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Abstract. Meridional and vertical distributions of several
biogeochemical parameters were studied along a section in
the southeastern Atlantic and the Southern Ocean south of
South Africa during the austral summer 2008 of the In-
ternational Polar Year to characterize the biogeochemical
provinces and to assess the seasonal net diatom production.
Based on analyses of macro-nutrients, ammonium (NH4),
chlorophylla, (Chla), phaeopigments, biogenic silica (BSi),
particulate inorganic carbon (PIC), and particulate organic
carbon and nitrogen (POC and PON, respectively), four bio-
geochemical domains were distinguished along the section:
the subtropical Atlantic, the confluence zone of the sub-
tropical and subantarctic domains, the Polar Frontal Zone
(PFZ) in the Antarctic Circumpolar Current (ACC), and the
north-eastern branch of the Weddell Gyre. The subtropical
region displayed extremely low nutrient concentrations fea-
turing oligotrophic conditions, and sub-surface maxima of
Chl a and phaeopigments never exceeded 0.5 µg L−1 and
0.25 µg L−1, respectively. The anticyclonic and cyclonic ed-
dies crossed in the Cape Basin were characterized by a deep-
ening and a rise, respectively, of the nutrients isoclines. The
confluence zone of the subtropical domain and the northern
side of the ACC within the subantarctic domain displayed
remnant nitrate and phosphate levels, whereas silicate con-
centrations kept to extremely low levels. In this area, Chla

level of 0.4–0.5 µg L−1 distributed homogenously within the

mixed layer, and POC and PON accumulated to values up
to 10 µM and 1.5 µM, respectively, indicative of biomass ac-
cumulation along the confluence zone during the late pro-
ductive period. In the ACC domain, the Polar Frontal Zone
was marked by a post-bloom of diatoms that extended be-
yond the Polar Front (PF) during this late summer condi-
tion, as primarily evidenced by the massive depletion of sili-
cic acid in the surface waters. The accumulation of NH4 to
values up to 1.25 µM at 100 m depth centred on the PF and
the accumulation of BSi up to 0.5 µM in the surface waters
of the central part of the PFZ also featured a late stage of
the seasonal diatom bloom. The silica daily net production
rate based on the seasonal depletion of silicic acid was esti-
mated to be 11.9± 6.5 mmol m−2 d−1 in the domain of the
vast diatom post-bloom, agreeing well with the previously
recorded values in this province. The Weddell Gyre occa-
sionally displayed relative surface depletion of silicic acid,
suggesting a late stage of a relatively minor diatom bloom
possibly driven by iceberg drifting releases of iron. In this do-
main the estimated range of silica daily net production rate
(e.g. 21.1± 8.8 mmol m−2 d−1) is consistent with previous
studies, but was not significantly higher than that in the Polar
Front region.
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1 Introduction

The Southern Ocean is deemed to play an important role
in the global carbon cycle due to unique features involving
both physical circulation and biological processes. In partic-
ular, the outcropping of deep water masses allows for the ex-
change of gases such as carbon dioxide (CO2) between the
deep sea and the atmosphere, while the incomplete utilisa-
tion of nutrients by the marine phytoplankton in this high-
nutrient, low-chlorophyll (HNLC) area of the world ocean
allows the concentration of CO2 in the atmosphere to be
substantially greater than would be the case if nitrate was
used efficiently. Furthermore, the polar–extrapolar communi-
cation of heat, freshwater and CO2 helps to close the hydro-
logical cycle through the production of Antarctic Intermedi-
ate Water (AAIW) and Subantarctic Mode Water (SAMW).
These water masses transport nutrients northward within the
thermocline; by vertical mixing and advection, nutrients can
sustain a large part of the primary and export productions at
the low latitudes (Sarmiento et al., 2004). The formation of
AAIW, SAMW and Antarctic Bottom Water (AABW) can
also provide a mechanism for uptake and transport of an-
thropogenic CO2 (Caldeira and Duffy, 2000). Models indi-
cate that the response of the Southern Ocean to the global
warming will be a critical factor determining the future up-
take of anthropogenic CO2 by the ocean (Sarmiento and Tog-
gweiler, 1984). However, the Southern Ocean is not a sin-
gle vast biogeochemical system. For instance, biogeochemi-
cal features separate the Antarctic domain where the air–sea
balance of CO2 can be mainly controlled by the biological
pump and circulation in the Antarctic deep-waters formation
region, from the Subantarctic province where the global ex-
port production can be driven by the biological pump and
the circulation in the region of the formation of AAIW and
SAMW (Marinov et al., 2006). This dividing of the Southern
Ocean has evolved into several complex sub-systems, some
of which are highly productive whilst others remain biologi-
cally poor all year long (Tŕeguer and Jacques, 1992).

