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Gyroresonance in unsaturated composite bodies: Experiments and theory
Jean-Luc Mattei, David Bariou, Alexis Chevalier, and Marcel Le Floc’h
Laboratoire d’Electronique et des Systèmes de Télécommunications, UMR CNRS 6616,
Université de Bretagne Occidentale, Brest, France

The permeability spectra of composite magnetic materials~NiZn ferrite composites and YIG
composites! has been experimentally studied on a wide range in magnetic loadC. The resonance
frequency decreases with the increasing magnetic load of the mixture. This is attributed to the fading
of the magnetic pole on the surface of the magnetic inclusions. A theory is developed which is
intended to give an expression for the gyroresonance frequency of magnetic composites in their
unsaturated magnetic state. It fits the experimental data over its full range of volume fractionC
without any corrective factors. The proposed relation, which is an extension of the Kittel’s
expression for the resonance frequency of a saturated body, points out a noteworthy close link
between the concept of reciprocity and the one of demagnetization. ©2000 American Institute of
Physics. @S0021-8979~00!53508-7#

I. INTRODUCTION

In order to make satisfactory predictions about the be-
havior of a material intended to be manufactured, it is useful
to benefit from laws describing its relevant properties in
terms of meaningful physical parameters. Among the laws
widely exploited in designing materials for microwave appli-
cations, the Snoek’s law1 and the Kittel’s relation2 can be
mentioned as they are certainly the most currently used for
their good reliability when applied to bulk materials. In
counterpart there is a lack of any simple relation which could
confidently predict the behavior of magnetic composite ma-
terials.

This paper presents a straight relation, which describes
the particular behavior exhibited by the resonance frequency,
occurring in the microwave range, of unsaturated magnetic
composite materials. It points out a close relation which ex-
ists between, on one hand, the demagnetizing factor attrib-
uted to a magnetic inclusion of the composite, and on the
other hand, a reciprocity principle derived to be applied to
composite mixtures.

II. EXPERIMENTS: PROCEDURE AND RESULTS

Powders of YIG and Ni–Zn ferrites were prepared by
mechanical grinding of sintered bulk materials. Particles
were sized to 10mm for the YIG and about 0.1mm for the
Ni–Zn ferrites. In both cases particles have polydomain
structures with isotropic properties well described by a scalar
magnetic susceptibility. Composite materials were produced
by mixing nonmagnetic powder~resin! with soft magnetic
powder, then by pressing the mixtures in ring-shaped molds
at room temperature. The prepared composite samples have a
volume loadingC in magnetic matter contained between
5.1% and 69.5%. The complex susceptibility (x8– jx9) has
been investigated at room temperature in the 30 MHz–20
GHz frequency band using network analyzers~HP 8753 and
HP 8720! and a coaxial line filled with the toroidal samples
in the APC7 standard. The magnetization mechanism con-
cerning the powder materials this work deals with, and in

spite of their initial polydomain character, is controlled pri-
marily by spin rotations in the explored frequency range~see
the inset in Fig. 1, and also Ref. 3!.

For several volumic fractionsC, the frequencyf R to
which x9 reaches its maximum value is reported. As shown
in Fig. 1, f R decreases with the increase in volume loading of
magnetic matter. Previous works4–6 report on some experi-
mental results in favor of this kind of behavior off R . The
next sections discuss to what extent this behavior can be
attributed to the demagnetizing field generated by the mag-
netic poles on the surface of the magnetic inclusions.

III. THE RECIPROCITY FACTOR

Considering two magnetization distributions (M1 and
M2) occupying two regions of volumeV i ~i51 or 2!, the
magnetic flux densityB2 produced byM1 throughout the

FIG. 1. Gyroresonance in unsaturated magnetic composites vs the volumic
fraction in magnetic matterC. The symbols are the experimental data, the
full lines are the fits provided by Eq.~8! with the following values for the
YIG: M S5140 kA/m, H0511.4 kA/m, a50.3, x i521; and for the
Ni0.7Zn0.3Fe2O4: M S5410 kA/m,H0521.3 kA/m,a50.3,x i511. It may be
said that magnetic composites withC higher than around 0.25 have the same
resonance frequency as the bulk itself~dashed lines!.The open circle is the
theoretical value for the bulk YIG@A. Globus, J. Phys C138, 1 ~1977!#. The
spectra of dynamic losses shown in the inset gives a strong argument in
favor of magnetization mechanism only controlled by spin rotations (0.15
,C,0.64).
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volume V2 is linked to the magnetic flux densityB1 pro-
duced byM2 throughout the volumeV1 by the reciprocity
theorem, proved by Brown, as follows7

E
V2

B1 .M2dt5E
V1

B2 .M1dt. ~1!

