
HAL Id: hal-00842789
https://hal.univ-brest.fr/hal-00842789v1

Submitted on 9 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A kernel transformation language for metamodel
evolution and reversible model co-evolution

Mickaël Kerboeuf, Paola Vallejo, Jean-Philippe Babau

To cite this version:
Mickaël Kerboeuf, Paola Vallejo, Jean-Philippe Babau. A kernel transformation language for meta-
model evolution and reversible model co-evolution. 2013. �hal-00842789�

https://hal.univ-brest.fr/hal-00842789v1
https://hal.archives-ouvertes.fr

A kernel transformation language for metamodel
evolution and reversible model co-evolution

Mickaël Kerboeuf, Paola Vallejo, and Jean-Philippe Babau

University of Brest (France), Lab-STICC, MOCS Team
{kerboeuf,vallejoco,babau}@univ-brest.fr

Abstract. This report defines mDif, a kernel transformation language
for metamodel evolution and reversible model co-evolution. To begin
with, a kernel subset of Ecore is highlighted and formally defined thanks
to a suitable denotational semantics. Then mDif is formally defined upon
this subset. In a first step, the focus is put on metamodel evolution
provided by a set of refactoring operators. In a second step, the focus
is put on model co-evolution which is intended to be reversible thanks
to a dedicated pair of transformations respectively called migration and
recontextualization. Each mDif operator is also provided with a dedicated
predicate which explains the sufficient conditions for a model to remain
valid after these transformations.

1 mEcore

Figure 1 depicts the metamodel of Ecore [1]. We focus on concepts whose refac-
toring have side-effects on instances. Thus, we do not take into account sub-
packages1 and we consider the absolute name2 of an Ecore classifier as its actual
identifying name. Operations and annotations are discarded as well. We also put
several features out of the scope of the transformations we target. For instance,
we do not distinguish between primitive data types and enumerations. And fi-
nally, many properties of Ecore concepts like uniqueness or order for attributes
are discarded. In the end, we obtain the simplified version of Ecore we called
mEcore, and whose metamodel is depicted by figure 2.

1.1 Textual syntax of mEcore

In order to make easier the formal definition of mDif, we introduce in figure 3 a
feather light textual syntax for metamodels conforming to the mEcore metameta-
model of figure 2.

A metamodel is an unordered set of data types and classes. A data type is only
defined by its name. A class is defined by its name, and three optional features.
The first one (a) specifies an abstract class. The second one is a set of inherited
classes names. The last one is an unordered set of attributes and references. An

1 Only a unique root package is needed
2 i.e. the complete name including the ordered sequence of nested packages’ names

Fig. 1. Ecore metamodel

Fig. 2. mEcore metamodel

n, nclass, ntype, nattrib, nref ∈ N (name)
m ∈M = {(x, y) ∈ N× (N∗ ∪ {∞})|x < y} (multiplicity)

mm ::= (c | d)∗ (metamodel)

c ::= 〈 (a)? n (/ nclass)∗ (a | r)∗ 〉c (class)
d ::= 〈 n 〉d (data type)
a ::= [n , m , ntype]a (attribute)

r ::= [(c)? n , m , nclass (← nref)
?]r (reference)

Fig. 3. Textual syntax of mEcore

〈 Int 〉d 〈 Bool 〉d
〈 a A [i, (0, 1), Int]a [b, (0,∞),Bool]a [y, (0, 1),Y ← a]r 〉c
〈 X / A [j, (1, 1), Int]a 〉c
〈 Y / A [c a, (1, 2),A ← y]r [x, (0,∞),X]r 〉c

Fig. 4. Textual and graphical form of a mEcore metamodel

attribute is defined by its name, its multiplicity and the name of its data type.
A reference is defined by its name, its multiplicity and the name of the class it
refers to. Two last optional features specify a potential containment (c) and a
potential opposite reference (←).

As an illustration, figure 4 shows a metamodel conforming to mEcore together
with its equivalent textual specification.

1.2 Denotational semantics of mEcore

The formal semantics of mEcore is defined by a mapping between the language
constructs and a semantic domain including sets and partial functions.

Semantic domain Figure 5 defines the name spaces of the semantic domain.
They corresponds to alphabets, i.e. finite non empty sets of symbols.

N : named elements
C ⊆ N : classes CA ⊆ C : abstract classes
D ⊆ N \ C : data types
R ⊆ C ×N : references RC ⊆ R : composite references
A ⊆ (C × N) \ R : attributes

Fig. 5. mEcore semantics: name spaces

Figure 6 defines multiplicity, which is by definition a set of pairs composed
of natural numbers extended with the special mark∞3. This definition excludes
the irrelevant multiplicities (0, 0) and (∞,∞).

M , {(x, y) ∈ N× (N∗ ∪ {∞})|x < y} multiplicity

Fig. 6. mEcore semantics: multiplicity

Figure 7 defines the main denotations of the semantic domain, namely partial
functions. They allow to gather classes, data types, attributes and references
according to inheritance and structural links.

By definition, a metamodel m ∈ M is a pair of name spaces n ∈ N and
partial functions f ∈ F (see figure 8). Name spaces are given by a sequence of 6
sets (including 2 subsets). Partial functions are given by a sequence of 4 partial
functions whose definition domains are the name spaces of the metamodel. This
definition equates the sets of partial functions to their corresponding power sets.

3 by definition, ∀n ∈ N, n <∞

δI : C ⇀ C inheritance link
δA : A ⇀M×D attribute link
δR : R ⇀M×C reference link
δopp : R ⇀ R opposite link

Fig. 7. mEcore semantics: partial functions

M , N× F metamodels

N , P(C)× P(CA)× P(D)× P(R)× P(RC)× P(A) name spaces

F , P(δI)× P(δA)× P(δR)× P(δopp) partial functions

Fig. 8. mEcore semantics: metamodels

Valuation function

Notation In order to define efficiently the valuation function of mEcore, we first
introduce the following notation on a given parsed metamodel mm:

pattern @ mm

This notation stands for a proposition stating that a class or a data type matching
with the given pattern can be found in mm. This pattern corresponds to what
can be derived from c or d according to the syntax specified by figure 3.

More formally, if we note L(c) and L(d) the sets of words respectively yielded
from c and d in figure 3, then by definition: pattern ∈ L(c) ∪ L(d).

For instance, the following proposition states that an abstract class named
n1 appears among the parsed elements of mm, and this class has an attribute
named n2 of type n3 and multiplicity (0, 1):

〈 a n1 [n2, (0, 1), n3]a 〉c @ mm

As an illustration, this proposition is true with the following example of meta-
model:

mm ,
(
〈 n3 〉d 〈 a n1 / n4 [n2, (0, 1), n3]a [nr, (0,∞), n4]r 〉c 〈 a n4 〉c

)
Valuation We note L(mm) the set of words yielded from mm in figure 3. Figure 9
shows the definition of the valuation function. Its maps mEcore to the semantic
domain M defined by figure 8.

1.3 Example

Let x be the metamodel of figure 4. Its denotation is given by JxKmm = m = (n, f).
Figure 10 shows m in details, and figure 11 shows a graph-based representation

of it. In this representation, the different name spaces n corresponding to classes,
data types, attributes and references are depicted by four kinds of dedicated
vertices.

J·Kmm : L(mm) →M
x 7→ JxKmm =

(
(C, CA,D,R,RC ,A), (δI , δA, δR, δopp)

)
where:

C = {n ∈ N | 〈 n 〉c @ x}
CA = {n ∈ N | 〈 a n 〉c @ x}
D = {n ∈ N | 〈 n 〉d @ x}
R = {(n1, n2) ∈ N 2 | ∃m ∈M, ∃n3 ∈ N , 〈 n1 [n2,m, n3]r 〉c @ x}
RC = {(n1, n2) ∈ N 2 | ∃m ∈M, ∃n3 ∈ N , 〈 n1 [c n2,m, n3]r 〉c @ x}
A = {(n1, n2) ∈ N 2 | ∃m ∈M, ∃n3 ∈ N , 〈 n1 [n2,m, n3]a 〉c @ x}

δI = {(n1, n2) ∈ C2 | 〈 n1 / n2 〉c @ x}
δA = {((n1, n2), (m,n3)) ∈ A× (M×D) | 〈 n1 [n2,m, n3]a 〉c @ x}
δR = {((n1, n2), (m,n3)) ∈ R× (M×C) | 〈 n1 [n2,m, n3]r 〉c @ x}
δopp = {((n1, n2), (n3, no)) ∈ R2 | ∃m ∈M, 〈 n1 [n2,m, n3 ← no]r 〉c @ x}

Fig. 9. mEcore semantics: valuation

JxKmm = m = (n, f) =
(

(C, CA,D,R,RC ,A) , (δI , δA, δR, δopp)
)

where:

C = {A,X, Y } ; CA = {A}
D = {Bool, Int}
R = {(Y, a), (Y, x), (A, y)} ; RC = {(Y, a)}
A = {(A, i), (A, b), (X, j)}

δI = {X 7→ A, Y 7→ A}
δA = {(A, i) 7→ ((0, 1), Int), (A, b) 7→ ((0,∞),Bool), (X, j) 7→ ((1, 1), Int)}
δR = {(Y, a) 7→ ((1, 2), A), (Y, x) 7→ ((0,∞), X), (A, y) 7→ ((0, 1), Y)}
δopp = {(A, y) 7→ (Y, a), (Y, a) 7→ (A, y)}

Fig. 10. Semantics of a mEcore metamodel

A

Bool

Int

X Y

i

b

j

x

y

a

dI dI

dA

dA

(0,*)

(0,1)

dA

(1,1)

dR

dR

dR(0,*)

(1,2)

(0,1)

dopp

dopp

Fig. 11. Graph view of the semantics of a mEcore metamodel

Edges represent (and are labeled by) the partial functions of f. For instance,
(n1 7→ n2) ∈ δI is represented by an edge from a class vertex n1 to a class vertex
n2. This edge is labeled by δI .

Partial functions δA and δR are represented by pairs of edges. For instance,
((n1, n2) 7→ (m,n3)) ∈ δA is represented by an edge from a class vertex n1 to an
attribute vertex n2, followed by an edge from the same attribute vertex n2 to a
data type vertex n3. The first edge is labeled by δA. The second one is labeled
by m.

Partial functions δopp are represented by edges between reference vertices. For
instance, ((n1, n2) 7→ (n3, n4)) ∈ δopp is represented by an edge from a vertex n2
to a vertex n4. This edge is labeled by δopp. By construction, vertices n2 and n4
are themselves respectively linked to class vertices n1 and n3 by means of edges
labeled by δR.

2 Metamodel evolution with mDif

mDif is a refactoring language whose scope encompass metamodels conforming
to mEcore. It is intended to perform reversible model migration together with
metamodel refactoring. In this section, we focus on metamodel refactoring.

2.1 Overview of mDif

mDif is basically a metamodel refactoring language gathering CRUD operations.
A mDif specification is an ordered sequence of refactoring operators applied to
an input mEcore metamodel. Therefore, each mDif operator has an implicit pa-
rameter corresponding to a mEcore metamodel. We name context and note mm
this metamodel associated to each mDif operator.

spec ::= { mm } (op)+ (specification)
op ::= cr | u | d (operator)

Fig. 12. Textual syntax of mDif

Figure 12 is a partial view of the syntax of mDif. It extends the textual syntax
of mEcore defined by figure 2.

A specification is a context (defined by a metamodel mm) followed by a non-
empty ordered sequence of operators. Operators are divided into three CRUD
categories, namely create (cr), update (u) and delete (d). The next sections
present these categories in details. A following section presents the formal se-
mantics of mDif in regard to the semantic domains we introduced for mEcore.

2.2 mDif creation

Creation is related to concepts that are depicted by black classes in figure 2. The
concept of EPackage (depicted in grey) is supposed to be instantiated once (the
root package) and it remains out of the scope of refactoring.

Figure 13 outlines the creation operators. It completes the syntax of mDif
introduced in figure 12.

cr ::= createClass(n) (creation)
| createDataType(n)
| createAttribute(n, nclass, ntype)
| createReference(n, nclass, ntargetedClass)

Fig. 13. mDif creation

Each of these operators is parameterized by a name n which is supposed to
be new among the named element of the corresponding context. For a class or a
data type, this context corresponds to the whole metamodel. For an attribute or
a reference, this context corresponds to the containing class plus all its ancestors
in regard to inheritance. More precisely:

– createClass(n) creates in mm a new concrete class without super classes and
without features; precondition: n does not already appear in the context
mm.

– createDataType(n) creates in mm a new data type; precondition: n does not
already appear in the context mm.

– createAttribute(n, nclass, ntype) creates an attribute with default multiplicity
0..1; this attribute is attached to the class of mm identified by nclass and it is
typed by the data type named ntype in mm; precondition: n does not already
appear among the features associated to nclass nor to any of its ancestors.

– createReference(n, nclass, ntargetedClass) creates a new reference with default multi-
plicity 0..1; this reference is attached to the class of mm identified by nclass and
it targets the class named ntargetedClass in mm; precondition: n does not already
appear among the features associated to nclass nor to any of its ancestors.

