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An experimental characterization technique for determining the electromagnetic properties of

metamaterials in the microwave frequency band is presented. The method consists in measuring

the S-parameters of an asymmetrical stripline partially filled with the sample to be characterized.

For retrieving the characteristic parameters, two different approaches based on quasi-static

approximations are compared. This measurement cell allows an “in situ” characterization because it

reproduces the electromagnetic environment frequently found in planar technologies for microwave

applications of metamaterials. The whole sample is uniformly excited in magnitude and direction by

the interacting electromagnetic field which guarantees representativeness of extracted permittivity

and permeability and avoids possible inconsistencies due to anisotropy and heterogeneity of

metamaterials. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4775721]

I. INTRODUCTION

Specific constitution of metamaterials imposes consider-

ing certain conditions in order to characterize their electro-

magnetic behavior. Particular attention must be given to

some properties like shape anisotropy, heterogeneity and dis-

persion, which are related to their composite character (typi-

cally arrays of metallic inclusions inside a dielectric

substrate). In the first place, anisotropy entails that the

response of the material changes depending on the direction

of the incident field which means that permittivity and per-

meability should be represented by tensor quantities. In order

to determine without ambiguity one component of the per-

mittivity and permeability tensors, all the unit cells constitut-

ing the sample must be excited by the same polarization and

magnitude of the incident electromagnetic field. In the sec-

ond place, heterogeneity in metamaterials implies that the

method used for extracting characteristic parameters must

consider a minimum number of inclusions in order to get the

asymptotic behavior of the metamaterial close to the ideal

case with an infinite number of inclusions.

Existing experimental techniques for extracting electro-

magnetic properties of metamaterials are based on the mea-

surement of scattering parameters (S-parameters) of a

particular guided or unguided structure containing a sample

of material. Then, permittivity and permeability are retrieved

by an electromagnetic analysis of the structure which gener-

ally includes an inversion procedure. Among guided meth-

ods, the most used are resonators,1 waveguides,2,3 and planar

transmission lines.4 Even though having good sensitivity,

resonating structures are not well suited for characterizing

materials exhibiting dispersive properties. In waveguide

based techniques, the particular electromagnetic field pattern

of propagation modes implies that all the inclusions are not

homogeneously excited. In the general case of stripline tech-

niques, the sample fills the entire cross section of the line

which is illuminated by a TEM mode. This configuration

entails that inclusions which are far from the strip conductor

will be excited by different polarization of the electromag-

netic field than inclusions under the strip. Depending on the

location inside the line, additional correction due to anisot-

ropy should be applied. Finally, free space methods5,6 guar-

antee the correct excitation by the incident field (planar

wave), but at relative low frequencies (from 10 MHz up to

6 GHz) the considerable size of the samples and required set

up makes their implementation very difficult and expensive.

This work describes an experimental method for extract-

ing electromagnetic parameters of metamaterials between

10 MHz and 6 GHz considering the two characteristics men-

tioned before: heterogeneity and anisotropy. The measure-

ment cell consists in an asymmetrical stripline originally

developed for characterizing magnetic materials.7,8 The

main advantage of this method is that orientation and distri-

bution of the electromagnetic field seen by all the inclusions

is homogeneous. This particular setup also reproduces an

environment very close to that met in practice for typical pla-

nar applications (antennas for example). The article will be

organized as follows: after presenting the method and their

advantages for characterizing metamaterials, two retrieval

procedures will be exposed and experimental results using a

metasolenoid type metamaterial will be compared with simu-

lated data.

II. STRIPLINE METHOD

The asymmetrical stripline used in this characterization

technique is made up of a central conductor enclosed by two

ground planes. The conductor is closer to the inferior plane

in order to concentrate the most part of the energy in the

region where the sample is set as shown in Fig. 1. Thea)Electronic mail: Sandra.Gomez@univ-brest.fr.
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dimensions of the microwave structure are designed to have

50 X characteristic impedance. Conductors’s width is 9 mm,

height between lower ground plane and central strip is

1.85 mm, and height from strip to superior ground plane is

9 mm. The total length of the cell is 23 mm and its width is

30 mm.

A TEM mode is propagated through the empty cell but

in the region loaded by the material the propagated mode is

of quasi-TEM type due to the inhomogeneous character of

the cross-section. Just below the conductor the configuration

of the electromagnetic field becomes homogeneous in mag-

nitude and direction, being the electric field parallel to the

inclusions and the magnetic field perpendicular to the rings

of the metamaterial (Fig. 2). The principle of the method

consists in measuring the scattering parameters (S-parame-

ters) of the stripline loaded by the sample under test using a

Vectorial Network Analyzer. Then, characteristic parameters

(complex permittivity � and permeability l) are retrieved

using analytical procedures. Data processing software is

divided in two sections: an electromagnetic analysis of the

cell (direct problem) and an inverse process to extract the

electromagnetic parameters of the sample.