However, as it will be shown in the following, if the prin-
ciple of reciprocity is intended to be applied to unsaturated
composite mixtures, it must be expressed as an extended
form of Eq. ~1!. The composite mixtures considered in this
work are constituted of magnetic~volumic fractionC! and
nonmagnetic~volumic fraction 1-C! particles dispersed at
random. It will be assumed the inclusions are aggregated in
clusters, the sizes of which are supposed to depend onC
only. Effective medium theories~EMTs! describe composite
materials in term of effective permeability, which character-
izes an equivalent medium.8 Among the available EMTs pro-
viding simple, analytical, and nonempirical expressions for
the effective permeability, the Bruggeman self-consistent
theory8 is known to predict the existence of a percolation
thresholdCP ~CP51/3 in the basic form of this EMT!.

In the dipolar approximation, on which this EMT is
based, the uniform magnetic flux density inside the volume
of a spherical particle~permeabilitym i , uniform magnetiza-
tion Mi)immersed in the homogeneous equivalent medium
~permeabilityme , uniform magnetizationMe! with uniform
magnetic fieldH0 is Bi5m iHi , and its magnetization isMi

5x iHi , where9

Hi53
me

2me1m i
H0 , ~2!

therefore, one gets

E
V

Bi Medt5

3m ime

2me1m i
E

V
He Medt, ~3a!

E
V

Be Midt5

3x ime
2

2me1m i

1

xe
E

V
He .Medt, ~3b!

where the integrations are over the composite’s volume. Tak-
ing the member to member ratio of Eqs.~3! leads to the
following noteworthy relations:

E
V i

Bi Medt5RE
Ve

Be Midt, ~4a!

with

R5

m ixe

mex i
. ~4b!

~The integrations have been reduced to the volumes where
the magnetizations are nonzero.!

It appears that relations~1! and~4a! are strictly the same
in two particular cases only: either if both materials~i.e., the
magnetic particle and its surrounding equivalent medium!
are saturated@m i5me51, the situation to which Eq.~1! re-
fers# or if they are identical (m i5me). But in the general case
of unsaturated material, with which this paper deals,R be-
longs to the range@0,1#. Therefore, Eq.~4! predicts the way

in which the reciprocity is verified. It depends on the value
of the ratioR, which will be called reciprocity factor.

It can be attempted to link the concept of reciprocity to
the one of demagnetization. Actually the state of demagneti-
zation of a body depends on its shape through the continuity
of the normal magnetic flux density component on its exter-
nal surface, whereas the reciprocity principle deals with the
flux density throughout the volume of this body. Let us con-
sider the simple case of a magnetic ellipsoid characterized by
its permeabilitym i and its shape factor9 A~expressed as a
diagonal tensor of componentsAa in the particle frame,a
5x, y, or z! immersed in the continuous medium of perme-
ability me . The extent to which the external fieldH0 is de-
creased by the magnetizationMi is given by the demagne-
tizing tensor N in the following expression:Hi5H0

2NMi . From this definition of the demagnetizing factorN,
it comes out that its diagonal componentsNa are9

Na5

m i2me

me~m i21!
Aa . ~5!

The reliability of this equation has been successfully verified
by using numerical simulations.10 It is clear from Eq.~5! that
the demagnetization factorN depends on the shape of the
magnetic inclusion, as well as of its surrounding medium.
Indeed when the host is the empty space (me51), one gets
Na5Aa ~noted Na

0 below!, whereas 0,Na,Aa when me

.1. The demagnetizing fieldH52NMi is generated by the
magnetic poles on the inclusion surface. Therefore, Eq.~5!
can be understood as an illustration of the magnetic poles
fading which is intuitively expected to arise for a magnetic
body included in a composite medium, when the magnetic
load is increased. Keeping this in mind, we propose to ex-
press Na in the following attractive form, which reflects
clearly the magnetic poles fading described above:

Na5Aa~12R !, ~6!

whereR is the reciprocity factor given by Eq.~4b!.
The influence ofC on the reciprocity factorR, and there-

fore the variation of the demagnetization factor coefficients
Na , are obtained through the expression for the effective
permeabilityme . Going back to the Bruggeman’s EMT, the
self-consistent relation̂m iHi&5me^He&, where^ & denotes
the average over the various types of inclusions, leads to the
desired expression11 of me .