At first glance the development and accumulation of phy-
toplankton biomass in the Southern Ocean are mainly con-
trolled by the light intensity (Nelson and Smith, 1991), the
availability of trace elements, especially iron (Martin, 1990),
and grazing pressure (Buma et al., 1991; Frost, 1996). How-
ever, in the beginning of the productive period, biomass
maxima concentrate along the Polar Front (Quéguiner et
al., 1997), and at the confluence zone of the Subantarctic
Front (SAF) and the Subtropical Front (STF) (Banse, 1991),
benefiting from favourable and seasonal growth conditions in
those regions. The bloom of large, heavily-silicified diatoms
developing in late spring in the Polar Front region (Bath-
mann et al., 1997) leads to a massive depletion in silicate
(Quéguiner et al., 1997), and to biogenic silica burial, espe-
cially just south of the Polar Front (DeMaster, 1981). The
export production in the spring bloom and the burial of bio-
genic silica in the Antarctic deep sea occur with very little co-

existing organic matter (DeMaster et al., 1991; Ragueneau et
al., 2002). Annual production should be limited to that which
can be supported by the annual supply of inorganic nutrients
and trace elements to the euphotic zone.

The subtropical south-eastern Atlantic gyre is deemed
to be an intense inter-ocean exchange area (Lutjeharms et
al., 2003). Most of the leakage between the Indian Ocean and
the South Atlantic indeed takes place within the retroflection
of the Agulhas current where large eddies are translated to
the Atlantic Ocean (Lutjeharms and Vanballegooyen, 1988;
Gladyshev et al., 2008). For instance, north of the Subtrop-
ical front, nutrients levels such as silicate, nitrate and phos-
phate may be extremely low, typical of an oligotrophic region
(Longhurst, 1991). Furthermore, the accumulation of nutri-
ents and chlorophylla (chl a) generally follow the general
patterns set by currents and meandering in this region (Lut-
jeharms and Vanballegooyen, 1988).

In this work we describe the biogeochemical features of
the south-eastern Atlantic Ocean and the Southern Ocean
south of South Africa based on the distributions of silicate,
nitrate, phosphate, ammonium, chla, phaeopigments, par-
ticulate organic carbon (POC), particulate organic nitrogen
(PON), particulate inorganic carbon (PIC) and biogenic sil-
ica (BSi) along a section from the subtropical domain to the
Weddell Sea Gyre along the Greenwich Meridian during the
late austral summer of the 2008 International Polar Year.