Asymmetrical character of the line, which concentrates

almost all the energy in the lowest region of the cell, allows

us to approach its overall behavior as a microstrip line.

Nevertheless, when measuring metamaterials, sample’s

width must be shorter than the conductor’s one to insure the

same field distribution for all inclusions. In these experimen-

tal conditions, the microstrip assumption is no longer valid

and the propagation structure becomes more complex.

Two kind of electromagnetic analysis had been tested

for extracting the constitutive parameters of a metamaterial

from the measured S-parameters of the cell. They are both

based on the quasi-static approximation and their main dif-

ference is the way they consider the heterogeneous nature of

the transversal section of the loaded stripline, as it will be

discussed in Sec. III.

III. DATA PROCESSING PROCEDURE

A. Variational approach

The first type of analysis that will be presented is based

on variational theory.9 In this case, the transversal section of

the cell is divided in horizontal layers of air and material dis-

tributed as shown in Fig. 3(a) (note that for implementing

this approach it is necessary to assume that the sample fills

all the width of the stripline). Using quasi-static hypothesis,

we can find relationships between effective parameters of the

structure �th
eff ; l

th
eff and its equivalent inductances and

capacitances,

lth
eff ¼

LðlmetaÞ
L0

and �th
eff ¼

Cð�metaÞ
C0

; (1)

where Cð�metaÞ is the linear capacitance, LðlmetaÞ is the linear in-

ductance of the loaded structure, and C0; L0 correspond to

the same parameters but for the structure without the sample

to be characterized (empty cell).

The Green’s functions are used for solving the charac-

teristic equations of a transmission line composed of differ-

ent layers and determining the values of LðlmetaÞ and Cð�metaÞ:
This procedure (named—“direct problem”) allows us to cal-

culate the theoretical effective permittivity and permeability

of an equivalent material filling the cross section of the cell

(�th
eff ; lth

eff ), which are functions of intrinsic permittivity �meta

and permeability lmeta of the metamaterial.

The second stage of the procedure (inverse problem)

consists in retrieving the values of �meas
eff and lmeas

eff from the

measured S parameters. In order to do that, the composite

structure should be homogenized to be treated as a conven-

tional homogeneous transmission line filled by an unique

material with effective permittivity and permeability (Fig.

3(b)). Then, conventional retrieval procedure Nicolson-

Ross-Weir (NRW)10 can be used. Once we obtain the values

of �meas
eff and lmeas

eff from measurement, an optimization proce-

dure is implemented for matching theoretical and measured

effective permittivity and permeability. Intrinsic values

FIG. 1. Drawing of the stripline measurement cell (superior ground plane is

removed).

FIG. 2. Electromagnetic field pattern in the region of the line loaded by the

sample to be characterized.

FIG. 3. Homogenization of the cross section of the cell-variational

approach.
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(�meta and lmeta) are taken as optimization variables. We

developed a home code using the software MathWorks
VR

MAT-

LAB and a routine for solving non-linear equations based on

Gauss-Newton method.11

B. Transmission line theory based approach

The second approach for retrieving the complex parame-

ters of a material set inside the measurement cell is based on

the transmission line theory. Assuming that the most part of

the electromagnetic energy is concentrated in the region

below the central strip, we consider only the region located

between the strip and the lowest ground plane (Fig. 4(a)). In

terms of electromagnetic analysis, resultant section is an

equivalent two conductors transmission line shown in Fig.

4(b). Perfect electric conductor (PEC) walls represent central

strip and inferior ground plane, while perfect magnetic con-

ductor (PMC) walls are used as boundary conditions at the

edge of the strip considering the symmetry of the field pat-

tern related to the quasi-TEM propagated mode.

As for the variational approach, transversal section is

composed of different layers (air and metamaterial) but, in

this case, the width of the metamaterial sample do not

exceeds the width of the central strip and we can even con-

sider air at each side of the sample. Direct problem consists

in solving the Telegrapher equations of the transmission line,

giving expressions of L and C in terms of the dimensions,

permittivity, and permeability of the different regions. Then,

S-parameters of the structure are expressed in terms of trans-

mission and reflection coefficients, which depend on the im-

pedance Z and the propagation constant c of the line. Finally,

direct problem gave us the S-parameters of the cell as func-

tions of permittivity and permeability of the different

materials.