The variations ofR @Eq. ~4b!# and of Na @Eq. ~5!# as
functions ofC are shown in Fig. 2, in the case of spherical
inclusions~Aa51/3!. We think that both are correlated to a
progressive decrease of the magnetic pole density. Their
typical trend is to tend to a constant~the value of which is
characteristic of a bulky homogeneous material! when the
percolation threshold~CP51/3! is reached. This behavior
might show that any two particles in the composites can be
considered as interconnected by a magnetic path only ifC is
higher than the percolation threshold. The role of percolation
is more pronounced if high permeability (m i) materials are
used.
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IV. GYRORESONANCE IN COMPOSITE BODIES

In order to test experimentally the role played by the
reciprocity factor in the demagnetization of unsaturated mag-
netic composites, this section proposes an interpretation of
the gyroresonance measured on soft composite materials.

Actually, as first shown by Kittel,2 the condition for the
gyroresonance of a body depends strongly on its shape. The
Kittel equation for the resonance frequency, which deals
with an ellipsoid in the saturated magnetic state~with the
magnetizationMS), placed in the empty space and charac-
terized by the demagnetization factorsNa

0 ~in fact, Na
0
5Aa

in this situation9! is

f K5Af 01 f M~Ny
0
2Nz

0!3~11a2!21/2. ~7!

In this relation f 05gH0/2p ~with g5353121023
MHz/

Am21, and whereH0 is the crystalline anisotropy field re-
sponsible for the magnetic moments alignment, its direction
defines thez axis. No external static field is considered!,
f M5gM S/2p anda is the damping coefficient.12

According to the EMT, the description of the composite
material consists of an ellipsoidal particle included in the
effective medium. In order to make Eq.~7! suitable to be
applied to such a situation, in the expression off K it is sug-
gested to substitute the demagnetizing factorNa

0 by Na , as
given by Eq.~6!. Therefore, the proposed extension of the
Kittel expression~7!, initially written for a saturated ellip-
soid, to the frequency resonancef R of an unsaturated mix-
ture formed by the assembly of saturated ellipsoids randomly
dispersed in a nonmagnetic matrix, is written as

f R5@ f 01 f M3~Ny
0
2Nz

0!3~12R !#3~11a2!21/2, ~8!

which points out the important role taken by the reciprocity
factor R. Figure 2 shows how Eq.~8! matches very satisfac-

torily our experimental data~The magnetic parameters that
have been used are given in the caption of Fig. 1.! In par-
ticular, a quite good approximation would be to writef R

5 f 0 from a magnetic loadC50.25 up toC51. To perform
these fits, one has to know accurately the values taken by the
factor Aa , which characterizes the inclusions shape at a
given volumic fractionC. As C increases the individual par-
ticles stick together to form complex chains and clusters.
Hence the form factorAa to be used in the EMT must reflect
this variety of shapes, consequently theseAa’s are lower
than 1/3. Their values are independent of the average isot-
ropy of the material because the EMT is based on an average
of the fields, not of theAa’s ~which appear in the denomi-
nator of the fields!. Then the experimental values for the
shape factor are obtained by inverting the self-consistent
equation^m iHi&5me^He& in the static limit.13 The value of
Aa is about 0.25 ifC is near 5%.13 In the range 5%–20%, the
shape factor increases until it reaches the value of 1/3. The
isotropic shape of the aggregates is recognized from this
characteristic value. About the value found for the damping
parameter (a50.3!, note that previous determinations ofa
obtained from the Landau–Lifschitz equation14 also strongly
differ from the results obtained in ferromagnetic resonance
experiments~wherea;1023– 1022).

It must be underlined that the value ofC520% to which
the shape factor reaches its maximum value of 1/3! is nu-
merically equal, or nearly so, to the site percolation threshold
~CP518%! given for a three-dimensional structure of equal-
sized randomly packed hard spheres.15,16 It can be easily
verified that the variation off R aroundCP is as sharp as the
permeabilitym i is high. When the permeabilitym i takes an
infinite value,f R reaches the bulk resonance frequencyf 0 for
a volume concentrationC'20%.
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FIG. 2. Demagnetizing factor@Eq. ~6!, triangles# of a spherical particle
included in a composite material, and reciprocity factor@Eq. ~4b!, squares#
for the composite material, vs the volumic fraction in magnetic matter. The
magnetic permeability of the particle has been taken equal to 20~full sym-
bols! or to infinity ~open symbols!.
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