2.3 mDif deletion

As for creation, deletion is related to concepts that are depicted by black classes
in figure 2.

Figure 14 outlines the deletion operators. It completes the syntax of mDif
introduced in figure 12.

Each of these operators is parameterized by a name which is supposed to
be related to an existing element of the corresponding context (i.e. the whole
metamodel or a class).

A common precondition states that the element to be deleted must not be
targeted by any other element. More precisely:

d ::= deleteClass(nclass) (deletion)
| deleteDataType(ntype)
| deleteAttribute(nattrib, nclass)
| deleteReference(nref, nclass)

Fig. 14. mDif deletion

– deleteClass(nclass) deletes the class (and its features) identified by nclass in mm;
precondition: nclass is not a super class and it is not targeted by any reference.

– deleteDataType(ntype) deletes the data type identified by ntype in mm; precon-
dition: ntype is not targeted by any attribute.

– deleteAttribute(nattrib, nclass) deletes the attribute named nattrib in the class of
mm named nclass; no precondition

– deleteReference(nref, nclass) deletes the reference named nref in the class of mm
named nclass; precondition: nref is not targeted by an opposite reference.

2.4 mDif update

There are three categories of update operators: value updates (i.e. updates of val-
ues conforming to meta-attributes), containment updates (i.e. updates of links
conforming to meta-compositions), and link updates (i.e. updates of links con-
forming to non-composite meta-references).

Figure 15 outlines the update operators. It completes the syntax of mDif in-
troduced in figure 12 and it introduces a syntactic root node for the following
grammar complements.

u ::= vu | cu | lu (update)

Fig. 15. mDif update

Value update Value update is related to the meta-attributes name, lowerBound,
upperBound, abstract and container in figure 2. A set operator is associated to
each of them.

Figure 16 outlines the value update operators. It completes the grammar rule
introduced in figure 15.

Each of these operators is parameterized by a name and the new value of the
corresponding meta-attribute. Most of them are subjected to specific precondi-
tions over the new values. More precisely:

– setName((n | nclass.n) , nnew) sets nnew as the new name of n (class or data
type) or of the feature n (attribute or reference) of class nclass; precondition:
the context mm (or the class nclass) does not already embed a classifier (or a
feature) with the same name nnew.

vu ::= setName((n | nclass.n) , nnew) (value update)
| setLowerBound(nclass.n, i)
| setUpperBound(nclass.n, i)
| setAbstract(nclass, b)
| setContainer(nclass.n, b)

Fig. 16. mDif value update

– setLowerBound(nclass.n, i) sets a new lower bound i for the feature n (attribute
or reference) of class nclass; precondition: i is lower than or equal to the asso-
ciated upper bound.

– setUpperBound(nclass.n, i) sets a new upper bound i for the feature n (attribute
or reference) of class nclass; precondition: i is upper than or equal to the
associated lower bound.

– setAbstract(nclass, b) makes class nclass abstract or concrete according to the
boolean value b; no precondition.

– setContainer(nclass.n, b) makes reference n of class nclass a composition or a
simple reference according to the boolean value b; no precondition.

Containment update Containment update is related to targets of composi-
tions in the metametamodel. In the metamodel of mEcore (fig. 2), it corresponds
to a unique element, namely ETypedElement. Its container is mandatory. There-
fore, there is only one relevant refactoring operator associated to this element.
It allows to move it from its current container to another one.

cu ::= moveFeatureTo(nclass.n, noClass) (containment update)

Fig. 17. mDif containment update

Figure 17 introduces the syntax of this unique containment update operator.
It completes the grammar rule introduced in figure 15.

This operator is parameterized by the new class where an existing feature
has to be moved. A precondition prevents name clashes:

– moveFeatureTo(nclass.n, noClass) moves the feature n (attribute or reference) of
class nclass to another class of mm named noClass; precondition: n does not
already appear among the features associated to noClass and all its ancestors.

Adding or removing a feature (attribute or reference) actually consist in cre-
ating or deleting this feature. These operations are already provided by creation
and deletion operators (see figures 13 and 14).

Link update Link update is related to targets of non-composite references in
the metametamodel. In the metamodel of mEcore (fig. 2), it corresponds to eAt-

tributeType, eReferenceType, eSuperType and eOpposite. The relevant refactoring
operators associated to these targets depends on their multiplicity.

Links conforming to references whose target’s multiplicity is 1 are related
to elements that can only be moved. Links conforming to references whose tar-
get’s multiplicity is 0..∗ are related to collections from which elements can be
added, moved or removed. Finally, links conforming to references whose target’s
multiplicity is 0..1 are related to optional elements that can be set, replaced or
removed.

Figure 18 outlines these three categories of link update operators. It completes
the grammar rule introduced in figure 15 and it introduces a syntactic root node
for the three sub-categories of link update.

lu ::= mlu | clu | olu (link update)

mlu ::= moveReferenceTargetTo(nclass.n, noClass) (mandatory link update)
| moveAttributeTypeTo(nclass.n, ntype)

clu ::= addSuperType(nclass, noClass) (collection link update)
| removeSuperType(nclass, nsClass)
| moveSuperTypeTo(nclass, nsClass, noClass)

olu ::= moveOppositeTo(nclass.n, noClass.nref) (optional link update)
| removeOpposite(nclass.n)

Fig. 18. mDif link update

In the case of optional link update, the same operator moveOppositeTo allows
both to replace an existing opposite reference and add a new opposite reference.

Multiplicity 1 In the metamodel of mEcore (fig. 2), non-composite references
whose target’s multiplicity is 1 are eAttributeType and eReferenceClass:

– moveReferenceTargetTo(nclass.n, noClass) moves the reference target of n to noClass;
if an opposite reference exists, it is updated as well; precondition: if an
opposite reference exists, it has not the same name a any direct or inherited
feature of noClass.

– moveAttributeTypeTo(nclass.n, ntype) changes the type of n to ntype; no precon-
dition.

Multiplicity 0..* In the metamodel of mEcore (fig. 2), the only non-composite
reference whose target’s multiplicity is 0..∗ is eSuperType:

– addSuperType(nclass, noClass) adds noClass to the set of classes inherited by nclass;
precondition: nclass is not an ancestor of noClass.

– removeSuperType(nclass, nsClass) removes nsClass from the set of classes inherited
by nclass; no precondition.

– moveSuperTypeTo(nclass, nsClass, noClass) replaces nsClass by noClass among the set of
classes inherited by nclass; precondition: nclass is not an ancestor of noClass and
nsClass is actually a direct super class of nclass.

Multiplicity 0..1 In the metamodel of mEcore (fig. 2), the only non-composite
reference whose target’s multiplicity is 0..∗ is eOpposite:

– moveOppositeTo(nclass.n, noClass.nref) moves the opposite target of n to the ref-
erence nref of class noClass; precondition: nref does not already have an opposite
reference.

– removeOpposite(nclass.n) removes the opposite target of n; no precondition.

mDif operators x denotation JxKop

create

createClass(n) cc : M×N →M
createDataType(n) cdt : M×N →M
createAttribute(n, nclass, ntype) ca : M×N 3 →M
createReference(n, nclass, ntargetedClass) cr : M×N 3 →M

delete

deleteClass(nclass) dc : M×N →M
deleteDataType(ntype) ddt : M×N →M
deleteAttribute(nattrib, nclass) da : M×N 2 →M
deleteReference(nref, nclass) dr : M×N 2 →M

update

value

setName(n, nnew) snc : M×N 2 →M
setName(nclass.n, nnew) snf : M×N 3 →M
setLowerBound(nclass.n, i) slb : M×N 2 × N→M
setUpperBound(nclass.n, i) sub : M×N 2 × N→M
setAbstract(nclass, b) sa : M×N × B→M
setContainer(nclass.n, b) sc : M×N 2 × B→M

containment moveFeatureTo(nclass.n, noClass) mft : M×N 3 →M

link

(1,1)
moveReferenceTargetTo(nclass.n, noClass) mrtt : M×N 3 →M
moveAttributeTypeTo(nclass.n, ntype) matt : M×N 3 →M

(0,∞)
addSuperType(nclass, noClass) asc : M×N 2 →M
removeSuperType(nclass, nsClass) rsc : M×N 2 →M
moveSuperTypeTo(nclass, nsClass, noClass) msct : M×N 3 →M

(0,1)
moveOppositeTo(nclass.n, noClass.nref) mot : M×N 4 →M
removeOpposite(nclass.n) ro : M×N 2 →M

Fig. 19. Valuation of mDif operators

2.5 mDif semantics

The denotational semantics of mDif is based upon the semantics domain of mEcore
noted M and introduced in figure 8.

We note L(op) the sets of words yielded from op in figure 12. Basically, L(op)
contains 22 refactoring operators.

We introduce a valuation function noted J·Kop. It applies to L(op) and it maps
each operator to a dedicated function whose domain is a tuple including M, and
whose codomain is M.

Informally said, a mDif operator is described by a function from metamodels
(plus specific parameters) to metamodels. Figure 19 gathers the mDif operators
together with their corresponding functional denotations.

2.6 Notations

The functions of figure 19 are detailed in the following paragraphs. In each case,
the first parameter is noted m ∈M. It corresponds to the input metamodel. By
definition, m corresponds to the following pair:

m ,
(

(C, CA,D,R,RC ,A), (δI , δA, δR, δopp)
)

Metamodel component We note m.x the x component of m (e.g. m.δI).

Union of metamodel component We note m.(x∪y) the union of components
x and y of m (e.g. m.(C ∪ D)):

m.(x ∪ y) , m.x ∪m.y

Substitution of metamodel component We note m.[x = y] the metamodel
m where y has been substituted to the x component of m (e.g. m.[δI = {...}]).
If y is an expression including components of m, then the explicit mention of m
is not needed (e.g. m.[δI = C ∪ {...}] instead of m.[δI = m.C ∪ {...}]).

General substitution Let S be a given set. Knowing (a, b) ∈ S2, we note
m[a/b] the metamodel m where a has been substituted to each occurrence of b (in
each component of m). Examples:

– ∀(a, b) ∈ N 2,m[a/b] , m where each occurrence of b has been replaced by a
(regardless the kind of elements that are named b).

– ∀(a, b, n1, n2) ∈ N 4,m[(a, n1)/(b, n2)] , m where the pair (a, n1) (i.e at-
tribute or reference n1 of class a) has been substituted to each occurrence of
the pair (b, n2) (in each component of m).

– ∀(a, b, a′, b′) ∈ N 4,m[(a′ 7→ b′)/(a 7→ b)] , m where the mapping between
a′ and b′ has been substituted to each occurrence of the mapping between a
and b (here in each functional component of m).

Classifier substitution Knowing (a, b) ∈ N 2, we note m[a/b]c the metamodel
m where the classifier name a (i.e class name or data type name) has been
substituted to each occurrence of the classifier name b (in each component of m).
This notation is a restriction of the previous one. It allows to specifically target
classifiers. Example:

– ∀(a, b) ∈ N 2,m[a/b]c , m where each occurrence of b has been replaced by
a. Features named b are out of the scope of this substitution.

Direct ancestors We note ∆I(c) the set of direct ancestors of class c in regard
to inheritance:

∆I : C → P(C)
c 7→ {c′ ∈ C | δI(c) = c′}

We note ∆′I(c) the set of direct ancestors of class c, extended by class c itself:
∀c ∈ C, ∆′I(c) , (∆I(c) ∪ {c}).

All ancestors We note αI(c) the set of all ancestors of class c in regard to
inheritance:

αI : C → P(C)
c 7→

⋃
c′∈∆I(c)

(
{c′} ∪ αI(c′)

)
We note α′I(c) the set of all ancestor of class c, extended by class c itself:

∀c ∈ C, α′I(c) , (αI(c) ∪ {c})

2.7 Operators

Each operator of figure 19 is formally defined by one of the following functions.