In order to inverse the electromagnetic analysis (inverse

problem), expressions of the permittivity and the permeabil-

ity of the metamaterial are given in function of the measured

S-parameters using a method comparable to the NRW proce-

dure.10 In comparison with the previous electromagnetic

analysis (variational procedure), the main advantage of the

theoretical approach based on the transmission line theory

lies in the fact that analytical relations can be established to

express the permittivity and the permeability of the metama-

terial to be characterized as functions of the measured

S-parameters of the test device.8 The analytical expressions

(2), (3) that directly relate S-parameters and constitutive

parameters of metamaterials are the following:

l ¼ aZ02cð1þ RÞ
hl0xð1þ RÞ � ðb� aÞZ02cð1þ RÞ ; (2)

� ¼ ½aþ ðb� aÞl�2c
al0�0lx2

� ðb� aÞ
a

; (3)

where a is the half width of the sample, b is the half width of

the line, Z0 is the characteristic impedance of the line, c is

the propagation constant, x is the angular frequency, and R
is the quantity given by

R ¼ K1 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1 �
S11

S22

r
; (4)

K1 ¼
S11S22 � S12S21 þ 1

2S22

; (5)

c ¼ j

d
ln

S21

1� RS22

� �
: (6)

In contrast to the previous approach, the analytical char-

acter of relations (2) and (3) enables us to avoid the use of a

numerical optimization procedure for the inverse problem.

There are still some aspects to be considered in order to

obtain more accurate results. First of all, our electromagnetic

analysis takes into account only the air beside the sample but

not the air gaps below and above it. In order to take into

account these air gaps, the values of the retrieved permittiv-

ity and permeability are corrected using the Wiener’s law.

This mixing law is valid for thin gaps (thickness up to

500 lm). For the particular case when the sample and the

central conductor have the same width (a¼b), the expres-

sions for � and l applying the air gaps correction are

leff ¼
xl0hað1� RÞ � Z0Wcð1þ RÞ

xhsl0ðR� 1Þ ; (7)

�eff ¼
hsc2

x2l0�0ðhslr þ haÞ � hac2
; (8)

where W is the width of the conductor, ha is the height of

the air gap, and hs is the height of the sample to be

characterized.

Finally, the intrinsic parameters of the material under

test are obtained using the Hammerstad’s model,12 which

considers the part of energy that is propagated above the cen-

tral conductor.

IV. MEASUREMENT

S-parameters measurements of the test device were

made using a Vectorial Network Analyzer (Agilent 8753ES)

in the frequency range of 10 MHz to 6 GHz. A specific cali-

bration procedure based on short-open-load-thru (SOLT) is

performed. The empty cell is inserted instead of the “Thru”

standard during the calibration procedure in order to elimi-

nate errors caused by the stripline (presence of tapers, attenu-

ation, and impedance mismatch). Then, phases of measured

S-parameters are corrected to place the reference’s plane

close to the sample’s sides.
FIG. 4. Modelisation of the inferior loaded cross section of the stripline with

equivalent two conductors line.
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At first, accuracy of the measurement method was eval-

uated by characterizing a known dielectric (Teflon, �r ¼ 2.1)

filling the transversal section of the line. Using S-parameters

extracted from measurements, both analytical procedures

(variational and transmission line approaches) were pro-

grammed using MathWorks
TM

MATLAB. Results are shown in

Fig. 5. Good agreement between the two methods is

observed and the permittivity value waited for Teflon shows

that used analytical approaches are valid as well as the dif-

ferent approximations used for simplifying the models. Spe-

cifically with the transmission line theory based approach,

air gaps and accurate effective medium models like Ham-

merstad allow us to correct the value of the real part of �.
For validating the measurement method for metamateri-

als, a sample provided by the IETR laboratory (University of

Rennes 1, France) was characterized. It consists in a metaso-

lenoid type structure, made of arrays of metallic split ring res-

onators (SRRs) printed on a dielectric substrate (�r ¼ 2.2)

using multilayer technology (Fig. 6(a)). Dimensions of the

unit cell are 1 � 6 � 1.57 mm and it is designed to operate at

microwave frequencies, showing resonance around 5 GHz.

The entire sample, composed by eleven unit cells in transver-

sal direction is well suited for the stripline cell, filling the

region between central strip conductor and ground plane (Fig.

6(b)). Measures were made between 10 MHz and 6 GHz.

