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Abstract  —  We report on the analysis and design of a 
Photonic BandGap coplanar waveguide (CPW) that jointly 
exhibits pulse compression and superluminal group velocity 
in the so-called anomalous dispersion region for a Gaussian 
modulated signal. The coupling of an analytical analysis 
method with an optimization algorithm enables the design 
of a coplanar PBG to reach the specified function. 
Measurements confirm our simulation data and the 
relevance of our approach. Further to these experiments, a 
discussion on superluminal velocity fundamentals is 
proposed. 

I. INTRODUCTION 

The development of photonic crystals or Photonic 
BandGap (PBG) for optical devices [1] has induced the 
emergence of novel periodic structures in microwave and 
millimeter-wave frequency ranges. Most microstrip PBG 
structures are designed by etching periodic holes in the 
ground plane [2] to get either filtering functions or 
specific antenna radiation patterns [3]. Many networks 
are built on criteria initially developed for optical 
applications such as Fiber Bragg Gratings (FBG) [4] 
often considered as 1-D PBG. FBG allows optical pulse 
compression both in reflection and transmission. Here, a 
microwave planar pseudo-periodic pattern is developed 
to get compression in transmission. Then, the 
compression technique is implemented in the forbidden 
bandgap where the group velocity is expected to exceed 
c, the speed of light in vacuum [2]. At microwave 
frequencies, the characterization of this “superluminal 
pulse propagation” is of prime interest: first, time 
advances longer than those in optical domain can be 
obtained and, secondly, constraints are less strict in 
microwave circuit technological processes.  
 The 1-D PBG proposed here was designed by using 
an analysis method originally developed for microwave 
filters [5] and coupled with an optimization algorithm. 
Such a structure can also be treated as a Gaussian stop-
band filter with continuous patterns. Theses patterns are 
simulated through our specific analysis approach as the 
overall shape consists of continuous impedance 
variations. Moreover, this analysis method being 
applicable to arbitrary shape, it provides a fit of a 
specified function more accurate than PBG with identical 

cascaded sections. The associated formalism is described 
in section II. Frequency and time simulations are then 
compared to this objective function and to measurements. 
The experiments confirmed a pulse maximum velocity 
higher than c, and a pulse shape compression in 
agreement with our expectations.  

II. ANALYSIS FORMALISM 

To analyze arbitrary line shape, we have developed 
[5] the Continuously Varying Transmission Line (CVTL) 
Method. Our initial aim was to find a mathematical 
expression for a continuous line shape whose S-
parameters could be solved through the telegrapher’s 
equation. This was done by defining the line frame with a 
set of couple values, i.e. position and impedance. Then, 
the line shape was described by a cubic spline 
interpolation to create an impedance curve passing 
through these discrete points. The cubic polynomial 
between two consecutive points is defined as follows: 

Z(x) = Z0 + Z1 x + Z2 x2 + Z3 x3  (1) 

where x varies from 0 to l, and l is the line length 
between two points. The polynomial coefficients  Z0, .., Z3 
are calculated to ensure the first and second derivative 
continuities of the impedance variation Z(x) at the input 
discrete values. The lossless non-uniform line impedance 
variation can also be written as: 
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CLZ =  is the line impedance at the input 

end of the non-uniform transmission line; L0 and C0 are 
the inductance and capacitance at x = 0. Using the 



telegrapher’s equation approach in the frequency domain, 
the voltage V(x) and current I(x) in this line are expressed 
as: 
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The solutions of this equation system are respectively: 
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where p and q are two constants, D(x) and E(x) are two 
power series expansions given by: 
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D’(x) and E’(x) are their first derivatives; v is the 
propagation velocity in the line. The dj and ej values are 
calculated from fifth-order recurrence relations.  