2 Sampling and analytical procedures

2.1 Sampling

Samples were collected during the multidisciplinary MD166
BONUS-GoodHope cruise that took place during the In-
ternational Polar Year in the austral summer 2008 (13
February 2008–24 March 2008) on board the French R/V
Marion-Dufresne II sailing from Cape Town, South Africa,
to 57◦ S along the Greenwich Meridian in the Southern
Ocean (Fig. 1). The distribution of silicate, nitrate, phos-
phate (Fig. 2), ammonium (Fig. 3), chlorophylla (Chl a) and
phaeopigments (Fig. 4) was studied at 78 stations along the
section from surface to 5000 m depth and in the upper 300 m
for ammonium, Chla and phaeopigments. Particulate stocks
of organic carbon (POC) and nitrogen (PON), and inorganic
carbon (PIC) were sampled at 68 stations in the upper 300 m
along the transect, whereas those of biogenic silica (BSi)
were sampled at 12 stations (Fig. 5). The distance between
consecutive stations varied between 20 and 40 nautical miles.
The samples were collected using a CTD-rosette (SBE 32
Seabird) equipped with Niskin bottles. Potential temperature
(θ), salinity (S) and dissolved oxygen (O2) were recorded us-
ing SBE 911+ Seabird probe with SBE3+, SBE4 and SBE43
sensors, respectively (Branellec et al., 2010).
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Fig. 1. Location of the stations sampled during the MD166
BONUS-GoodHope cruise. Smaller crosses are for the HYDRO sta-
tions, grey crosses the LARGE stations and black crosses the SU-
PER stations. The positions of fronts are also shown, with the south-
ern branch of the Subtropical Front (S-STF;∼ 42◦2′ S), the Sub-
Antarctic Front (SAF; 44◦2′ S), the Polar Front (PF; 50◦22.4′ S),
the Southern ACC Front (SACCF;∼ 51◦52′ S) and the Southern
Boundary of the ACC (SBdy;∼ 55◦54.3′ S).

2.2 Analytical procedures

2.2.1 Nutrients and ammonium

Silicate, nitrate, phosphate and ammonium concentrations
were measured on board the ship. Silicate and nitrate were
analysed by standard method with a Bran + Luebbe AAIII
auto-analyser as described by Tréguer and Le Corre (1979).
Samples were run versus daily prepared standards diluted
from stock standard solutions in artificial seawater. Phos-
phate was determined manually using a spectrophotome-
ter (Shimadzu UV 1700) as described by Murphy and Ri-
ley (1962). Ammonium was analysed manually by spec-
trophotometry method (Shimatzu UV 1700) as described
by Koroleff (1969). The detection limit for silicate, ni-

trate, phosphate and ammonium analyses were, respectively,
0.1 µM, 0.04 µM, 0.05 µM and 0.05 µM.

2.2.2 Chla and phaeopigments

Chl a and phaeopigments were determined after filtration of
1–2 L of seawater on GF/F filters using a vacuum pump. The
filters were placed in 90 % (v/v) acetone/water and homoge-
nized in a cell for a minimum of 4 h followed by a centrifu-
gation. Chla level was then measured by fluorescence detec-
tion using a TURNER Design 10-AN Fluorimeter. Phaeopig-
ment concentration was determined in these samples af-
ter the addition of 100 µM HCl (1N) (Strickland and Par-
sons, 1972). Filters were measured within a few days after
their collection on board. Detection limit of the measurement
of Chl a and phaeopigment were, respectively, 0.005 µg L−1

and 0.075 µg L−1. Chl a analyses were calibrated versus a
pure Chla from spinach (Sigma).

2.2.3 Particulate matter

Total particulate carbon (TPC), particulate organic carbon
(POC) and particulate organic nitrogen (PON) were anal-
ysed from a bulk of 2 L seawater filtered on 4 precombusted
glass fiber filters (Whatman GF/F), as two filters were used
for duplicate TPC determination and the other two for POC
and PON duplicate analyses. The filters were kept frozen
(−20◦C) before their analyses in the shore-based laboratory.
POC and PON were analysed after fuming of the filter with
concentrated HCl for 4 h in a dessicator and drying at 60◦C
in an oven (Lorrain et al., 2003). POC and PON were mea-
sured using Carlo Erba Analyzer 1500. TPC was analysed
using the same protocol and method, but without fuming the
filters. The particulate inorganic carbon (PIC) concentrations
were estimated from the difference between TPC and POC.

Biogenic silica (BSi) was determined from 1 L seawa-
ter samples filtered onto polycarbonate filters (0.6 µm pore-
size, diameter 47 mm) and the filters were dried at 60◦C
and stored for further analysis. Before analyses the filters
were dried at 60◦C for 24 h and then kept at room temper-
ature. BSi was analysed after the digestion of the filter with
0.2 M NaOH for 45 min at 100◦C (Ragueneau et al., 2005).