Create class Creation of a new concrete class without super classes and without
features: a new class name is added.

cc : M×N →M

(m, n) 7→
{
n ∈ m.(C ∪ D) : m
n /∈ m.(C ∪ D) : m.[C = C ∪ {n}]

Create data type Creation of a new data type: a new data type name is added.

cdt : M×N →M

(m, n) 7→
{
n ∈ m.(C ∪ D) : m
n /∈ m.(C ∪ D) : m.[D = D ∪ {n}]

Create attribute Creation of a new attribute with default multiplicity 0..1: a
new attribute name is added and a new structural link is added as well.

ca : M×N 3 →M
(m, na, nc, nd) 7→

nc /∈ m.C ∨ nd /∈ m.D ∨ ∃n ∈ α′I(nc), (n, na) ∈ m.(A ∪R) : m
nc ∈ m.C ∧ nd ∈ m.D ∧ ∀n ∈ α′I(nc), (n, na) /∈ m.(A ∪R) :

m.[A = A ∪ {(nc, na)}]
.[δA = δA ∪ {(nc, na) 7→ ((0, 1), nd)}]

Create reference Creation of a new reference with default multiplicity 0..1: a
new reference name is added and a new structural link is added as well.

cr : M×N 3 →M
(m, nr, nc, n

′
c) 7→

nc /∈ m.C ∨ n′c /∈ m.C ∨ ∃n ∈ α′I(nc), (n, nr) ∈ m.(A ∪R) : m
nc ∈ m.C ∧ n′c ∈ m.C ∧ ∀n ∈ α′I(nc), (n, nr) /∈ m.(A ∪R) :

m.[R = R∪ {(nc, nr)}]
.[δR = δR ∪ {(nc, nr) 7→ ((0, 1), n′c)}]

Delete class Deletion of an existing class which is not a super class and which
is not targeted by any reference: the class, its features, and the corresponding
structural links are removed.

dc : M×N →M

(m, n) 7→

∃n′ ∈ C, δI(n′) = n ∨ ∃(r,m) ∈ R×M, δR(r) = (m,n) : m
∀n′ ∈ C, δI(n′) 6= n ∧ ∀(r,m) ∈ R×M, δR(r) 6= (m,n) :

m.[C = C\{n}]
.[CA = CA\{n}]
.[R = R\{(n, nr) | nr ∈ N}]
.[RC = RC\{(n, nr) | nr ∈ N}]
.[A = A\{(n, na) | na ∈ N}]
.[δI = δI\{n 7→ n′ | n′ ∈ C}]
.[δA = δA\{(n, na) 7→ a | (na, a) ∈ N×(M×D)}]
.[δR = δR\{(n, nr) 7→ r | (nr, r) ∈ N×(M×C)}]
.[δopp = δopp\{(n, nr) 7→ x | (nr, x) ∈ N×R}]
.[δopp = δopp\{x 7→ (n, nr) | (nr, x) ∈ N×R}]

Delete data type Deletion of an existing data type which is not targeted by
any attribute: the data type is simply removed.

ddt : M×N →M

(m, n) 7→
{
∃(a,m) ∈ A×M, δA(a) = (m,n) : m
∀(a,m) ∈ A×M, δA(a) 6= (m,n) : m.[D = D\{n}]

Delete attribute Deletion of an existing attribute: the attribute and its cor-
responding structural link are removed.

da : M×N 2 →M

(m, na, nc) 7→
{
m.[A = A\{(nc, na)}]
.[δA = δA\{(nc, na) 7→ a | a ∈ (M×D)}]

Delete reference Deletion of an existing reference which is not targeted by
an opposite reference: the reference and its corresponding structural link are
removed.

dr : M×N 2 →M

(m, nr, nc) 7→

∃r′ ∈ R, δopp(r′) = (nc, nr) : m
∀r′ ∈ R, δopp(r′) 6= (nc, nr) :

m.[R = R\{(nc, nr)}]
.[RC = RC\{(nc, nr)}]
.[δR = δR\{(nc, nr) 7→ r | r ∈ (M×C)}]

Set classifier name Setting of a new classifier name: provided the new name
does not imply name clashes in the metamodel, the new name is substituted to
the old one wherever it appears.

snc : M×N 2 →M

(m, nc, n
′
c) 7→

{
nc /∈ m.(C ∪ D) ∨ n′c ∈ m.(C ∪ D) : m
nc ∈ m.(C ∪ D) ∧ n′c /∈ m.(C ∪ D) : m[n′c/nc]c

Set feature name Setting of a new feature name: provided the new name does
not imply name clashes along inheritance links, the new name is substituted to
the old one wherever it appears.

snf : M×N 3 →M
(m, nc, nf , n

′
f) 7→

(nc, nf) /∈ m.(R∪A) ∨ ∃n ∈ α′I(nc), (n, n′f) ∈ m.(R∪A) : m

(nc, nf) ∈ m.(R∪A) ∧ ∀n ∈ α′I(nc), (n, n′f) /∈ m.(R∪A) :

m[(nc, n
′
f)/(nc, nf)]

Set lower bound Setting of a new lower bound for a given feature name: pro-
vided the new lower bound is not greater than the corresponding upper bound,
the mapping associating the feature to its multiplicity is updated.

slb : M×N 2 × N→M
(m, nc, nf , i) 7→

(nc, nf) /∈ m.(A ∪R) : m
(nc, nf) ∈ m.(A ∪R) :

let δF = m.(δA ∪ δR) and ((x, y), n) = δF (nc, nf) in:{
y < i : m
y ≥ i : m[(nc, nf) 7→((i, y), n) / (nc, nf) 7→((x, y), n)]

Set upper bound Setting of a new upper bound for a given feature name:
provided the new upper bound is not lower than the corresponding lower bound,
the mapping associating the feature to its multiplicity is updated.

sub : M×N 2 × N∗ ∪ {∞} →M
(m, nc, nf , i) 7→

(nc, nf) /∈ m.(A ∪R) : m
(nc, nf) ∈ m.(A ∪R) :

let δF = m.(δA ∪ δR) and ((x, y), n) = δF (nc, nf) in:{
x > i : m
x ≤ i : m[(nc, nf) 7→((x, i), n) / (nc, nf) 7→((x, y), n)]

Set abstract Setting a class abstract or concrete: according to a boolean pa-
rameter, the class is added to, or removed from the set of abstract classes.

sa : M×N × B→M

(m, nc, b) 7→

nc /∈ m.C : m
nc ∈ C ∧ b : m.[CA = CA ∪ {nc}]
nc ∈ C ∧ ¬b : m.[CA = CA\{nc}]

Set container Setting a reference composite or not: provided the reference is
not targeted by an opposite reference, according to a boolean parameter, the
reference is added to, or removed from the set of composite references.

sc : M×N 2 × B→M

(m, nc, nr, b) 7→

(nc, nr) /∈ m.R : m
(nc, nr) ∈ m.R∧ b ∧ ∃r ∈ m.RC , δopp(r) = (nc, nr) : m
(nc, nr) ∈ m.R∧ b ∧ ∀r ∈ m.RC , δopp(r) 6= (nc, nr) :

m.[RC = RC ∪ {(nc, nr)}]
(nc, nr) ∈ m.R∧ ¬b : m.[RC = RC\{(nc, nr)}]

Move feature Moving a feature from a class to another one (the target class):
provided the feature does not imply name clashes along inheritance links of the
target class, the new structural link (between the target class and the feature)
is substituted to the old one wherever it appears.

mft : M×N 3 →M
(m, nc, nf , n

′
c) 7→ (nc, nf) /∈ m.(R∪A) ∨ n′c /∈ m.C ∨ ∃n ∈ α′I(n′c), (n, nf) ∈ m.(A ∪R) : m

(nc, nf) ∈ m.(R∪A) ∧ n′c ∈ m.C ∧ ∀n ∈ α′I(n′c), (n, nf) /∈ m.(A ∪R) :
m[(n′c, nf)/(nc, nf)]

Move reference target Moving the target of a reference from a class to another
one (the new target class): the new structural link (between the reference and

the new target class) is substituted to the old one wherever it appears; if an
opposite reference exists, then this opposite reference is moved to the new target
class, provided its name does not imply name clashes along inheritance links of
the new target class.

mrtt : M×N 3 →M
(m, nc, nr, n

′
c) 7→

(nc, nr) /∈ m.R∨ n′c /∈ m.C : m
(nc, nr) ∈ m.R∧ n′c ∈ m.C :

let (m,n) = m.δR(nc, nr) in:

∃nro ∈ N , δopp(n, nro) = (nc, nr) :
∃n′ ∈ α′I(n′c), (n′, nro) ∈ m.(R∪A) : m
∀n′ ∈ α′I(n′c), (n′, nro) /∈ m.(R∪A) :

m[(n′c, nro) / (n, nro)]
[(nc, nr) 7→(m,n′c) / (nc, nr) 7→(m,n)]

∀nro ∈ N , ((n, nro) 7→ (nc, nr)) /∈ δopp :
m[(nc, nr) 7→(m,n′c) / (nc, nr) 7→(m,n)]

Move attribute type Moving the type of an attribute from a data type to
another one (the new data type): the new structural link (between the attribute
and the new data type) is substituted to the old one wherever it appears.

matt : M×N 3 →M
(m, nc, na, nd) 7→

(nc, na) /∈ m.A ∨ nd /∈ m.D : m
(nc, na) ∈ m.A ∧ nd ∈ m.D :

let (m,n) = m.δA(nc, na) in:
m[(nc, na) 7→(m,nd) / (nc, na) 7→(m,n)]

Add super class Adding a new super class to a class: provided the new super
class is not also a sub-class, the new inheritance link is added to the set of super
classes.

asc : M×N 2 →M

(m, nc, n
′
c) 7→

nc /∈ m.C ∨ n′c /∈ m.C ∨ nc ∈ α′I(n′c) : m
nc ∈ m.C ∧ n′c ∈ m.C ∧ nc /∈ α′I(n′c) :

m.[δI = δI ∪ {nc 7→ n′c}]

Remove super class Removing an existing super class from a class: the cor-
responding inheritance link is removed from the set of super classes.

rsc : M×N 2 →M
(m, nc, n

′
c) 7→ m.[δI = δI\{nc 7→ n′c}]

Move super class Replacement of an existing link between a class and a super
class by a link between the same class and a new super class: provided the new
super class is not also a sub-class, the new inheritance link is substituted to the
old one wherever it appears.

msct : M×N 3 →M

(m, nc, n
′
c, n
′′
c) 7→

n′′c /∈ m.C ∨ nc ∈ α′I(n′′c) : m
n′′c ∈ m.C ∧ nc /∈ α′I(n′′c) :

m[nc 7→n′′c / nc 7→n′c]

Move opposite Setting of a new opposite reference to a reference, whenever it
already has an opposite reference or not: provided the new opposite reference is
not itself associated to another opposite reference, the new opposite references
are added and if necessary, and the old opposite references are removed.

mot : M×N 4 →M
(m, nc, nr, n

′
c, n
′
r) 7→

∃r ∈ m.R, δopp(r) = (n′c, n
′
r) : m

(nc, nr) /∈ m.R∨ (n′c, n
′
r) /∈ m.R : m

(nc, nr) ∈ m.R∧ (n′c, n
′
r) ∈ m.R

∧∀r ∈ m.R, δopp(r) 6= (n′c, n
′
r) :

∃r ∈ m.R, δopp(r) = (nc, nr) :
m.[δopp = δopp\{r 7→ (nc, nr); (nc, nr) 7→ r}]
.[δopp = δopp ∪ {(n′c, n′r) 7→ (nc, nr); (nc, nr) 7→ (n′c, n

′
r)}]

∀r ∈ m.R, δopp(r) 6= (nc, nr) :
m.[δopp = δopp ∪ {(n′c, n′r) 7→ (nc, nr); (nc, nr) 7→ (n′c, n

′
r)}]

Remove opposite Removing an opposite reference: the old opposite references
are removed.

ro : M×N 2 →M

(m, nc, nr) 7→

∀r ∈ m.R, δopp(r) 6= (nc, nr) : m
∃r ∈ m.R, δopp(r) = (nc, nr) :

m.[δopp = δopp\{(nc, nr) 7→ r; r 7→ (nc, nr)}]

2.8 Specifications

We note L(spec) the sets of words yielded from spec in figure 12. Basically,
L(spec) contains a specification made of one metamodel mm plus an ordered
non-empty set of operators applied to mm.

We note JopKparam the set of specific parameters of the operator op, in ac-
cordance to figure 19. For instance, we have:

JcreateReference(n, nclass, ntargetedClass)Kparam , (n, nclass, ntargetedClass) ∈ N 3

J·Kspec : L(spec) →M

s 7→

s matches with ({ mm } op) :

JopKop
(
JmmKmm , JopKparam

)
s matches with (s′ op) where s′ = ({ mm } (op′)+) :

JopKop
(
Js′Kspec , JopKparam

)
Fig. 20. Valuation of mDif specifications

We introduce in figure 20 a valuation function noted J·Kspec. It applies to
L(spec). It maps a specification to an output metamodel. It is obtained by a re-
cursive application of the functional denotations corresponding to each operator
in accordance to figure 19.

3 mEcore models

In order to state the principles of model co-evolution with mDif, we first need
to formally define what a model conforming to a mEcore metamodel is. For that
purpose, we first introduce a syntactical extension of mEcore. It allows the specifi-
cation of instances. Then we define a denotational semantics for these instances.
This semantics extends the semantic domain of mEcore so that a metamodel and
a conforming model can be gathered within a same logical framework.

3.1 Syntax extension

n, ninst, nclass, nattrib, nref ∈ N (name)
s ∈ S (scalar)

mod ::= from mm : (i+) (model)
i ::= 〈 ninst : nclass (v | l)∗ 〉 (instance)
v ::= [nattrib : s] (value)
l ::= [nref : ninst] (link)

Fig. 21. Textual syntax of mEcore models

Figure 21 presents the textual syntax of mEcore models. It extends the syntax
of mEcore metamodels introduced in figure 3. A model is defined by a given
metamodel mm followed by a non-empty and non-ordered set of instances. An
instance is named and it is related to a metaclass whose name is supposed to
appear in the metamodel mm. It is also composed of a sequence of values and
links. A value relates an attribute to a scalar value. A link binds a reference to
another instance via its name. Several values or links can have the same name

within an instance if these values or links refer to features corresponding to
collections (i.e. whose multiplicity’s upper bound is greater than 1).

