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ABSTRACT :  This paper presents a technique to analyze and optimize Continuously Varying 

Transmission Lines (CVTL’s), used to design microwave band-pass filters in planar technology. For 

millimeters waves, radiation losses can increase quickly, especially for sharp discontinuities in planar 

circuits. In this approach, rather than taking account of this effect in a full-wave analysis, we generate 

structures without discontinuities. Moreover, the line shape is optimized to reduce spurious responses out 

of the band-pass. For several filters, measurements are compared with simulation results. 
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1. INTRODUCTION 

 It has been shown [1] that for a simple stub, radiation increases dramatically beyond 

140 GHz. When an electromagnetic simulation of a total mm-wave circuit is carried out, all 

these radiation losses are accounted for. However, computational requirements are very 

expensive in CPU time, and no optimization is conceivable. In a circuit, there are many 

sources of losses (conductor and dielectric, surface roughness). Our technique concerns the 

minimization of the radiation losses that appears for sharp discontinuities in planar filters. In  

previous papers [2,3], we have applied the Continuously Varying Transmission Lines (CVTL) 

method for low-pass filters carried out in coplanar technology. This technique is based on a 

simple formalism and no approximations are made in the successive steps. Moreover, 
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optimization of the global shape is permitted. Very good agreement in frequencies were 

obtained up to 40 GHz.  

 Although there are many topologies for band-pass filters, only few papers have been 

reported on nonuniform coupled transmission lines. This paper introduces an adaptation of the 

CVTL’s technique to coupled lines, one of the basic structure for band-pass filters. This 

approach is adapted to the design of band-pass filters through the inclusion of the 

corresponding constraints into the model. In comparison to the usual techniques, our method 

brings additional degrees of freedom which are used to control the out-of-band spurious 

responses of coupled band-pass filters. 

 

2. ANALYSIS METHOD FOR A SINGLE LINE : LOW-PASS FILTERS 

 

 2.1 Description of the line shape 

 

Until now in the literature, the only studied nonuniform transmission lines were those 

which are described by a mathematical simple form, such as linear, exponential, parabolic, 

cosine-squared and hyperbolic. But there were no methods for arbitrary line shape. Initially, 

the problem was to find a mathematical form  for the continuous shape which permits the 

resolution of the telegrapher’s equation. Moreover, an optimization process must be 

performed on the whole line to satisfy the filters specifications, for example. The cubic spline 

interpolation was chosen to describe the line shape. It allows to create a curve passing through 

a set of discrete points that minimize the ripples. It also ensures the continuity of the first and 

second derivatives. The impedance variation between two discrete points is described by the 

following cubic polynomial : 

Z(x) = Z0 + Z1 x + Z2 x
2 + Z3 x

3         (1) 

with 
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where x varies from 0 to .  is the line length between Zj and Zj+1 which represent the 

ordinate of the jth and (j+1)th discrete points used to define the cubic spline interpolation. Z’’j 

and Z’’j+1 are the second derivative of the impedance variation Z(x) at these respective points.  

Here, a lossless nonuniform line is considered. So, this relation can also be expressed in the 

form of : 

   
 xC

xL
xZ                (2) 
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Z0 is equal to 
00 / CL  at the input end of the nonuniform transmission line, where L0 and C0 

are the inductance and capacitance at x = 0. Using the TEM transmission line model 

(telegrapher’s equations) and equations (2)-(4), the voltage V(x) and current I(x) in the 

frequency domain, along this line are defined as: 
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 2.2  Equations resolution 

The solution of the voltage equation is given by : 

    E(x).qD(x).pxV          (6) 

where p and q are two constants and D(x), E(x) represent two power series expansions: 

 





0j

j
j xdD(x)            (7) 

and 

 





0j

1j
j xeE(x)            (8) 

 

Then, the current relation is expressed by using the solution of the voltage (6) : 

 

 (x))q.E'(x)(p.D'
Z(x)

vj
I(x) 







       (9) 

 

where v is the propagation velocity through the line, D’(x) and E’(x) are the first derivatives of 

D(x) and E(x), respectively. The convergence of these four expansions is ensured by the 

Fuchs theorem. Two recurrence relations of order five are obtained by including (7) and (8) 

into (6) and then into (5), and by equating terms of same degrees : 
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 with 
v

  , a0 = 1  and  b0 = . 

 

2.3  Scattering parameters of the whole line 

 

 The figure 1 represents a line section between two discrete points, with Z0 and ZL, the 

characteristic impedance at the left- and right-hand sides, respectively.  