The S-parameters are expressed from the current 
and voltage solutions for a section of line between two 
discrete points. By applying boundary conditions to this 
section, the p/q ratio, and then the scattering parameters 
are calculated: 
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S12 and S22 expressions are obtained by following 
the same approach even with an asymmetric section line. 
Z0 and ZL represent the characteristic impedance at the 
left- and right-hand sides of this line section, 
respectively. So, impedance-changing formulas are used 
to normalize the S-parameters to the 50 Ω common 
reference impedance. The whole line is characterized by 
a simple product of the sections chain-matrices. Each of 
them is got from expressions (9) and (10). The hereabove 
concept is well suited for association with an 
optimization algorithm [6] to reach microwave filtering 
[5] or adapting functions because the whole shape can be 
manipulated by a set of few points (Zj and xj; j = 1, n+1; 
n: number of line sections). 

III. CPW PBG DESIGN AND SIMULATION 

In PBG, the Bragg condition relates the central 
frequency of the forbidden band to the line periodicity. 
The number of periods and the range of impedance 
variations both fix the stop-band level and width. The 
initial parameters of the structure are based on 6.5 quasi-
sinusoidal periods apodized by a specified envelope. To 
study pulse compression, the most useful function is the 
Gaussian one. Its Fourier transform is also a Gaussian 
where a broadening of the standard deviation in 
frequency-domain corresponds to a compression in time-
domain. Moreover, for such a passive structure, the shape 
of the forbidden band is close to a ratio of two Gaussians. 
Here, the transfer function (indirectly the S21O parameter 
magnitude (Fig. 1)) that creates the microwave pulse 
compression is used as the objective function for the 
optimization procedure. The input signal T1(f) is a 
Gaussian-modulated pulse of 4.5 GHz middle-height 
width with a 20 GHz carrier frequency (fc): 
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where σ represents the Gaussian time standard deviation. 
In relation (12), T2(f) is the output frequency signal; rc, 
the time-compression ratio is equal to 0.75 and A is the 
attenuation at fc: 
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The S21O parameter magnitude (Fig. 1), calculated 
from the frequency ratio T2/T1, provides the objective 
function for the optimization procedure; it is restricted to 
the attenuation area by a gate function.  
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Fig. 1. S21 parameters and frequency signals T1 and T2. 
S21o: objective function. S21S, S21m: simulated and measured 
parameters. 

The optimization process is associated with the 
analysis method of continuous planar shape described in 
section II. This approach allows an exact analysis of 
arbitrary shape of lossless line under the quasi-TEM 
assumption.  
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Fig. 2. Coplanar profile on alumina substrate (not to scale). 
 
Optimization of the initial continuous patterns gives the 
synthesized coplanar shape depicted in Fig. 2 for an 
alumina substrate (εr = 9.6, h = 0.635 mm). Fig 1 shows 
that the optimized simulated S21S parameter fits the 
objective function. 

IV. EXPERIMENTAL RESULTS 

The PBG parameters were measured in frequency-
domain with a vector network analyzer by using a 
specific TRL calibration kit to get accurate phase values. 
In order to allow on-wafer measurements, this kit also 
contained quadratic tapers alike those found at the ends 
of the device in fig. 2. No air bridges were required due 
to both the circuit symmetry and the absence of 
discontinuities. Fig. 1 evidences that the S21m measured 
parameter is close to the simulation result. However, 
above 25 GHz, the frequency dispersion model used in 
our approach seems insufficient. In the bandgap, the 
noisy phase experimental points may bring unphysical 
group delay values through differentiation. So, a 
polynomial least square fit is applied to the experimental 
phase points before calculating group delay. From 
simulations and experiments, the group-delay and -
velocity (Fig. 3) both demonstrate their superluminal 
behavior in the rejected band.  
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Fig. 3. Simulated and experimental group delay and velocity. 
 