As an illustration, figure 22 shows a model conforming to a mEcore metamodel
together with its equivalent textual specification. The mEcore metamodel of this
figure is taken from figure 4.

from 〈 Int 〉d 〈 Bool 〉d
〈 a A [i, (0, 1), Int]a [b, (0,∞),Bool]a [y, (0, 1),Y ← a]r 〉c
〈 X / A [j, (1, 1), Int]a 〉c
〈 Y / A [c a, (1, 2),A ← y]r [x, (0,∞),X]r 〉c :

〈 iy1 : Y [i : 3] [b : true] [b : false] [a : iy2] [x : ix] 〉
〈 iy2 : Y [a : ix] [y : iy1] 〉
〈 ix : X [i : 4] [j : 4] [y : iy2] 〉

x

ay

iy1 : Y
i = 3

b = true
b = false

iy2 : Y ix : X
i = 4
j = 4

ay

Fig. 22. Textual and graphical form of a mEcore model

3.2 Semantics of a mEcore model

The formal semantics of mEcore models is defined by a mapping between the
models constructs we introduced in figure 21 and a semantic domain including
sets and partial functions. This domain is intended to be an extension of the
semantics of mEcore metamodels.

3.3 Semantic domain

Figure 23 defines the name spaces of the semantic domain. They are compatible
with name spaces N , C and D defined for metamodels (see figure 5).

Figure 24 defines the partial functions of the semantic domain. They allow
to gather instances, values, links and metaclasses according to instantiation and
structural links. These functions complete the set of partial functions defined

S : scalar values
I ⊆ N \ (C ∪ D) : instances

Fig. 23. mEcore models semantics: name spaces

for metamodels (see figure 7) and they are compatible with name spaces C, A
and R also defined for metamodels (see figure 5). Note the codomains of δv and
δl are power sets. Thus, a set is associated to a collection specified by a given
multiplicity. As a consequence, duplicated values or duplicated references are not
taken into account.

δinst : I ⇀ C \ CA instanciation
δv : I × A ⇀ P(S) values
δl : I ×R ⇀ P(I) links

Fig. 24. mEcore model semantics: partial functions

Figure 25 defines the notion of model. It corresponds to a triplet composed
of name spaces n ∈ Ni, partial functions f ∈ Fi and one metamodel m ∈ M
(defined in figure 8).

I , Ni × Fi ×M models

Ni , P(S)× P(I) models’ name spaces

Fi , P(δinst)× P(δv)× P(δl) models’ partial functions

Fig. 25. mEcore model semantics

Name spaces are given by a sequence of 2 sets. Partial functions are given by
a sequence of 3 partial functions whose definition domains are the name spaces of
the model. In concrete terms a model i ∈ I corresponds to the following triplet:

i ,
(

(S, I) , (δinst, δv, δl) , m
)

Thereafter, we note i.x the x component of i (e.g. i.m or i.δinst).

3.4 Valuation function

Notation We note mm(x) the metamodel part of a given model specification

x = from meta : (i+) . By definition in this case, mm(x) , meta.

We also complete the notations we introduced on a given parsed metamodel
mm. We consider now a given parsed model mod and we use the following no-
tation:

pattern @ mod

This notation stands for a proposition stating that an instance matching with
the given pattern can be found in mod. This pattern corresponds to what can
be derived from i according to the syntax specified by figure 21. More formally,
if we note L(i) the sets of words yielded from i in figure 21, then by definition:
pattern ∈ L(i).

Valuation We note L(mod) the set of words yielded from mod in figure 21.
Figure 26 shows the definition of the valuation function. Its maps mEcore models
to the semantic domain I defined by figure 25.

J·Kmod : L(mod) → I
x 7→ JxKmod =

(
(S, I) , (δinst, δv, δl) , m

)
where:

m = Jmm(x)Kmm

S = {s ∈ S | ∃(n, n′, n′′) ∈ N ,〈 n : n′ [n′′ : s] 〉 @ x}
I = {n ∈ N | ∃n′ ∈ N , 〈 n : n′ 〉 @ x}

δinst = {(n, n′) ∈ I × C | 〈 n : n′ 〉 @ x}
δv = {((n, (n′, n′′)), X) ∈ (I × A)× P(S) | ∃s ∈ X, 〈 n : n′ [n′′ : s] 〉 @ x}
δl = {((n, (n′, n′′)), X) ∈ (I × A)× P(I) | ∃nr ∈ X, 〈 n : n′ [n′′ : nr] 〉 @ x}

Fig. 26. mEcore model semantics: valuation

JxKmod = i = (ni, fi,m) =
(

(S, I) , (δinst, δv, δl) , m
)

where:

m = Jmm(x)Kmm (see figure 10 for details)

S = {3, 4, true, false}
I = {iy1, iy2, ix}

δinst = {iy1 7→ Y, iy2 7→ Y, ix 7→ X}
δv = {(iy1, (A, i)) 7→ {3}, (iy1, (A, b)) 7→ {true, false},

(ix, (A, i)) 7→ {4}, (ix, (X, j)) 7→ {4}}
δl = {(iy1, (Y, a)) 7→ {iy2}, (iy1, (Y, x)) 7→ {ix},

(iy2, (Y, a)) 7→ {ix}, (iy2, (A, y)) 7→ {iy1}, (ix, (A, y)) 7→ {iy2}}

Fig. 27. Semantics of a mEcore model

A

Bool

Int

X Y

i

b

j

x

y

a

dI dI

dA

dA

(0,*)

(0,1)

dA

(1,1)

dR

dR

dR(0,*)

(1,2)

(0,1)

dopp

dopp

ix iy2 iy1

dinst dinst dinst

true

false

3

4

b

b

i

i

j

a a

y y

x

Fig. 28. Graph view of the semantics of a mEcore model

3.5 Example

Let x be the model of figure 22. Its denotation is given by JxKmod = i = (ni, fi,m).

Figure 27 shows i in details, and figure 28 shows a graph-based representation
of it. It completes the graph-based representation of the metamodel part (see
figure 11).

The new kinds of vertices represent instance names and scalar values. The
new kinds of edges represent the partial functions of models, namely δinst, δv
and δl. The partial function δinst is represented by edges between instances
and concrete classes. The partial function δv is represented by edges between
instances and scalar values. They are labeled by the names of the corresponding
attributes. The partial function δl is represented by edges linking instances to
other instances. They are labeled by the name of the corresponding reference.

3.6 Conformity

As depicted by the example of figure 28, the links between the model and its
metamodel are denoted by instantiation edges δinst. These structural links are
not intended to define a valid model in regard to its metamodel. A conformance
property remains to be stated.

Since scalar values are not related to data types in our approach, there are no
specific constraints on them. Finally, the following criteria define a valid model
in regard to its metamodel:

attribute name for each instance i, the name of each outgoing link targeting
a scalar value corresponds to the name of an attribute of either the class of
i or of one of its ancestor in regard to inheritance

reference name and type for each instance i, the name of each outgoing link
targeting another instance i′ corresponds to the name of a reference r of
either the class of i or of one of its ancestor in regard to inheritance, and r
targets either the class of i′ or of one of its ancestor in regard to inheritance

multiplicity for each instance i, the number of outgoing links having the same
name n belongs the interval defined by the multiplicity of the corresponding
feature n (attribute or reference) of either the class of i or of one of its
ancestor in regard to inheritance

opposite link for each reference link between instances i and i′, if the corre-
sponding reference has an opposite named r, then there is another reference
link corresponding to r between instances i′ and i

This conformance property of a given model i is noted V(i) and is formally
defined by figure 29.

∀i ∈ I,V(i) ,
∀i ∈ i.I,∀(nc, na) ∈ N 2,
i.δv(i, (nc, na)) 6= ∅ =⇒
nc ∈ α′I(i.δinst(i)) ∧ ∃(m, d) ∈M×D, i.m.δA(nc, na) = (m, d)∧
∀i ∈ i.I,∀(nc, nr) ∈ N 2,
i.δl(i, (nc, nr)) 6= ∅ =⇒
nc ∈ α′I(i.δinst(i)) ∧ ∃(m, c′) ∈M× C, i.m.δR(nc, nr) = (m, c′)
∧ ∀i′ ∈ i.δl(i, (nc, nr)), c′ ∈ α′I(i.δinst(i

′))∧
∀i ∈ i.I, ∀(nc, n) ∈ N 2,
let card = |i.(δl ∪ δv)(i, (nc, n))| in:
let (min,max) = i.m.(δR ∪ δA)(nc, n).m in:
card ≤ max ∧ card ≥ min∧
∀(i, i′, nc, nr) ∈ i.I2 ×N 2, i′ ∈ i.δl(i, (nc, nr)),
∃(n′c, n′r) ∈ N 2, i.m.δopp(nc, nr) = (n′c, n

′
r) =⇒

i ∈ i.δl(i
′, (n′c, n

′
r))

Fig. 29. Conformance property of mEcore models

4 Model co-evolution with mDif

So far, mDif is defined as metamodel refactoring language whose scope encom-
pass the basic metamodel constructs of mEcore. Now, we aim at extending this

scope to model migration. For that purpose, each mDif operator (see table 19) is
associated to a set of dedicated functions that are intended to perform not only
model migration, but also model recontextualization and diagnostics. We call re-
contextualization the reversed migration from the refactored metamodel to the
initial metamodel. The diagnostic of a model transformation enables the analysis
of elements that have been discarded or added during the transformation.

4.1 Syntax extension

Figure 30 extends the syntax of mEcore, which itself has been extended to models
(see figure 21). A migration is a context (defined by a model mod) followed by
a non-empty ordered sequence of operators.

mig ::= { mod } (op)+ (migration)

Fig. 30. Textual syntax of mDif including model migration

These operators have already been defined for metamodel refactoring in fig-
ure 12. They are divided into three CRUD categories, namely create (cr), update
(u) and delete (d).

Finally, they can be applied to either metamodels (see figure 12) or models
(see figure 30). When they are applied to metamodels, they are intended to
perform metamodel refactoring only. When they are applied to models, they are
intended to perform both metamodel refactoring and model migration.

4.2 Notations

We introduce some specific notations in order to state easily set-based operations
on a model i ∈ I corresponding to the following triplet:

i ,
(

(S, I) , (δinst, δv, δl) , m
)

Model set operations Let ? be a usual set operation like for instance ∪, ∩
or \. We note i ? i′ the model whose components are the result of ? applied to
the matching model components of i and i′, provided i and i′ have the same
metamodel. For instance, we have:

((S, I) , (δinst, δv, δl) , m
)
∪ ((S ′, I ′) , (δinst′ , δv′ , δl′) , m

)
, ((S ∪ S ′, I ∪ I ′) , (δinst ∪ δinst′ , δv ∪ δv′ , δl ∪ δl′) , m

)
Sub-model We note i ⊆ i′ the proposition stating that each model component
of i is contained by the corresponding component of i′, provided i and i′ have
the same metamodel.

Substitution of model component We note i.[x = y] the model i where y
has been substituted to the x component of m (e.g. i.[m = ...]).

Empty model We note i∅ the model which metamodel corresponds to i.m, and
whose model components are empty:

∀i ∈ I, i∅ , i.[S = ∅].[I = ∅].[δinst = ∅].[δv = ∅].[δl = ∅]

Note that the metamodel part actually remains unchanged:

∀i ∈ I, i∅.m = i.m

Note also that this empty model is always a valid model in regard to its meta-
model.

4.3 Principles of reversible model migration

Before giving details about the semantics of mDif model migration in regard to
each operator, we first present here the underlying principles of this migration,
its reversibility and its diagnostic facilities.

To illustrate these principles, we note op the functional denotation of a given
mDif operator taken from table 19. For instance, op can refer to cc : M×N →M,
the denotation of createClass. According to table 19, op applies to a metamodel
and a sequence of extra parameters, and as a result, it provides a refactored
metamodel:

let P be the parameter domain of op, op : M× P →M
(m, p) 7→ mrefactored

Migration Applying op to a model implies to identify elements that should be
discarded and elements that should be added.

Discarded elements Let op be the functional denotation of a given mDif operator
and P its parameter domain. We note −→opr the function mapping a model to
the elements that have to be removed according to the semantics of op. These
elements are gathered within a model conforming to the input metamodel (i.e.
the metamodel before its refactoring):

−→opr : I× P → I
(i, p) 7→ i′ such that i′ ⊆ i

This definition implies that discarded elements are actually taken from the model
which is intended to be migrated.