 

Figure 1 : Line section and characteristic impedance 

To determine the constants p and q in the V(x) and I(x) expressions, boundary conditions are 

applied. Thus, at the output end : 

 

LZ
xI

xV

x


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)(           (12) 

where ZL=Z(x = ) 

This expression give the ratio : 
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with D = D(x = ), and similarly for E, D’ and E’. 

Then, at the input end we have : 
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where Zin is the input impedance, which is expressed by using p/q. The associated reflection 

coefficient in is defined as : 

 
0in
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The section line is terminated with a matching transmission line of characteristic impedance 

ZL, so the scattering parameter S21() is given by : 
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Using this relation and the p/q ratio, S21() is directly expressed from D, E, D’ and E’ : 
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At the input end, in is equal to the S11() scattering reflection coefficient : 
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The reciprocity principle implies that S12() = S21() and using the same approach, the 

parameter S22() is found as : 
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At this step, we have the knowledge of the four scattering parameters of a line section. 

But there are defined with impedance references Z0 and ZL. So changing-impedance reference 

formulas are used to pass at the common reference 50 . 

 

Concerning the analysis of the whole line, the same method is applied to the different 

line section. Then each scattering matrix is transformed in chain matrix, and then cascaded to 

be converted again into scattering parameters.  

 

 2.4 Optimization of the whole line 

 

One of the main advantages of this method is the possibility to optimize the CVTL to 

achieve a microwave function, such as filtering for example. In optimization process, the 

freedom degrees  of a system or device are in relation with the components of the 

optimization vector. Here, these components are the coordinates of the discrete points used in 

the cubic interpolation, e.g. xj positions and Zj impedances 

 For low-pass filters, the optimization was performed on the reflection coefficient 

S11( The algorithm is based on the Levenberg-Marquardt and J.J. Moré method [4], which 

uses the least-square criteria. The number of freedom degrees associated with several random 

generations of the input vector gives at the end of convergence process different transmission 

line shapes for responses that are in general equivalent. Finally, the choice of the best shape is 

determined by the more feasible profile. 

 To validate the theory, a stop-band and several low-pass filters have been designed and 

carried out in microstrip and coplanar technology [2][3]. A comparison with classical 
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Chebyshev synthesis have shown differences in the 1-15 GHz range. Indeed, the losses in the 

band and the deviation between theory and measurement at the cut off frequency were higher 

for the Chebyshev than for the CVTL. Other filters were optimized to eliminate the spurious 

response of the S21 parameter up to four times the cutoff frequency.  

 In telecommunication applications, band-pass filters are mostly used. So the next step 

is to extend this technique to these filters. 

 

3. APPLICATION FOR COUPLED TRANSMISSION LINES : BAND-PASS FILTERS 

 

 For band-pass filters, we have chosen the topology of coupled transmission lines and 

applied the CVTL technique to each resonator. Because of the symmetry of the structure, the 

analysis is classically simplified by using the even and odd modes (figure 2) : 

 
 

Figure 2 : Nonuniform coupled transmission lines 

 

3.1 Symmetry of the structure : even and odd modes 

 

Usually, only the coupling coefficient is taken into account [5], and the even 

impedance Z0e(x) and odd impedance Z0o(x) along the lines are deduced while keeping 

constant their product :   50)()( 00 xZxZ oe . This constraint is particularly useful for 

couplers, but it brings restrictions for filters. 

Moreover, the variations of even and odd mode impedance are both interpolated in the 

approach that we proposed, but separately. To design band-pass filters with coupled lines, the 

4-port structure shown in Fig. 2 is converted into a 2-port quarter-wavelength resonator. So, 

using the notations of (7) and (8), S21 and S11 are given by : 
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where the index e and o are associated with the even and odd modes, respectively. 

 

Before including open-end effects [6] and cascading these elements, we introduce in 

the proposed formalism the dispersion on even and odd characteristic impedance and effective 

permittivities. At each frequency step, the frequency-dependent values are calculated with 

accuracy [7] to evaluate the scattering parameters. The reference impedance that set the 

physical dimensions is chosen at the center frequency of the band-pass.  

When resonators are cascaded, the continuity at the interconnection point (A plane on 

figure 3) is insured by using the same even and odd impedance values for both side of the 

structure. 

 

Figure 3 : Configuration of two cascaded resonators 

 In both simulation and optimization, the even and odd impedance values are defined as 

two single continuously functions as shown in figure 4. Note that the odd mode values must 

be always lower than even modes, which is guaranteed by constraints on the optimization 

process. 

 

Figure 4 : Variations of odd and even impedance values 
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Moreover as illustrated in figure 2, the bending out of the coupled line shape increases 

the line length (lnu > lu) to be view by the waves. A simple integration method enable to 

evaluate the length lnu taken at the strip center. 