2.3 Daily production rate

In the Southern Ocean, unaltered remnant winter water is
observed at the depth of the temperature minimum during
summer. Salinity in the remnant winter waters layer is within
0.02 to 0.2 % of that observed at the sea surface during win-
ter in the Indian sector of the Southern Ocean (Pondaven et
al., 2000), and the silicate and nitrate concentrations in rem-
nant winter waters are within 0.7 to 7 % of that at the sea
surface (Jacques, 1991; Pondaven et al., 2000). Hence, inte-
grated depletions of nitrate and silicate were calculated be-
tween the surface and the depth of the remnant winter waters
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Fig. 2.Contour plots of silicate (Si(OH)−
4 ; µM), nitrate (NO−

3 ; µM), and phosphate (PO2−
4 ; µM) concentrations versus depth (m) and latitude

along the MD166 BONUS-GoodHope section. The colour mapping extrapolation is based on the sampling resolution along the section of
∼ 2600 km that was achieved with 79 stations separated by∼ 15 to 56 km, with a total of 22 sampling depths per station. Figure prepared
using Ocean Data View (Schlitzer, 2012).

according to Eq. (1) using the vertical profiles:

1Nuts=

ZminT∑

Zs

[(Nut@minT− (
Nutzs+ NutZs+1

2
)) × (Zs+1− ZS)], (1)

where1Nuts is the integrated nutrient depletion (referred to
as1Si for silicate and1NO−

3 for nitrate), Nut@minT is the
nutrient concentration at the depth of the winter waters, Nutzs
at the depthZs and Nutzs+1 at the depthZs+1 (Zs andZs+1
are inferior or equal to the depth of the winter waters).

Estimates of biogenic silica daily production rates (P Si)
are derived from integrated silicate depletion (1Si) by as-
suming the nutrient depletion by phytoplankton occurs over
a period of 90 days in this area, that is, from early Novem-
ber to early February (Jacques, 1991; Pondaven et al., 2000).

Then the daily production of biogenic silica (P Si) is theoret-
ically calculated according to Eq. (2):

P Si= (1Si+ DSi + ASi + RSi)/90 (2)

considering inputs of silicate into the surface layer by vertical
diffusion (DSi) and lateral advection (ASi), and the regener-
ation of silicate through dissolution of biogenic silica within
the surface mixed layer (RSi). However, none of those later
terms were estimated during the cruise, whereas they can rep-
resent 18 to 26 % of1Si (Pondaven et al., 2000). Our esti-
mates are thus underestimations of the biogenic silica daily
production rates.

Estimates of daily production rates of particulate organic
nitrogen (PN) are derived from vertically integrated nitrate

Biogeosciences, 10, 281–295, 2013 www.biogeosciences.net/10/281/2013/
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Fig. 3. Contour plot of ammonium concentrations (NH+
4 ; µM) in the upper 250 m along the MD166 BONUS-GoodHope section. Figure

prepared using Ocean Data View (Schlitzer, 2012).
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Fig. 4.Contour plots of Chlorophylla (Chl a; µg L−1) and phaeopigments (phaeopigments; µg L−1) concentrations in the upper 300 m along
the MD166 BONUS-GoodHope section. Figure prepared using Ocean Data View (Schlitzer, 2012).

depletion during the 90 days of the productive season, and
are calculated theoretically according to Eq. (3):

PN = ((1NO−
3 + DNO3+ ANO3+ RNO3)/f-ratio)/90 (3)

considering the inputs of nitrate into the surface layer by ver-
tical diffusion (DNO3), lateral advection (ANO3), and nitrite

oxidation rate (RNO3). Those later terms were not estimated
during the cruise and not considered in our estimates, but
they can represent 40 % of1NO−