Added elements Let op be the functional denotation of a given mDif operator
and P its parameter domain. We note −→opa the function mapping a model to the
elements that have to be added according to the semantics of op. These elements
are gathered within a model conforming to the refactored input metamodel (i.e.
the metamodel after its refactoring):

−→opa : I× P → I
(i, p) 7→ i′ such that i′.m = op(i.m, p) ∧ i′ \

(
i.[m = op(i.m, p)]

)
= i′

This definition implies that the model we obtain is associated to the refactored
metamodel, and that no added elements are already present in the initial model.

Transformation Let op be the functional denotation of a given mDif operator
and P its parameter domain. We note −→op the function mapping a model to the
corresponding migrated model according to the semantics of op.

−→op : I× P → I
(i, p) 7→

(
(i \ −→opr(i, p)).[m = op(i.m, p)]

)
∪ −→opa(i, p)

By definition the migrated model corresponds to the initial model where some
elements have been firstly discarded, and then where the metamodel has been
refactored, and where finally some new elements have been added.

Validation For each operator op of table 19, the migration is formally defined by
the explicit functions −→opr and −→opa. This definition must be validated in regard
to conformity. In concrete terms, we need to prove under what conditions a valid
input model is transformed by −→op into a valid output model.

Let op be the functional denotation of a given mDif operator and P its pa-

rameter domain. We note
−−→
Cop the predicate giving the sufficient condition under

which a valid input model is transformed by −→op into a valid output model:

−−→
Cop : I× P → B

∀(i, p) ∈ I× P,
(
V(i) ∧

−−→
Cop(i, p)

)
=⇒ V(−→op(i, p))

If there is no specific condition, then by definition, ∀(i, p) ∈ I×P,
−−→
Cop(i, p) =

true, and thus, a valid input model is always transformed into a valid model in
regard to conformity.

Recontextualization We focus now on an initial model (conforming to an
initial metamodel) which has been migrated, i.e. which has been transformed
into a model conforming to a refactored metamodel. We want to transform it back
into a model conforming to the initial metamodel. We call this transformation
recontextualization. This concern makes sense if the migrated model has been
processed and potentially modified, typically by a rewriting tool we aim at reusing.

During the first migration, some elements have been respectively removed or
added, and they should be respectively recovered or deleted, as far as it does
not challenges the modifications made on the migrated model.

Recontextualization depends on op, the mDif operator that has been used for
the migration. It also depends on a migrated model and its initial metamodel.
As for migration, reversing op from a migrated model implies to identify ele-
ments that should be discarded and added. As for migration, the validity of this
transformation is subject to specific conditions.

Discarded elements Let op be the functional denotation of a given mDif operator
and P its parameter domain. We note←−opr the function mapping a migrated model
to the elements that have to be removed according to the semantics of op. These
elements are gathered within a model conforming to a refactored metamodel (i.e.
a metamodel after its refactoring):

←−opr : I× P × I→ I
(i, p, iini) 7→ i′ such that i′ ⊆

(
(i \ −→op(iini, p)) ∪ −→opa(iini, p)

)
∧ (i = −→op(iini, p)) =⇒ (i′ = −→opa(iini, p))

This definition implies that discarded elements are taken from two specific sub-
sets. The first one corresponds to elements that have been added by a tool, i.e ele-
ments that were not included in the original migrated model (i′ ⊆ (i\−→op(iini, p))).
The second specific subset is a part of the elements that have been added by the
migration (i′ ⊆ −→opa(iini, p)).

In the case of a non-modified migrated model (i = −→op(iini, p)), by definition,
the set of discarded elements matches with the set of elements that have been
added by the migration (i′ = −→opa(iini, p)).

Added elements Let op be the functional denotation of a given mDif operator and
P its parameter domain. We note ←−opa the function mapping a migrated model
to the elements that have to be added according to the semantics of op. These
elements are gathered within a model conforming to the input metamodel (i.e.
the metamodel before its refactoring):

←−opa : I× P × I→ I
(i, p, iini) 7→ i′ such that i′.m = iini.m ∧ i′ \

(
i.[m = iini.m]

)
= i′

∧ (i = −→op(iini, p)) =⇒ (i′ = −→opr(iini, p))

This definition implies that the model we obtain is associated to the initial
metamodel, and that this model has no common element with the refactored
model.

Adding elements during the recontextualization only makes sense if the mi-
grated model has been modified after the migration. In the other case (i =
−→op(iini, p)), there is no need to add any specific element. Hence the last condition
in this case: the set of added elements matches with the set of elements that
have been discarded by the migration (i′ = −→opr(iini, p)).

Transformation Let op be the functional denotation of a given mDif operator and
P its parameter domain. We note ←−op the function mapping a migrated model to
the corresponding initial model according to the semantics of op.

←−op : I× P × I→ I
(i, p, iini) 7→

(
(i \←−opr(i, p, iini)).[m = iini.m]

)
∪←−opa(i, p, iini)

By definition the initial model corresponds to the refactored model where:

– some model elements are discarded: they include new elements (typically
added by a tool) and the elements that had been added during the migration

– some new elements are added: they include specific new elements and a part
of the elements that had been discarded during the migration

Validation For each operator op of table 19, the recontextualization is formally
defined by the explicit functions −→opa, −→opr, ←−opa and ←−opr. As for migration, this
definition must be validated in regard to conformity. In concrete terms, we need
to prove under what conditions a valid migrated model is actually transformed
by ←−op back into a valid initial model.

Let op be the functional denotation of a given mDif operator and P its pa-

rameter domain. We note
←−−
Cop the predicate giving the sufficient condition under

which a valid possibly modified migrated model coming from a given valid mi-
grated model is transformed by ←−op back into a valid initial model:

←−−
Cop : I× P × I→ B

∀(i, p, iini) ∈ I× P × I,
(
V(i) ∧ V(iini) ∧

←−−
Cop(i, p, iini)

)
=⇒ V(←−op(i, p, iini))

As for migration, if there is no specific condition, then by definition, ∀(i, p, iini)
∈ I × P × I,

−−→
Cop(i, p, iini) = true, and thus, a valid migrated model is always

transformed back into a valid initial model in regard to conformity.

Main property Recontextualization is intended to undo migration. Thus, the
composition of migration and recontextualization leads to identity:

Theorem 1 Let op be the functional denotation of a given mDif operator and P
its parameter domain.

∀i ∈ I,∀p ∈ P, ←−op(−→op(i, p), p, i) = i

Proof Let i ∈ I be a given input model and p ∈ P be a valid set of parameters
in regard to op. Then by definition of ←−op we have:

←−op(−→op(i, p), p, i) =
(
(−→op(i, p) \←−opr(−→op(i, p), p, i)).[m = i.m]

)
∪←−opa(−→op(i, p), p, i)

However, by definition of ←−opr, knowing x is the first parameter, since we directly
have x = −→op(iini, p) (because the x corresponds here to −→op(i, p) and iini corresponds
to i), then we also have ←−opr(−→op(i, p), p, i) = −→opa(i, p). Thus:

←−op(−→op(i, p), p, i) =
(
(−→op(i, p) \ −→opa(i, p)).[m = i.m]

)
∪←−opa(−→op(i, p), p, i)

By definition of ←−opa, knowing x is the first parameter, since we directly have
x = −→op(iini, p) (because the x corresponds here to −→op(i, p) and iini corresponds to
i), then we also have ←−opa(−→op(i, p), p, i) = −→opr(i, p). Thus:

←−op(−→op(i, p), p, i) =
(
(−→op(i, p) \ −→opa(i, p)).[m = i.m]

)
∪ −→opr(i, p)

By definition of −→op, we have now:

←−op(−→op(i, p), p, i) =

(((i \ −→opr(i, p)).[m = op(i.m, p)]) ∪ −→opa(i, p) \ −→opa(i, p)
)

.[m = i.m]
∪ −→opr(i, p)

Now by definition:

−→opa(i, p) \
(
i.[m = op(i.m, p)]

)
= −→opa(i, p)

And Then:

−→opa(i, p) \
(

(i \ −→opr(i, p)).[m = op(i.m, p)]
)

= −→opa(i, p)

Thus, adding and deleting −→opa(i, p) from
(

(i \−→opr(i, p)).[m = op(i.m, p)]
)

has no
effect. Hence:

←−op(−→op(i, p), p, i) =
(

(i \ −→opr(i, p)).[m = op(i.m, p)].[m = i.m]
)
∪ −→opr(i, p)

The double applying of metamodel substitution has no effect:

←−op(−→op(i, p), p, i) = (i \ −→opr(i, p)) ∪ −→opr(i, p)

By definition of −→opr(i, p):
−→opr(i, p) ⊆ i

Thus, deleting and adding −→opr(i, p) from i has no effect. Hence:

←−op(−→op(i, p), p, i) = i

�

4.4 Diagnostics

Migration and recontextualization are defined by means of specific sub-models
gathering added and removed model elements. These sets also give way to know
whether the corresponding transformation is relevant or not. This kind of knowl-
edge is domain-dependent. Indeed, mDif allows for instance to delete a concept
(i.e a meta-class) from the metamodel, but only the domain expert knows if this
concept is useless or forbidden.

This is a significant difference at the model level. If the deleted concept is
useless and if a model to be migrated includes some instances of it, then they
are simply and safely removed. But if the deleted concept is forbidden and if a
model to be migrated includes some instances of it, then the model is probably
unsuitable for the targeted tool.

mDif allows domain expert to diagnosis migrations, i.e. to distinguish safe
migrations from others thanks to their associated sets of added and removed
model elements.

Migration diagnostic Let op be a given mDif operator, i be a given input
model, and p be a valid set of parameters. The set of classes corresponding to
deleted instances is defined as follows:

{c ∈ i.m.C | ∃i ∈ −→opr(i, p).I, i.δinst(i) = c}

The sets of references corresponding to deleted links is defined as follows:

{r ∈ i.m.R | ∃(i 7→ I) ∈ −→opr(i, p).δl, i.δl(i, r) = I}

The sets of attributes corresponding to deleted values is defined as follows:

{a ∈ i.m.A | ∃(i 7→ S) ∈ −→opr(i, p).δv, i.δv(i, a) = S}

These definitions allow the domain expert to spot instances that have been
deleted before the tool’s application. The domain expert can use this information
to identify unsafe model migrations.

Moreover, if there is a specific condition to have a valid migrated model, then
these sets can be used to understand why this condition is not satisfied.

Black-box rewriting tool diagnostic Recontextualization makes sense if the
migrated model is modified, by a rewriting tool for instance. But in this case, we
need to ensure the tool’s action is not challenged by this transformation. More
precisely, we first need to observe the tool’s action, and then we need to give
way to know whether the transformation counteracts the tool’s action or not.

The tool’s action can be defined in regard to added and removed elements
(instances, scalar values and links) at the model level. From the outside of the
tool, considering it as a black box, updated elements cannot be distinguished
from a pair of added and removed elements.

Let tool be a given rewriting tool applying to a migrated model and a set of

parameters. Let P its parameter domain. Thereafter, we note
−−→
toola (resp.

−−→
toolr)

the function mapping an input migrated model to the elements that are added
(resp. removed) by the tool:

−−→
toola : I× P → I

(i, p) 7→ tool(i, p) \ i

−−→
toolr : I× P → I

(i, p) 7→ i \ tool(i, p)

Contextualization diagnostic Let op be a given mDif operator, iini be a given
initial model, i be a given migrated model, and p be a valid set of parameters.
The set of classes corresponding to deleted instances during the contextualization
is defined as follows:

{c ∈ i.m.C | ∃i ∈ ←−opr(i, p, iini).I, i.δinst(i) = c}

The sets of references corresponding to deleted links is defined as follows:

{r ∈ i.m.R | ∃(i 7→ I) ∈ ←−opr(i, p, iini).δl, i.δl(i, r) = I}

The sets of attributes corresponding to deleted values is defined as follows:

{a ∈ i.m.A | ∃(i 7→ S) ∈ ←−opr(i, p, iini).δv, i.δv(i, a) = S}

These definitions allow the domain expert to spot instances that have been
added by the tool, and that have been later removed by the contextualization.
These instances are typically irrelevant within the initial context, but the domain
expert can decide whether their deletion counteracts the tool’s action or not.

As for migration, if there is a specific condition to have a valid model after
recontextualization, then these sets can be used to understand why this condition
is not satisfied.

4.5 By-default model migration

We consider the 22 mDif operators of table 19. Now we aim at formally defining
the migration and the recontextualization associated to each of them. For a given
operator op, in accordance with the principles we stated before, we mainly need
to define the functions −→opr, −→opa, ←−opr and ←−opa. We also need to validate these

operations in regard to conformity by the definitions of predicates
←−−
Cop and

−−→
Cop.

In many cases, the sets of discarded or added elements are empty. If both are
empty, it corresponds to a metamodel refactoring operator which has no effects at
the model level. Also in many cases, there are no specific conditions to maintain
the validity of transformed models in regard to conformity.