In the next step, the different resonators are cascaded by using the chain matrix 

following the design of  the coupled lines. The number of resonators depends on the filter 

order. 

Finally, nonuniform single lines are connected to the filter ends to provide smooth 

transitions (Figure 3), while of course being simulated. 

 

3.2 Optimization of the two modes to eliminate spurious responses 

 

 Other methods to design nonuniform band-pass filters don’t take into account the two 

different phase velocities. These ones implies a spurious band-pass at twice the center 

frequency of the desired band-pass. Thus, a compensation method to eliminate this phase 

velocity difference has to be added. A saw-tooth or serpentine modification of the inner edges 

coupled lines is widely used [5].  

 

 Here, a posteriori phase velocity compensation is not required while a complete 

analysis of odd and even mode is achieved. In fact, the originality of the method is based on 

odd and even impedance nonuniform variations to generate low-pass or stop-band 

characteristic in the pass-band structure. Another technique allows the coupled lines to 

overlap outside the resonator proper [8]. This configuration makes the odd mode length 

longer then the even mode and thus compensates for the phase velocity difference. So, the 

parasitic band–pass is largely removes. 

 

 3.2.1 : First order filter – first spurious response elimination 
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The method capabilities are first tested to minimize the effects of the phase-velocity 

difference due to the inhomogeneous propagation medium of microstrip coupled lines. 

Indeed, the aim is to get better band-pass symmetry and lower parasitic at twice the center 

frequency than with common coupled-line microstrip filters. Two simulation results are 

presented; the first one is the S21 simulation parameter for the uniform coupled lines, and the 

second one the simulation of the optimized nonuniform filter. Experimental results are given 

for validation (Fig. 5-b). Four discrete points per quarter-wavelength elements are sufficient 

to describe this filter impedance variation (see Fig. 5-a) designed on alumina substrate (r = 

9.6, h = 0.635 mm, thickness metallization : t = 5 m, synthesis frequency : 5 GHz). The 

degrees of freedom allows us to control the spurious responses of the S21 parameter while 

keeping the same band-pass response. 

 

 

 

 

Figure 5 :  Order one filter with compensated velocity 

(a)  Microstrip profile - (b) Frequency responses. 
      experimental results for the nonuniform lines 

    theory for the nonuniform lines 
 theory for the uniform lines 

3.2.2 : Third order filter 

 

 To validate the technique, filter of higher order have been designed and realized. The 

goal was to obtain better rejection and to reject spurious response of S21 parameter on larger 

band-pass. The figures 6,7 and 8 give the profile of the third order filter, the transmission 

parameter and the return losses : 
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Figure 6 :  Profile of the third order filter 

 

Figure 7 : Transmission parameter of the third order filter 

 

Figure 8 : Return losses of the third order filter 

 
 

It can be noted a good agreement in the band-pass but a slight discrepancy near 10 

GHz. This is probably due to the lack of precise model for the open lines.  

 

4. CONCLUSION. 

 

 A new method for band-pass filters design has been proposed. Firstly, the technique 

using CVTL was developed for low pass filters. Based on a simple mathematical formalism 

without approximation  (in the frame of TEM mode), the method generates a line shape which 

permits the optimization of the filter characteristics. It has been shown a very good agreement 

with measures over a large range of frequencies (0 – 50 GHz) [3]. Then, the technique has 

been extended to band-pass filters through the coupled lines topology. Analysis and 

optimization was performed separately on the even and odd modes of the symmetric structure 

to ensure the most complete description. So, in a first step, the natural different phase velocity 

of the microstrip technology was compensated by using the nonuniform shape of the different 

coupled lines. Then higher order filter was designed and realized to obtain better rejection and 

eliminate spurious band-passes of the transmission parameter. Nevertheless, coupled lines are 

one of the many topologies for band-pass filters. So, it will be interesting to applied the CVTL 

at other structures to obtain better performances, particularly at millimeter frequencies. 

Indeed, at these frequencies, the absence of discontinuities should introduce no radiation and 

show the interest of the concept. 
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Figures Captions 

 

 
Figure 1 : Line section and characteristic impedance 

 

Figure 2 : Nonuniform coupled transmission lines 
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Figure 4 : Variations of odd and even impedance values 
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Figure 5 :  Order one filter with compensated velocity 

 (a)  Microstrip profile - (b) Frequency responses. 
      experimental results for the nonuniform lines 

    theory for the nonuniform lines 
 theory for the uniform lines 
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Figure 6 :  Profile of the third order filter 

 

Figure 7 : Transmission parameter of the third order filter 
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Figure 8 : Return losses of the third order filter 
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