3 (Pondaven et al., 2000).
The fraction of total nitrogen production sustained by am-
monium or urea was deduced from shipboard determination

www.biogeosciences.net/10/281/2013/ Biogeosciences, 10, 281–295, 2013
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Fig. 5. Contour plots of particulate organic carbon (POC; µmol L−1), particulate organic nitrogen (PON; µmol L−1), biogenic silica (BSi;
µmol L−1) and particulate inorganic carbon (PIC; µmol L−1) concentrations in the upper 350 m along the MD166 BONUS-GoodHope
section. Figure prepared using Ocean Data View (Schlitzer, 2012).

of f-ratio (Joubert et al., 2011), where mean f-ratio character-
izing each domain was used in our calculation.

3 Results

3.1 Hydrography

The section crossed the north of the subtropical domain that
extended southward to the southern branch of the Subtropi-
cal Front (S-STF) (Gordon et al., 1992) at∼ 42◦2′ S. South-
ward it crossed the Antarctic Circumpolar Current (ACC)
bounded in the north by the S-STF and in the south by the
Southern Boundary of the ACC (SBdy; Orsi et al., 1995) at
∼ 55◦54.3′ S, and then the region of the Weddell Sea Gyre
at the southern end of the section (Fig. 1). Within the ACC,
the subantarctic domain is bounded in the south by the Sub-
Antarctic Front (SAF; Orsi et al., 1995; Belkin and Gor-

don, 1996), which was located at 44◦2′ S; the Polar Frontal
Zone (PFZ) is bounded in the south by the Polar Front (PF) at
50◦22.4′ S. The Southern ACC Front (SACCF) was located
at∼ 51◦52′ S and the Southern Boundary of the ACC (SBdy)
at ∼ 55◦54′ S. The mixed layer depth deepened southward
from around 50 m in the subtropical and subantarctic do-
mains, to 60 m in the Polar Frontal Zone, to 88 m in the south-
ern side of the ACC and down to 90 m in the Weddell Gyre.

The subtropical domain was characterized by a turbulent
dynamical regime commonly observed in this region (Glady-
shev et al., 2008). Warm and salty anticyclonic eddies com-
monly interact with slope waters in the South Atlantic waters
(Baker-Yeboah et al., 2010). The anticyclonic eddies are gen-
erally referred to as Agulhas rings and are ejected from the
western boundary current of the southwest Indian Ocean, the
Agulhas Current, at its retroflection (Lutjeharms and Vanbal-
legooyen, 1988). During the expedition, two large eddies of
subtropical origin were intersected in the subantarctic zone

Biogeosciences, 10, 281–295, 2013 www.biogeosciences.net/10/281/2013/



F. A. C. Le Moigne et al.: Biogeochemical features of the Southern Ocean during IPY 287

(Arhan et al., 2011). A cyclonic eddy (S) was crossed just
south of the S-STF (at station 39) and was marked by pro-
nounced low oxygen and CFCs anomalies revealing an ori-
gin at the South Africa continental slope (Arhan et al., 2011).
In addition a large and intense anticyclonic eddy (M) that
was an Agulhas ring had crossed the Agulhas Ridge and
was observed adjacent to the SAF (at station 46; Arhan et
al., 2011). In this domain Antarctic Intermediate Waters orig-
inated from the Indian Ocean (I-AAIW; Belkin and Gor-
don, 1996) were depicted between 800 and 1200 m closer to
Africa. Another variety of AAIW was observed to the south
featuring the AAIW formed in the subantarctic domain of
the southwest Atlantic (A-AAIW; Piola and Gordon, 1989).
Deeper, centred at about 2500 m, a diluted variety of North
Atlantic Deep Water which had flowed along the southwest
African continental shelf (SE-NADW; Arhan et al., 2003)
was identified north of S-STF. At the bottom, an old vari-
ety of Antarctic Bottom Water (AABW) likely formed in the
Weddell Sea (Gladyshev et al., 2008) was observed in the
Cape Basin abyssal plain below 3500 m depth, characterized
by low salinity and cold temperature.