Thus, we introduce the following generic default semantics for a given oper-
ator op and its associated parameter domain P:
−→opr : I× P → I

(i, p) 7→ i∅

←−opr : I× P × I→ I

(i, p, iini) 7→ i∅

−−→
Cop : I× P → B

(i, p) 7→ true

−→opa : I× P → I

(i, p) 7→ i∅.[m = op(i.m, p)]

←−opa : I× P × I→ I

(i, p, iini) 7→ i∅.[m = iini.m]

←−−
Cop : I× P × I→ B

(i, p, iini) 7→ true

Note in this default case, we actually have the following required conditions:

∀(i, p) ∈ I× P, i∅ ⊆ i

∀(i, p) ∈ I× P,
(
(i∅.[m = op(i.m, p)].m) = op(i.m, p)

)
∧
(
i∅ \ i = i∅

)
∀(i, p, iini) ∈ I× P × I, i∅ ⊆

(
(i \ −→op(iini, p)) ∪ −→opa(iini, p)

)
∧ (i∅ = −→opa(iini, p))

∀(i, p, iini) ∈ I× P × I,
(
(i∅.[m = iini.m].m) = iini.m

)
∧ i∅ \

(
i.[m = iini.m]

)
= i∅

∧ i∅ = −→opr(iini, p)

4.6 Model migration by operator in detail

We define now the 22 mDif operators of table 19. For each of them we only give

the specific definitions of −→opr, −→opa,←−opr,←−opa,
←−−
Cop and

−−→
Cop. More precisely, we only

give these definitions when they are different from the generic default semantics
we stated before.

Create class The creation of a new concrete class without super classes and
without features has no effects on conforming models. Thus, nothing needs to
be deleted or added during the migration.

However, the recontextualization implies to delete instances of this class
whether they have been added by a rewriting tool. In this case, the migrated
model cannot contains links targeting these instances because the corresponding
metamodel does not have references targeting the new class.

←−ccr : I×N × I→ I

(i, n, iini) 7→
{
i∅.[I = {i ∈ I | δinst(i) = n}]
.[δinst = {(i, c) ∈ I ×m.C | c = n ∧ δinst(i) = c}]

Deleted elements during the recontextualization corresponds to instances that
could not appear in any initial model, and that have not been added during the
migration. Finally, we can easily check that we actually have:

∀(n, i, iini) ∈ N × I2, ←−ccr(i, n, iini) ⊆ (i \ −→cc(iini, p))

Thus, if the migrated model is kept unchanged, i.e. if i = −→cc(iini, p), then i \
−→cc(iini, p) = i∅. Then in this case we actually have:

←−ccr(i, n, iini) = i∅ = −→cca(i, n)

Validity We only give here proof sketches since the comprehensive proofs are
more tedious (because of notations) than inherently difficult.

There is no specific conditions to keep the conformance property over the
migration and the recontextualization associated to cc. Indeed, we do not add
or remove anything during the migration, and the metamodel is kept unchanged
except a new class without features and without instances is added. And during
the recontextualization, the only deleted instances correspond to the deleted
class in the metamodel.

Create data type As for a new class, the creation of a new data type has no
effects on conforming models. Thus, nothing needs to be deleted or added during
the migration.

Moreover, the scalar values are related to a data type by means of value links
corresponding to attributes. But the creation of a data type has no effects on
attributes (the modification of the attribute type is implemented by operation
moveAttributeTypeTo). Thus, the recontextualization does not require to delete
anything, nor to add anything.

Validity Since nothing is changed at the model level when a data type is cre-
ated or canceled, we obviously don’t need any specific condition to preserve the
conformance property.

Create attribute The creation of a new attribute with default multiplicity 0..1
has no effects on conforming models since this new attribute is not mandatory.
Thus, nothing needs to be deleted or added during the migration.

However, the recontextualization implies to delete the value links correspond-
ing to this new attribute whether they have been added by a rewriting tool.

After this deletion, some scalar values may be isolated in the model. There-
fore, these values are also deleted.

←−car : I×N 3 × I → I

(i, na, nc, nd, iini) 7→

 i∅.[δv = {(i, a, S) ∈ I ×m.A×P(S) |
a = (nc, na) ∧ δv(i, a) = S}]

.[S = {s ∈ S | ∀(i, a) ∈ I ×m.A, s /∈ δv(i, a)}]

Validity A valid model transformed by −→ca remains valid because nothing is
added at the model level and the new attribute at the metamodel level is not
mandatory.

A valid model transformed by ←−ca remains valid because the only deleted
model elements are value links corresponding to an attribute which is removed
from the metamodel.

Thus, we don’t need any specific condition to preserve the conformance prop-
erty over the migration and the recontextualization.

Create reference As for attributes, the creation of a new reference with default
multiplicity 0..1 has no effects on conforming models since this new reference is
not mandatory. Thus, nothing needs to be deleted or added during the migration.

However, the recontextualization implies to delete the reference links corre-
sponding to this new reference whether they have been added by a rewriting
tool.

←−crr : I×N 3 × I → I

(i, nr, nc, n
′
c, iini) 7→

{
i∅.[δl = {(i, r, S) ∈ I ×m.R×P(I)

r = (nc, nr) ∧ δl(i, r) = S}]

Validity As for new attributes, a valid model transformed by −→cr remains valid
because nothing is added at the model level and the new reference at the meta-
model level is not mandatory.

In a same way, a valid model transformed by ←−cr remains valid because the
only deleted model elements are reference links corresponding to a reference
which is removed from the metamodel, and which has no opposite reference by
definition.

Thus, we don’t need any specific condition to preserve the conformance prop-
erty over the migration and the recontextualization.

Delete class The deletion of an existing class which is not a super class and
which is not targeted by any reference implies to delete its instances at the
model level, as also its attributes and references. This modification is safe since
by definition, the deleted instances are not targeted by any reference link. There
is no need to add anything specific during the migration.

Once migrated, a model can be processed by a rewriting tool. In this case,
no new elements introduced by this tool are likely to be remove during the
recontextualization. Indeed, the operation which is supposed to be undone by
the recontextualization is a deletion. Thus, we only need to add the instances
and the links that had been discarded during the migration, provided these links
are still related to existing instances.

−→
dcr : I×N → I

(i, n) 7→

i∅.[I = {i ∈ I | δinst(i) = n}]
.[δinst = {(i, c) ∈ I ×m.C | c = n ∧ δinst(i) = c}]
.[δl = {(i, r, S) ∈ I ×m.R×P(I) |

δinst(i) = n ∧ δl(i, r) = S}]
.[δv = {(i, a, S) ∈ I ×m.A×P(S) |

δinst(i) = n ∧ δv(i, a) = S}]

←−
dca : I×N × I→ I

(i, n, iini) 7→

i∅.[I = {i ∈ iini.I | iini.δinst(i) = n}]
.[δinst = {(i, c) ∈ iini.I ×N | c = n ∧ iini.δinst(i) = c}]
.[δl = {(i, r, S) ∈ iini.I × iini.m.R×P(I) |

iini.δinst(i) = n ∧ ∀j ∈ S, j ∈ (δl ∩ iini.δl)(i, r)}]
.[δv = {(i, a, S) ∈ I ×m.A×P(S) |

iini.δinst(v) = n ∧ ∀j ∈ S, j ∈ (δv ∩ iini.δv)(i, a)}]

Validity A valid model transformed by
−→
dc remains valid because all the deleted

model elements are isolated scalar values and either instances of the deleted class
or links going out of them. By definition, the initial model does not include links
targeting the deleted instances.

However, a valid model transformed by
−→
dc remains valid after the recontex-

tualization only if the discarded links that cannot be recovered (because of a
deleted target) are not mandatory in regard to multiplicity. Hence the unique
following predicate giving the sufficient condition under which a valid model
remains valid over recontextualization:

←−
Cdc : I×N × I→ B

(i, n, iini) 7→ (iini.I \ i.I) ∩ ∪i∈iini.I(iini.δl(i)) = ∅

If all instances targeted by the discarded links are kept, then this is a sufficient
condition to preserve validity.

Delete data type Unlike the deletion of an existing class, the deletion of an
existing data type which is not targeted by any attribute does not imply any

modification at the model level. Thus, nothing needs to be deleted or added
during the migration or the recontextualization.

Validity Since nothing is changed at the model level when a data type is deleted
or recovered, we obviously don’t need any specific condition to preserve the
conformance property.

Delete attribute The deletion of an existing attribute implies to remove all
the corresponding attribute links at the model level. There is no need to add
anything during the migration. During the recontextualization, the deleted links
are recovered, as far as the corresponding instances still exist.

−→
dar : I×N 2 → I

(i, na, nc) 7→
{
i∅.[δv = {(i, a, S) ∈ I ×m.A×P(S) |

a = (nc, na) ∧ δv(i, (nc, na)) = S}]

←−
daa : I×N 2 × I → I

(i, na, nc, iini) 7→
{
i∅.[δv = {(i, a, S) ∈ i.I × iini.m.A×P(iini.S) |

a = (nc, na) ∧ iini.δv(i, (nc, na)) = S}]

Validity The migration by da of a valid model leads to a new valid model be-
cause the only deleted model elements are isolated scalar values and value links
corresponding to the attribute which is intended to be removed from the meta-
model.

However, we need to state a specific condition for the recontextualization.
Indeed, some instances of the class owning the deleted attribute may have been
added at the model level. After the recontextualization, these instances won’t
have values associated to the recovered attribute. This cannot be valid if the mul-
tiplicity of this attribute has a lower bound greater than 0, i.e, it is mandatory.
We introduce the predicates C1 and C2 to address this case:

C1 : N 2 × i → B
(na, nc, i) 7→ ∃((x, y), d) ∈M×D, (i.m.δA(nc, na) = ((x, y), d) ∧ x = 0)

C2 : N × i2 → B
(nc, i, iini) 7→ {i ∈ I | i.δinst(i) = nc} \ {i ∈ I | iini.δinst(i) = nc} = ∅

Recontextualization is valid if the multiplicity of the deleted attribute is not
mandatory (C1). Recontextualization is also valid if the set of new instances of
the class from which the attribute has been removed is empty (C2). Hence the
following global condition for the conformance properties:

←−−
Cda : I×N 2 × I → B

(i, na, nc, iini) 7→ (C1(na, nc, i) ∨ C2(nc, i, iini))

Delete reference The deletion of an existing reference implies to remove all
the corresponding reference links at the model level. There is no need to add
anything during the migration.

During the recontextualization, the deleted links are recovered, as far as the
corresponding source and target still exist.

−→
drr : I×N 2 → I

(i, nr, nc) 7→
{
i∅.[δl = {(i, r, S) ∈ I ×m.R×P(I) |

r = (nc, nr) ∧ δl(i, (nc, nr)) = S}]

←−
dra : I×N 2 × I → I

(i, nr, nc, iini) 7→
{
i∅.[δl = {(i, r, S) ∈ i.I × iini.m.R×P(i.I) |

r = (nc, nr) ∧ ∀j ∈ S, j ∈ iini.δl(i, r)}]

Validity The migration by dr of a valid model leads to a new valid model because
the only deleted model elements are links corresponding to the reference which
is intended to be removed from the metamodel.

However, as for attributes and for the same reasons, we need to state a
specific condition for the recontextualization. Indeed, some instances of the class
owning the deleted reference may have been added at the model level. After the
recontextualization, these instances won’t have values associated to the recovered
reference. This cannot be valid if the multiplicity of this reference has a lower
bound greater than 0, i.e, it is mandatory.

We introduce the specific predicate C ′1 and we reuse the predicate C2 to
address this case:

C ′1 : N 2 × i → B
(nr, nc, i) 7→ ∃((x, y), c) ∈M× C, (i.m.δR(nc, nr) = ((x, y), c) ∧ x = 0)

Recontextualization is valid if the multiplicity of the deleted reference is not
mandatory (C ′1). Recontextualization is also valid if the set of new instances of
the class from which the reference has been removed is empty (C2).

There is a second condition due to the links that have been discarded by the
migration and that cannot be recovered by the recontextualization. In this case,
the recontextualization preserves validity only if these links are not mandatory in
regard to multiplicity. Hence the unique following predicate giving the sufficient
condition under which a valid model remains valid over recontextualization:

←−−
Cdr : I×N 2 × I → B

(i, nr, nc, iini) 7→
(

(C ′1(nr, nc, i) ∨ C2(nc, i, iini))
)

∧ (iini.I \ i.I) ∩ ∪i∈iini.I(iini.δl(i)) = ∅

If all instances targeted by the discarded links are kept, then this is a sufficient
condition to preserve validity.

Set classifier name The setting of a new classifier name implies to update the
instantiation links at the model level. This update is performed in two times.

First, the links are deleted, and then, new links between the instances and the
new class are added. There is no effect on other links (attributes or references).

During the recontextualization, the actions performed by the migration are
undone: added links are automatically deleted and discarded links are automat-
ically recovered. However, a processing tool may have introduced new instances
of the renamed classifier. In this case, the instantiation links from these spe-
cific instances have to be replaced by new instantiation links targeting the old
classifier.

Only a part of the links that have been discarded during the migration is
recovered during the recontextualization. The instantiation link between an in-
stance and the renamed class is not recovered if this instance has been deleted
by a tool.

