eac¥00, 000; 600, 000; 700, 000; 800, 000; 900, 000; 1, 000, 000.
fault has a unique detection region), the optimal solutiofhe detection region bounds are generated in the interval
of the SCP (4) can be obtained using the network simplékH z, 105 Hz]. For each class of test problems with faults,
method. In our example, this leads to the following optimale generate ten problems. We have solved the different
solution: z* = (0,0,0,1,0,0,0,0)7 andr* = 1, i.e.,, a instances with the LP approach (LPA) using the network
minimal cardinality set of intervals detecting all the faultsimplex method of the LP and ILP solver CPLEX [20] and
is S = {I4}. Therefore, it is sufficient to use a single testhe suggested interval graph algorithm (IGA). The CPU time
frequency belonging to the intervi@47H z, 1014 H z[ to detect of the two approaches IGA and LPA are reported in Table I.

all the faultsFy, Fs, ..., Fs. Let [a;, b;] be the detection regions of the faults, i =
Similarly, when we use the test measufg, we detect 1,...,m. Inthe following, we give the implementation details
the faults Fy, Fyo, F11 and Fi2. The corresponding detectionfor the LP approach:
regions are. Step 1.Compute the set of frequency intervdlgs follows:
Rgy = [159, 7957[, Ry0,1 = [1,1740], - sort the bounds of the detection regions in increas-
Riiq = [1,1739] and Ri2,1 = [159, 7940[. ing order: letd be the vector of these sorted bounds;
The different frequency intervals are: - delete duplicate elements froi and letn + 1 be
Ii = [1,159], I = [159,1739[, I5 = [1739, 1740], the dimension ofi;
I, = [1740,7940] and I, = [7940, 7959]. -setZ = {I; =[dj,dj1[, 5=1,...,n};
The constraint matrix of the SCP is Step 2.Compute the constrairin x n)-matrix of the SCP-
01 1 1 1 C1P as follows:
1 1100 - _setfn_mm = d(n+ 1) and compute the vectarof
A= dimensionfmax as follows:
1 1.0 0 O .
011 1 0 -sett(k).:o, fprk;l,...,fmax,
-sett(d(j))=j4,forj=1,...,n+1,
Hence, for the test measurB;, the solution of the SCP - setlx(i) = t(a;) andra(i) = t(b;) — 1 for ¢ =
(4) is obvious, that is, a single test frequency belonging to 1,...,m;
the interval I, = [159Hz,1739H 2| detects all the faults Step 3.Make the Veinott-Wagner transformations: compute
Fy, Fyg, F11 and Fis. the constraint matrixt” of the LP problem (8) as
Finally, with test measureTl;, we detect the faults follows:
P53, Fy, Fy5 and Fig. The corresponding detection regions fori=1,...,m;forj=1,...,m+n:
are: =1, if j=1lz(i);
Rz = [1,2798[, Ry = [1, 1413[,R1571 = [1, 1412[, Vij = L, if j = ’I“l‘(Z) + 1
and Ryg1 = [1,2794]. L0, otherwise; .
e . fori=m+1,...,n+1;forj=1,....m+n:
The different frequency intervals are: 1, ifj=i—m
I = [1,1412[, I§ = [1412,1413[, I} = [1413,2794] Viy={ 1, ifj=i-—m+1;
andI) = [2794, 2798[. 0, otherwise;
The constraint matrix of the SCP is Step 4.Compute the constraint matri&’, the (n+1)-vector
11 1 1 of right-hand-sides’ and the costm + n)-vector
110 0 ¢ of the min-cost network flow problem (94’ =
A=110 00| VT b =(-1,0,...,0,1)T, ¢ = _Olm ;
1110 Step 5.Solve the min-cost network flow proglem with the
Thus, for the test measufB;, the solution is obvious again, network simplex algorithm.

that is, the frequency interval which detects all the faults Note that the efficient implementation presented above
Fi3, Fi4, F15 and Fyg is If = [LHz,1412H2[, and a single computes the constraint matrices of the SCP-C1P and the
test frequency belonging to this interval is required. min-cost network flow problem of the LP approach in small
CPU times (less than 1 second on average for all the test
problems). That is why we have not reported the CPU times
In order to compare the efficiency of the two approache$ computing the constraint matrices of the SCP-C1P and the
presented in Section IV (LP approach and the interval graptin-cost network flow problem in Table |I.
one), we have implemented them in C++ programming lan- The optimal values found by the two approaches IGA and
guage and carried out large-scale numerical experiments IdPA for the different test problems are the same; the average
a set of randomly generated test instances using an Intel@timal values for each class of test problems are shown in

VI. NUMERICAL EXPERIMENTS



m OptVal IGA LPA | Ratio . .
500,000 | 56080 | 410 | 318 | 1.29 a min-cost netwqu flow problem .to solve it by the nfatwork
600,000 | 611,00 | 530 | 352 | 1,51 simplex method is the most efficient. However, the interval
700,000 | 672,50 | 6,70 | 3,85 | 1,74 graph approach can also be used by test engineers because
800,000 | 704,90 | 9,40 | 4,30 | 2,19 it solves the original problem directly; its implementation is
900,000 | 762,90 | 12,00 | 4,53 | 2,65 2 4 .
1000.000] 80910 | 1630 | 476 | 342 very easy and it is extremely fast with CPU times of a few
Mean 8,97 | 4,02 | 2,13 tenths of seconds even for large-scale problems. Future work
will focus on the case when the faults have more than one
Table | detection region. We will study the complexity of the related

problem and develop a branch-and-cut algorithm which takes
into account the specific structure of the problem.
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