In the ACC domain, south of the Agulhas Ridge, the sur-
face water (SW) was marked by a southward decrease of
temperature from 4◦C to 2◦C. Below lays the Atlantic va-
riety of AAIW (A-AAIW), which subducts along the SAF.
The A-AAIW waters were detected between depths of 300
and 600 m. At greater depths the Upper Circumpolar Deep
Water originated from the southwest Atlantic (A-UCDW;
Whitworth and Nowlin, 1987) was depicted north of the PF
at about 1000–1500 m. North of the PF, the deeper waters
(1500–3000 m) exhibited properties of diluted South West
NADW (SW-NADW), which flows along the continental
slope of South America, down to the Argentinean Basin be-
fore being injected into the ACC in the southwestern Atlantic
(Whitworth and Nowlin, 1987). At the bottom a variety of
fresher and colder bottom water than AABW depicted in the
Cape Abyssal plain was found below 3250 m on the northern
flank of the Mid-Atlantic Ridge. South of the PF, deep waters
exhibited properties of UCDW which had passed through the
Drake Passage (DP-UCDW; Whitworth and Nowlin, 1987)
between 250 and 700 m, and deeper those of Lower Cir-
cumpolar Deep Water (LCDW) with lower salinity than SW-
NADW. South of the ACC domain, the whole water column
was impacted by waters of the Weddell Gyre; those waters
are much colder and those near the bottom were a younger
variety of AABW than those observed in the Cape Basin, as
they are characterized by higher dissolved O2 concentrations.
Winter waters (WW) were detected at depth of the temper-
ature minimum in the ACC domain and the Weddell Gyre
between 100 and 250 m, with temperature below 1◦C as de-
scribed in Bown et al., (2011).

3.2 Nutrients

Nitrate distribution showed a meridional gradient in the sur-
face waters with a southward increase from sub-micromolar
levels in the subtropical domain up to 30 µM at the Polar
Front and beyond (Fig. 2). Phosphate also followed a south-
ward increase from sub-micromolar values in the subtropical
domain to 1.75 µM at the Polar Front, and up to 2 µM south
of 52◦ S (Fig. 2). The concentrations of silicate kept to low
values (sub-micromolar range) from the subtropical domain
towards the southern side of the Polar Front, beyond which
they increased up to 75 µM in the southern side of the ACC
(Fig. 2). Surface nitrate and phosphate concentrations started
to increase southward in the subantarctic domain, while sil-
icate concentrations started to increase south of the Polar
Front (Fig. 2).

Among other specific features of nutrients distribution, a
bowl-shaped feature in the silicate, nitrate and phosphate pro-
files that extended down to about 800 m was observed be-
tween the S-STF and the SAF at 44◦ S south of the Agulhas
ridge, corresponding to the core of the anticyclonic eddy-
M (Fig. 2). Furthermore, silicate isoclines were deepening
northward from the PF (Fig. 2).

Relatively low nutrients concentrations were recorded at
depth within the core of the SE-NADW observed from 33◦ S
to 44◦ S between roughly 2000 and 4000 m depth (Fig. 2),
with concentrations of 60 µM for silicate, 1.75 µM for phos-
phate and 27 µM for nitrate. Silicate concentrations ranged
from 10 to 20 µM in the A-AAIW, and nitrate and phosphate
were in the range of 10 to 30 µM and 1 to 2 µM, respec-
tively. In the WW, nutrients concentrations were similar to
those recorded in the A-AAIW. Finally, silicate concentra-
tions were relatively high (130 µM) in the core of the “old
variety” of AABW depicted at roughly 36◦ S below 4000 m
depth (Fig. 2).

3.3 Ammonium

Ammonium concentrations were very low in the upper 250 m
depth of the subtropical domain, within sub-micromolar
range (Fig. 3). Subsurface maximum of about 1.25 µM was
observed between 70 and 100 m centred on the Polar Front
(Fig. 3). Ammonium concentrations (ranging from 0.25 to
0.75 µM) extended northward of this maximum in the Polar
Frontal Zone, and southward in the southern branch of the
ACC (Fig. 3).