−→sncr : I×N 2 → I
(i, nc, n

′
c) 7→

{
i∅.[δinst = {(i, c) ∈ I ×m.C | c = nc ∧ δinst(i) = nc}]

−→snca : I×N 2 → I
(i, nc, n

′
c) 7→

{
i∅.[δinst = {(i, c) ∈ I ×N | c = n′c ∧ δinst(i) = nc}]

←−sncr : I×N 2 × I → I
(i, nc, n

′
c, iini) 7→

{
i∅.[δinst = {(i, c) ∈ I ×m.C | c = n′c ∧ δinst(i) = n′c}]

←−snca : I×N 2 × I → I
(i, nc, n

′
c, iini) 7→

{
i∅.[δinst = {(i, c) ∈ I ×N | c = nc ∧ δinst(i) = n′c}]

Validity Since only instantiation links are substituted in accordance to a new
classifier name, we don’t need any specific condition to preserve the conformance
property.

Set feature name The setting of a new feature name implies to update the
value or reference links at the model level. This update is performed in two
times. First, the links are deleted, and then, new links between the instances
and the corresponding value (value link) or instance (reference link) are added.
There is no effect on instantiation links.

During the recontextualization, the actions performed by the migration are
undone: added links are automatically deleted and discarded links are automat-
ically recovered. However, a processing tool may have introduced new instances
of the class owning the renamed feature. In this case, the corresponding links
from these specific instances have to be replaced by new links targeting the same
elements.

Only a part of the links that have been discarded during the migration is re-
covered during the recontextualization. The value (or the reference) link between
an instance and a scalar (or another instance) is not recovered if this instance
has been deleted by a tool.

−−→snf r : I×N 3 → I

(i, nc, nf , n
′
f) 7→

i∅.[δv = {(i, a, S) ∈ I ×m.A×P(S) |

a = (nc, nf) ∧ δv(i, (nc, nf)) = S}]
.[δl = {(i, r, S) ∈ I ×m.R×P(I) |

r = (nc, nf) ∧ δl(i, (nc, nf)) = S}]

−−→snf a : I×N 3 → I

(i, nc, nf , n
′
f) 7→

i∅.[δv = {(i, a, S) ∈ I ×N 2 × P(S) |

a = (nc, n
′
f) ∧ δv(i, (nc, nf)) = S}]

.[δl = {(i, r, S) ∈ I ×N 2 × P(I) |
r = (nc, n

′
f) ∧ δl(i, (nc, nf)) = S}]

←−−snf r : I×N 3 × I → I

(i, nc, nf , n
′
f , iini) 7→

i∅.[δv = {(i, a, S) ∈ I ×m.A×P(S) |

a = (nc, n
′
f) ∧ δv(i, (nc, n′f)) = S}]

.[δl = {(i, r, S) ∈ I ×m.R×P(I) |
r = (nc, n

′
f) ∧ δl(i, (nc, n′f)) = S}]

←−−snf a : I×N 3 × I → I

(i, nc, nf , n
′
f , iini) 7→

i∅.[δv = {(i, a, S) ∈ I ×N 2 × P(S) |

a = (nc, nf) ∧ δv(i, (nc, n′f)) = S}]
.[δl = {(i, r, S) ∈ I ×N 2 × P(I) |

r = (nc, nf) ∧ δl(i, (nc, n′f)) = S}]

Validity Since only value or reference links are substituted in accordance to a new
feature name, we don’t need any specific condition to preserve the conformance
property.

Set lower bound The setting of a new lower bound for a given feature implies
to make a semantic choice. Indeed, if the lower bound is increased, then some
links may lack. This is typically the case when an optional feature becomes
mandatory. In this case, if we aim at preserving the validity of the model, we
need to randomly add some new links.

If the lower bound is decreased, then any valid model remains valid after the
migration, without adding or deleting anything. But if a tool removes some links,
then we need to randomly add some new links during the recontextualization.
For instance, it is the case when a mandatory feature becomes optional, and
when after the migration, a tool removes a former mandatory link. Then during
the recontextualization, we need to put back a new link.

We decided to avoid these random actions. Instead of that, we keep the
model unchanged during the migration and the recontextualization. In return,
we define precisely the predicates giving the sufficient conditions under which a
valid model remains valid over migration and recontextualization:

−−→
Cslb : I×N 2 × N → B

(i, nc, nf , x) 7→ ∀i ∈ i.I,
(
(|δv(i, (nc, nf))|+ |δl(i, (nc, nf))|) ≥ x

)
←−−
Cslb : I×N 2 × N× I→ B

(i, nc, nf , x, iini) 7→ let ((xini, y), n) = iini.m.(δA ∪ δR)(nc, nf) in:
∀i ∈ i.I,

(
(|δv(i, (nc, nf))|+ |δl(i, (nc, nf))|) ≥ xini

)
The migration preserves validity if there is no lack of mandatory links in the

case of a lower bound increase (
−−→
Cslb). The recontextualization preserves validity

if there is no lack of mandatory links in the case of a lower bound decrease (
←−−
Cslb).

Set upper bound The setting of a new upper bound for a given feature is a
symmetric case of the previous one. Instead of randomly adding links, we need
here to randomly removing links when they exceed the new upper bound during
the migration or during the recontextualization. We also decided to avoid random
actions during these transformations:

−−→
Csub : I×N 2 × N → B

(i, nc, nf , y) 7→ ∀i ∈ i.I,
(
(|δv(i, (nc, nf))|+ |δl(i, (nc, nf))|) ≤ y

)
←−−
Csub : I×N 2 × N× I→ B

(i, nc, nf , y, iini) 7→ let ((x, yini), n) = iini.m.(δA ∪ δR)(nc, nf) in:
∀i ∈ i.I,

(
(|δv(i, (nc, nf))|+ |δl(i, (nc, nf))|) ≤ yini

)
The migration preserves validity if the number of corresponding links is not

greater than the new upper bound in the case of its decrease (
−−→
Csub). The recon-

textualization preserves validity if there is no extra new links in the case of a

upper bound increase (
←−−
Csub).

Set abstract As for the previous operations, setting a class abstract or concrete
implies to make a semantic choice. Indeed, if a concrete class is made abstract,
then we need to transform its instances. They could be connected to another
class among the ancestors or among the descendants of the modified class, but it
implies that this class actually have ancestors or descendants. If so, we also need
to propagate several modifications about attributes and references in regard to
the corresponding multiplicity.

Instead of that, we keep the model unchanged during the migration and
the recontextualization. In return, we define precisely the predicates giving the
sufficient conditions under which a valid model remains valid over migration and
recontextualization:

−−→
Csa : I×N × B → B

(i, nc, b) 7→ b =⇒ {i ∈ i.I | i.δinst(i) = nc} = ∅
←−−
Csa : I×N × B× I→ B

(i, nc, b, iini) 7→ ¬b =⇒ {i ∈ i.I | i.δinst(i) = nc} = ∅

The migration preserves validity if there is no instance of a concrete class made
abstract. The recontextualization preserves validity if there is no instance of a
former abstract class (because it has to be set abstract again).

Set container Setting a reference composite or not is subject to strong pre-
conditions at the metamodel level. Under these conditions, the corresponding
migration and recontextualization have no effects, but they are subject to valid-
ity conditions. Indeed, in mEcore, all instances are gathered within a same and
unique root package. Reference links over these instances are given by partial
functions, regardless they are composite or not.

Once the specific constraints of containment are verified at the metamodel
level (e.g., no circular composite references, or no multiplicities upper bound
greater than 1), there is one extra requirement at the model level: if a relation is
made composite, then the instances targeted by the corresponding links cannot
be also targeted by other composite links.

−→
Csc : I×N 2 × B → B

(i, nc, nr, b) 7→ b =⇒ ∀i ∈
{⋃

j∈i.I
(
i.δl(j, (nc, nr))

)}
,(

∃(i′, (n′c, n′r)) ∈ i.I × i.m.R, i ∈ i.δl(i
′, (n′c, n

′
r))
)

=⇒ (n′c, n
′
r) /∈ i.m.RC←−

Csc : I×N × B× I→ B
(i, nc, nr, b, iini) 7→ ¬b =⇒ ∀i ∈

{⋃
j∈i.I

(
i.δl(j, (nc, nr))

)}
,(

∃(i′, (n′c, n′r)) ∈ i.I × i.m.R, i ∈ i.δl(i
′, (n′c, n

′
r))
)

=⇒ (n′c, n
′
r) /∈ i.m.RC

The migration preserves validity if the links corresponding to a reference made
composite target instances that are not already targeted by another composite
link. The recontextualization preserves validity if the links corresponding to a
former composite reference target instances that are not already targeted by
another composite link (because it has to be set composite again).

Move feature Moving a feature from a class to another one (provided the
feature does not imply name clashes along inheritance links of the target class)
implies again a semantic choice. Indeed, if a feature f belongs to a class A, and
if this feature has to be moved to class B, then if A has instances, we need to
remove the f links from them, but we also need to put them randomly over the
set of existing instances of B. If the number of instances of B is lower than the
number of instances of A, some links will be randomly deleted. If the number of
instances of B is greater than the number of instances of A, some links will be
randomly added if the moved feature is mandatory.

Instead of performing such random actions, we keep the model unchanged
during the migration and the recontextualization. In return, we define precisely
the predicates giving the sufficient conditions under which a valid model remains
valid over migration and recontextualization:

−−−→
Cmft : I×N 3 → B

(i, nc, nf , n
′
c) 7→

{⋃
j∈i.I

(
i.(δv ∪ δl)(j, (nc, nf))

)}
= ∅

←−−−
Cmft : I×N 3B× I → B

(i, nc, nf , n
′
c, iini) 7→

{⋃
j∈i.I

(
i.(δv ∪ δl)(j, (n′c, nf))

)}
= ∅

The migration preserves validity if there is no link corresponding the moved
feature (from the initial class). The recontextualization preserves validity if there
is no link corresponding the moved feature (from the targeted class).

Move reference target Moving the target of a reference from a class to another
one raises similar questions to those of the previous case. Indeed, to achieve a
model transformation in regard to this operator, we need to change randomly
the current targets of reference links to new targets.

As in the previous case, we avoid these random actions and we keep the
model unchanged during the migration and the recontextualization. As in the
previous case, we define precisely the predicates giving the sufficient conditions
under which a valid model remains valid over migration and recontextualization:

−−−→
Cmrtt : I×N 3 → B

(i, nc, nr, n
′
c) 7→

{⋃
j∈i.I

(
i.δl(j, (nc, nr))

)}
= ∅

←−−−
Cmrtt : I×N 3 × I → B

(i, nc, nr, n
′
c, iini) 7→

{⋃
j∈i.I

(
i.δl(j, (nc, nr))

)}
= ∅

The migration preserves validity if there is no link corresponding the modified
reference. The recontextualization preserves validity if there is no new link cor-
responding the same moved modified reference.

Move attribute type Moving the type of an attribute from a data type to
another one is a much simpler case than the previous one since mDif does not
take data types into account. In this approach, scalar values (at the model level)
are not bound to a data type (at the metamodel level). Thus, there is no need
to change anything at the model level when a data type is updated.

Validity Since nothing is changed at the model level when a data type is updated,
we obviously don’t need any specific condition to preserve the conformance prop-
erty.

Add super class Adding a new super class to a class does not imply any
modification at the model level during the migration, provided the new class or

one of its ancestors has no mandatory feature. If this condition is not satisfied,
then we do not add random feature links and thus, the migration does not
preserve the conformance property.

During the recontextualization, the links corresponding to the features de-
fined by the new super class have to be removed.

←−ascr : I×N 2 × I → I

(i, nc, n
′
c, iini) 7→

i∅.[δv = {(i, (c, na), S) ∈ I ×m.A×P(S) |

δinst(i) = nc ∧ δv(i, (c, na)) = S ∧ c ∈ m.α′I(n
′
c)}]

.[δl = {(i, (c, nr), S) ∈ I ×m.R×P(S) |
δinst(i) = nc ∧ δl(i, (c, nr)) = S ∧ c ∈ m.α′I(n

′
c)}]

Validity The recontextualization always preserves the conformance property
since the only discarded elements corresponds to features inherited from the
class which is removed by this transformation.

But as mentioned before, the migration preserve the conformance property
only if the new super class or one of its ancestors has no mandatory feature.
Hence the unique following predicate giving the sufficient condition under which
a valid model remains valid over migration:

−−→
Casc : I×N 2 → B

(i, nc, n
′
c) 7→ ∀c ∈ i.m.α′I(n

′
c),∀((nf , n), (x, y)) ∈ N 2 ×M

((x, y), n) = i.m.(δA ∪ δR)(c, nf) =⇒ x = 0

Remove super class Removing an existing super class implies to remove links
corresponding to the features inherited from the deleted super class. There is no
new specific element to add during the migration.

During the recontextualization, the links that have been discarded by the
migration are recovered, as far as they are related to existing instances. If the
source or the target of the link has been deleted, then the link is not recovered.