Fig. 4 presents the ω-β diagram computed from S21 phase 
and then displayed in combination with the simulated S21 
magnitude plot. Measured βm and simulated βs curves are 
compared to a simple microstrip line of the same length 
with a propagation constant βL. Following Bragg’s law, 
the bandgap appears when half the wavelength matches 
the device period a. β takes the specific π/a value at the 
center of this highly dispersive region. Fig. 5 presents the 
theoretical envelopes of the input pulse Vin and of the 
output pulse Vout shifted from the central group delay 
value. The plot also shows the pulse envelope Vc issued 
from the same input pulse and after propagation though 
the same length at c speed. The simulated and measured 

transfer functions are got from their respective S21 
parameters.       
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Fig. 4. Dispersion diagram with the corresponding insertion 
loss. 
 
The frequency product of these functions by T1(f) are 
passed to iFFT to get the time-domain modulated pulses: 
the simulated output pulse VoutS fits in Vout envelope. This 
agreement verifies the time advance from Vout to Vc and 
illustrates the 1.4.c superluminal velocity of Vout pulse 
maximum observed in fig. 3. 
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Fig. 5. Input and output signals and envelopes. 
 
The pulse Voutm calculated from experimental values 
showed also a good agreement with simulated and 
analytically estimated envelopes. A pulse compression 
ratio of 0.78 was found. 

V. DISCUSSION 

First of all, the above results are not in contradiction 
with the requirement of Einstein’s causality, which 
specifies that neither energy nor information can actually 
travel faster than c. This requirement was, of course, 
valid in previous studies dealing with superluminal group 
velocities in one-dimension PBG [2,8]. Here, this is 
evidenced by Fig. 6 where pulses are not normalized to 
their respective maximum contrarily to Fig. 5 and many 
articles [2;8-9] about “superluminal pulses”. Then, Fig. 6 
clearly shows that the Vout envelope is fully included in 
the Vc one, which depicts the output signal after 
propagation at c through the same length as our device, 
without attenuation. The Vout pulse peak presents a ∆t 
time advance to Vc maximum. Then, only the necessarily 



subluminal “front edge velocity” can be related to the 
“information velocity” as introduced by Sommerfeld and 
Brillouin [7]. Here, the group velocity can be identified 
as the velocity of the Gaussian pulse maximum on 
condition that its shape remains Gaussian. 
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∆t: time advance between Vout and Vc maxima. 
 
As a matter of fact, at some wavelengths the periodic 
variation of the line impedance creates destructive 
interferences producing the forbidden gap in transmission 
and in time-domain attenuating the later part of the pulse. 
This pulse reshaping is induced by reflections analogous 
to those created in optical Bragg gratings. Thus, this 
phenomenon deals with classical interferences in an 
anomalous dispersion region, i.e., when the refraction 
index decreases with increasing frequency. A full wave 
analysis is not required to reveal superluminal group 
velocities even if this effect in 1-D PBG is often 
associated to evanescent modes [3,8]. Increasing the 
compression ratio through such passive networks implies 
more PBG periods and therefore a higher rejection level. 
Larger time advances could also be evidenced, but again 
with a deeper frequency gap. To resume, our results 
come from a compromise between rejection level and 
PBG length to provide pulse compression while keeping 
the measurement noise contributions at a reasonable 
level.  

VI. CONCLUSION 

The general nature of shapes simulated with short 
computation time makes this approach particularly 
efficient for the design of planar continuous patterns, 

when it is associated with an optimization algorithm. 
Moreover, a simple mathematical formalism (without 
approximation in quasi-TEM approach) enables the 
complete characterization of the anomalous velocity 
evolution through the designed PBG structure. The pulse 
shape is compressed while keeping its peak velocity 
higher than c. Thanks to this approach, optimization of 
the structure group delay could be used to avoid 
microwave pulse dispersion-broadening; moreover, 
centering the pulse carrier at the bandgap edge could 
reduce strong attenuation. Microwave real-time spectral 
analysis [9] could also be performed by coplanar 
continuous patterns specifically designed through the 
above approach. 
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