V. RESULTS

Measured S-parameters of the cell loaded with a meta-

material are shown in Fig. 7. Expected effects of resonance

due to interactions between metallic inclusions and the inci-

dent electromagnetic wave appear around 5 GHz.

Permittivity and permeability spectra of metamaterial

obtained from the different data processing programs are

shown in Fig. 8. Experimental results are also compared

with an electromagnetic simulation made with the software

ANSYS HFSS
TM

. The theoretical model of one unit cell is

designed and delimited by perfect electric and magnetic con-

ductors (PECs and PMCs) used as boundary conditions.

Under these circumstances, the unit cell represents an infinite

material. Simulated structure is excited by a plane wave and

using robust NRW algorithm13 effective permittivity and

permeability are calculated.

Experimental results demonstrate how expected reso-

nant behavior of metamaterials can be fully characterized

using the proposed technique. Good agreement is observed

between the two retrieval methods and electromagnetic sim-

ulations. Using this method it is possible to obtain the behav-

iour of characteristic parameters, determining the resonant

frequency band, its amplitude, and identifying negative and

positive zones.

Nevertheless, some discrepancies in resonant region

between simulation and measurements are noticed due to the

following considerations. In first place, we assume some

technological inaccuracies in the fabrication procedure of the

sample like in rods metallisation process and wire alignment,

as well as dimensions discrepancies between simulated and

fabricated structure. In a second place, we have to consider

the fact that in simulations we use a model representing

FIG. 5. Measured permittivity and permeability spectra (real and imaginary

parts) of Teflon.

FIG. 6. Measured metasolenoid. (a) Unit cell. (b) Real sample (top view).

FIG. 7. Measured reflection and transmission coefficients of the stripline

cell partially filled with metamaterial. Modules and phases.
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infinite number of cells while in measurement the number is

limited (11 unit cells). In order to study the influence of the

number of unit cells in our test sample, we have performed

full wave simulations from commercial ANSYS HFSS
TM

soft-

ware. The experimental set up has been exactly reproduced

and different scenarios have been simulated. We have

increased the number of unit cells in various directions for

inspecting the effect in S-parameters and retrieved constitu-

tive parameters. Results were quite different for each case,

however, a convergence of the permittivity and permeability

values was observed as the number of cells increased. Thus,

after a certain number of unit cells (6, 7) aligned in each

direction, results converged to the one obtained from the

simulation of an infinite structure. This convergence criteria

can be satisfied experimentally in one direction (x axis, see

Fig. 1) thanks to the geometry of the stripline structure. For

the two other directions, we are working out a new test fix-

ture that will permit to change the distance between the strip

and the ground plane of the stripline (y axis, see Fig. 1) to

increase the number of measured unit cells. This new fixture

will be also longer to study the influence of the number of

unit cells along the propagation direction (z axis, see Fig. 1).

In addition, we do not consider the edge effects due to the

interaction between the unit cells of the metamaterial sample

and the conductor planes of the stripline in the experimental

procedure. Full-wave simulations also demonstrated that this

edge effects can be minimized by increasing the number of

unit cells along the y axis direction.

Last point may result from analytical approximations

due to quasi-static theoretical approaches used to retrieve the

electromagnetic parameters. We observe that measured and

simulated magnitudes for the permittivity and the permeabil-

ity are in very good agreement at non-resonant frequencies.

On the other hand, in the vicinity of the resonant frequencies

the magnitudes of the constitutive parameters are very high.

This may produce electromagnetic interactions that cannot

be described correctly with quasi-static theoretical approach.

The domain of validity of this approach is strongly depend-

ent of the permittivity and permeability values. That is why

it is not surprising to observe a disagreement between theory

and experiment in the vicinity of the resonances.

VI. CONCLUSION

A method for measuring the characteristic parameters of

planar metamaterials has been presented. The main advant-

age of the geometrical structure proposed for the measure-

ment cell lies in the fact that the incident electromagnetic

wave interacts homogeneously in magnitude and direction

with all the inclusions composing the material, which

reduces the possible inaccuracies due to the anisotropic char-

acter of this type of structures. Another advantage of this

measurement method over existing techniques is the easiness

of the experimental procedure, avoiding complicated and

expensive set-ups such as large horn antennas and allowing

the characterization of small samples in the decimeter wave

range. Two different theoretical approaches for retrieving

the intrinsic parameters of the material inside the cell have

been tested showing a good grade of agreement between

them. As a future work, the influence of (i) the number of

unit cells that composes the sample under test and (ii) the

metallic elements of the stripline over the behavior of the

metamaterials will be studied. A new stripline fixture allow-

ing us to minimize these effects will be presented.
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