−→rscr : I×N 2× → I

(i, nc, n
′
c) 7→

i∅.[δv = {(i, (c, na), S) ∈ I ×m.A×P(S) |

δinst(i) = nc ∧ δv(i, (c, na)) = S ∧ c ∈ m.α′I(n
′
c)}]

.[δl = {(i, (c, nr), S) ∈ I ×m.R×P(S) |
δinst(i) = nc ∧ δl(i, (c, nr)) = S ∧ c ∈ m.α′I(n

′
c)}]

←−rsca : I×N 2 × I → I

(i, nc, n
′
c, iini) 7→

i∅.[δv = {(i, (c, na), S) ∈ iini.δv | i ∈ i.I
∧ iini.δinst(i) = nc ∧ c ∈ iini.m.α

′
I(n
′
c)}]

.[δl = {(i, (c, nr), S) ∈ iini.I × iini.m.R×P(iini.I) |
i ∈ i.I ∧ iini.δinst(i) = nc ∧ c ∈ iini.m.α

′
I(n
′
c)

∧ ∀i′ ∈ S, (i′ ∈ iini.δl(i, (c, nr)) ∧ i′ ∈ i.I)}]

Validity The migration always preserves the conformance property since the
only discarded elements corresponds to features inherited from the class which
is removed by this transformation.

But the recontextualization preserve the conformance property only if:

– the deleted super class or one of its ancestors has no mandatory feature
– or there is no new instance of the modified class

Indeed, if a tool has introduced new instances of the modified class before the
recontextualization, then the specific links inherited from the discarded super
class cannot be recovered. This is a problem only if these links corresponds to
mandatory features. Hence the unique following predicate giving the sufficient
condition under which a valid model remains valid over recontextualization:

←−−
Crsc : I×N 2 × I → B

(i, nc, n
′
c, iini) 7→

(
∀c ∈ iini.m.α

′
I(n
′
c),∀((nf , n), (x, y)) ∈ N 2 ×M

((x, y), n) = iini.m.(δA ∪ δR)(c, nf) =⇒ x = 0
)∨ (

{i ∈ i.I | i.δinst(i) = nc}
\ {i ∈ iini.I | iini.δinst(i) = nc} = ∅

)
Move super class The replacement of an existing link between a class and a
super class by a link between the same class and another one could be seen as the
composition of the two previous operator (super class deletion followed by new
super class addition). In this approach, we do not take advantage of an important
specific information: the set of common features. Indeed, the common features
(i.e. same name and same target) can be kept during the transformation.

For that purpose, we first formally define this set of common features. We
note ∩a the common attributes between two metamodels and we note ∩r the
common references between two classes.

The common attributes are found along the inheritance paths (starting from
the two provided classes). Two attributes match if they have the same name,
the same data type, and the same multiplicity.

As for attributes, the common references are found along the inheritance
paths (starting from the two provided classes). Two references match if they
have the same name, the same multiplicity, and if the first targeted class appears
among the ancestors of the second targeted class.

∩a : M× C2 → A×M×D
(m, (c1, c2)) 7→ {((c, n),m, d) ∈ m.δA | c ∈ α′I(c1)

∧ ∃c′ ∈ C (m.δA(c′, n)=(m, d) ∧ c′ ∈ α′I(c2))

∩r : M× C2 → R×M× C
(m, (c1, c2)) 7→ {((c, n),m, ct) ∈ m.δR | c ∈ α′I(c1)

∧ ∃(c′, c′t) ∈ C2, (m.δR(c′, n)=(m, c′t)
∧ c′ ∈ α′I(c2)) ∧ ct ∈ α′I(c′t))

Using these definitions, we can state that the migration corresponding to
the replacement of an existing link between a class and a super class by a link
between the same class and another one implies to remove links corresponding to
the features inherited from the deleted super class, provided they are not common
with the new super class.

The recontextualization implies to remove the links corresponding to the
features defined by the new super class, provided they are not common with the
new super class.

Finally, during the recontextualization, the links that have been discarded by
the migration are recovered, as far as they are related to existing instances. If the
source or the target of the link has been deleted, then the link is not recovered.

−−−→
msctr : I×N 3× → I

(i, nc, n
′
c, n
′′
c) 7→

i∅.[δv = {(i, (c, na), S) ∈ i.δv | i.δinst(i) = nc
∧ ∀(m,n), ((c, na),m, n) /∈ ∩a(i.m, n′c, n

′′
c)

∧ c ∈ m.α′I(n
′
c)}]

.[δl = {(i, (c, nr), S) ∈ i.δl | i.δinst(i) = nc
∧ ∀(m,n), ((c, nr),m, n) /∈ ∩r(i.m, n′c, n′′c)
∧ c ∈ m.α′I(n

′
c)}]

←−−−
msctr : I×N 3 × I → I

(i, nc, n
′
c, n
′′
c , iini) 7→

i∅.[δv = {(i, (c, na), S) ∈ i.δv | i.δinst(i) = nc
∧ ∀(m,n), ((c, na),m, n) /∈ ∩a(i.m, n′′c , n

′
c)

∧ c ∈ m.α′I(n
′′
c)}]

.[δl = {(i, (c, nr), S) ∈ i.δl | i.δinst(i) = nc
∧ ∀(m,n), ((c, nr),m, n) /∈ ∩r(i.m, n′′c , n′c)
∧ c ∈ m.α′I(n

′′
c)}]

←−−−
mscta : I×N 3 × I → I

(i, nc, n
′
c, n
′′
c , iini) 7→

i∅.[δv = {(i, (c, na), S) ∈ iini.δv | i ∈ i.I
∧ iini.δinst(i) = nc ∧ c ∈ iini.m.α

′
I(n
′
c)

∧ ∀(m,n), ((c, na),m, n) /∈ ∩a(i.m, n′c, n
′′
c)}]

.[δl = {(i, (c, nr), S) ∈ i.I × iini.m.R×P(i.I) |
∧ iini.δinst(i) = nc ∧ c ∈ iini.m.α

′
I(n
′
c)

∧ ∀(m,n), ((c, nr),m, n) /∈ ∩r(i.m, n′c, n′′c)
∧ ∀i′ ∈ S, (i′ ∈ iini.δl(i, (c, nr))}]

Validity The migration preserve the conformance property only if the new super
class or one of its ancestors has no mandatory feature among its specific features
(i.e. regardless of the common features).

The recontextualization preserve the conformance property only if the re-
placed super class or one of its ancestors has no mandatory feature among its
specific features (i.e. regardless of the common features), or there is no new in-
stance of the modified class Indeed, if a tool has introduced new instances of the
modified class before the recontextualization, then the specific links inherited

from the initial super class cannot be recovered. This is a problem only if these
links corresponds to mandatory features.

Hence the following predicates giving the sufficient conditions under which a
valid model remains valid over migration and recontextualization:

−−−→
Cmsct : I×N 3 → B

(i, nc, n
′
c, n
′′
c) 7→ ∀c ∈ i.m.α′I(n

′′
c),∀((nf , n), (x, y)) ∈ N 2 ×M(

((c, nf), (x, y), n) /∈ (∩a ∪ ∩r)(i.m, n′c, n′′c)
∧ ((x, y), n) = i.m.(δA ∪ δR)(c, nf)

)
=⇒ x = 0

←−−−
Cmsct : I×N 3 × I → B

(i, nc, n
′
c, n
′′
c , iini) 7→

(
∀c ∈ iini.m.α

′
I(n
′
c),∀((nf , n), (x, y)) ∈ N 2 ×M(

((c, nf), (x, y), n) /∈ (∩a ∪ ∩r)(i.m, n′′c , n′c)
∧ ((x, y), n) = i.m.(δA ∪ δR)(c, nf)

)
=⇒ x = 0

)∨ (
{i ∈ i.I | i.δinst(i) = nc}
\ {i ∈ iini.I | iini.δinst(i) = nc} = ∅

)
Move opposite The setting of a new opposite reference to a reference (when-
ever it already has an opposite reference or not) is not supposed to have any
impact at the model level since opposite corresponds to a meta data associated
to a pair of existing references. Thus, there is nothing to add or remove during
the migration and the recontextualization.

Remove opposite For the same reasons as in the previous case, removing an
opposite reference is not supposed to have any impact at the model level. Thus,
there is nothing to add or remove during the migration and the recontextualiza-
tion.

J·Kmig : L(mig) → I

s 7→

s matches with ({ mod } op) :

−−−→
JopKop

(
JmodKmod , JopKparam

)
s matches with (s′ op) where s′ = ({ mod } (op′)+) :

−−−→
JopKop

(
Js′Kmig , JopKparam

)
Fig. 31. Valuation of mDif specifications including model migration

4.7 Specifications

We note L(mig) the sets of words yielded frommig in figure 30. Basically, L(mig)
contains a specification made of one model mod (including its metamodel) plus
an ordered non-empty set of operators applied to mod.

As for the semantics of metamodel evolution, we note JopKparam the set of
specific parameters of the operator op, in accordance to figure 19.

We introduce in figure 31 a valuation function noted J·Kmig. It applies to
L(mig). It maps a model (including its metamodel) to an output migrated model
(including its refactored metamodel). It is obtained by a recursive application
of the functional denotations corresponding to each operator in accordance to
figure 19.

References

1. Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf.

List of Figures

1 Ecore metamodel . 2
2 mEcore metamodel . 3
3 Textual syntax of mEcore . 3
4 Textual and graphical form of a mEcore metamodel 3
5 mEcore semantics: name spaces . 4
6 mEcore semantics: multiplicity . 4
7 mEcore semantics: partial functions . 5
8 mEcore semantics: metamodels . 5
9 mEcore semantics: valuation . 6
10 Semantics of a mEcore metamodel . 6
11 Graph view of the semantics of a mEcore metamodel 6
12 Textual syntax of mDif . 7
13 mDif creation . 8
14 mDif deletion . 9
15 mDif update . 9
16 mDif value update . 10
17 mDif containment update . 10
18 mDif link update . 11
19 Valuation of mDif operators . 12
20 Valuation of mDif specifications . 20
21 Textual syntax of mEcore models . 20
22 Textual and graphical form of a mEcore model . 21
23 mEcore models semantics: name spaces . 22
24 mEcore model semantics: partial functions . 22
25 mEcore model semantics . 22
26 mEcore model semantics: valuation . 23
27 Semantics of a mEcore model . 23
28 Graph view of the semantics of a mEcore model . 24
29 Conformance property of mEcore models . 25
30 Textual syntax of mDif including model migration 26
31 Valuation of mDif specifications including model migration 47

Table of Contents

A kernel transformation language for metamodel evolution and
reversible model co-evolution . 1

Mickaël Kerboeuf, Paola Vallejo, and Jean-Philippe Babau
1 mEcore . 1

1.1 Textual syntax of mEcore . 1
1.2 Denotational semantics of mEcore . 4

Semantic domain . 4
Valuation function . 5

1.3 Example . 5
2 Metamodel evolution with mDif . 7

2.1 Overview of mDif . 7
2.2 mDif creation . 8
2.3 mDif deletion . 8
2.4 mDif update . 9

Value update . 9
Containment update . 10
Link update . 10

2.5 mDif semantics . 12
2.6 Notations . 13

Metamodel component . 13
Union of metamodel component . 13
Substitution of metamodel component . 13
General substitution . 13
Classifier substitution . 14
Direct ancestors . 14
All ancestors . 14

2.7 Operators . 14
Create class . 14
Create data type . 14
Create attribute . 15
Create reference . 15
Delete class . 15
Delete data type . 15
Delete attribute . 16
Delete reference . 16
Set classifier name . 16
Set feature name . 16
Set lower bound . 16
Set upper bound . 17
Set abstract . 17
Set container . 17

Move feature . 17
Move reference target . 17
Move attribute type . 18
Add super class . 18
Remove super class . 18
Move super class . 19
Move opposite . 19
Remove opposite . 19

2.8 Specifications . 19
3 mEcore models . 20

3.1 Syntax extension . 20
3.2 Semantics of a mEcore model . 21
3.3 Semantic domain . 21
3.4 Valuation function . 22

Notation . 22
Valuation . 23

3.5 Example . 24
3.6 Conformity . 24

4 Model co-evolution with mDif . 25
4.1 Syntax extension . 26
4.2 Notations . 26

Model set operations . 26
Sub-model . 26
Substitution of model component . 27
Empty model . 27

4.3 Principles of reversible model migration . 27
Migration . 27
Recontextualization . 28
Main property . 30

4.4 Diagnostics . 31
Migration diagnostic . 32
Black-box rewriting tool diagnostic . 32
Contextualization diagnostic . 32

4.5 By-default model migration . 33
4.6 Model migration by operator in detail . 34

Create class . 34
Create data type . 34
Create attribute . 35
Create reference . 35
Delete class . 36
Delete data type . 36
Delete attribute . 37
Delete reference . 38
Set classifier name . 38
Set feature name . 39

Set lower bound . 40
Set upper bound . 41
Set abstract . 41
Set container . 42
Move feature . 42
Move reference target . 43
Move attribute type . 43
Add super class . 43
Remove super class . 44
Move super class . 45
Move opposite . 47
Remove opposite . 47

4.7 Specifications . 47