3.4 Chlorophyll a and phaeopigments

The Chl-a concentrations never exceeded 0.5 µg L−1 in the
surface waters along the section (Fig. 4). Sub-surface rela-
tive maxima (< 0.4 µg L−1) were shallower southward along
the subtropical region (Fig. 4), and Chla accumulated in the
top 50 m with a relative maximum of Chla (∼ 0.5 µg L−1)

observed at 25 m along the confluence of the subtropical and

www.biogeosciences.net/10/281/2013/ Biogeosciences, 10, 281–295, 2013
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Fig. 6. Vertical distributions of silicate concentrations (Si(OH)−
4 ;

µM), (a) in the core of the cyclonic eddy-S (station 39) and the
surrounding stations (stations 37 and 40); and(b) in the core of
the anticyclonic eddy-M (station 46) and the surrounding stations
(stations 45 and 47).

the subantarctic zones (Fig. 4). In the Polar Frontal Zone,
the Chl-a concentration was about 0.3 µM in the upper 70 m
(Fig. 4), corresponding to the mixed layer depth. The south-
ern side of the ACC (between PF and SBby) was marked
by extremely low Chla concentrations (0.1–0.2 µg L−1),
whereas they were slightly higher (0.3 µg L−1) in the Wed-
dell Gyre (Fig. 4). The distribution of the phaeopigments
that are degradation products of the Chla also dispatched
a subsurface maximum of 0.25 µg L−1 centred at around
25 m depth at the confluence of the subtropical and sub-
antarctic domains (Fig. 4). The phaeopigment pattern fol-
lowed similar southward trend as the Chla in these domains,
with a subsurface maximum becoming a surface maximum
(Fig. 4). In the Polar Frontal Zone, the levels of phaeopig-
ments were extremely low, of about 0.1 µg L−1 in the upper
70 m (Fig. 4). Phaeopigment concentrations were the low-
est in the top 100 m in the southern side of the ACC, while
relatively higher levels (0.06 µg L−1) were recorded at about
100 m depth in the Weddell Gyre (Fig. 4).

3.5 Particulate matter

3.5.1 Particulate organic carbon and nitrogen

The particulate organic carbon (POC) and the particulate or-
ganic nitrogen (PON) ranged from below detection limit to
15 µM, and below detection limit to 2 µM, respectively, in the
mixed layers along the section (Fig. 5). The highest concen-
trations of POC and PON were recorded in the upper 50 m at
the confluence zone of the subtropical and subantarctic do-
mains. POC and PON concentrations were lower south of
the PF, of about 2.5–5 µM and 0.5 µM respectively; whereas
POC levels were relatively higher at the SBdy and in the PFZ
as compared to values recorded at the SACCF (Fig. 5).

3.5.2 Biogenic silica and particulate inorganic carbon

Biogenic silica (BSi) concentrations increased southward in
the top 100 m, from below detection limit in the subtropical
province to 0.5 µM in the Polar Frontal Zone (Fig. 5). Then
the distribution was marked by extremely low concentrations
in the top 350 m at the PF and its northern side (< 0.2 µM),
while BSi concentrations were slightly higher and fairly ho-
mogenous (at around 0.3 µM) in the upper 350 m between
PF and SACCF (Fig. 5). Accumulation of BSi (0.55 µM) oc-
curred south of the SACCF between 150 and 350 m (Fig. 5).

Particulate inorganic carbon (PIC) concentrations gener-
ally kept to low values (< 4 µM) along the section. The
largest accumulation of PIC (4 µM) was observed in the top
50 m on the southern side of the ACC and in the Weddell
Gyre (Fig. 5). Lower relative accumulations were recorded in
deeper waters (200–300 m) in the PFZ (2 µM), and in the up-
per 50 m (2 µM) and below 300 m depth (1 µM) in the north-
ern part of the subtropical domain off the South African shelf.

4 Discussion

4.1 Biogeochemical features of the subtropical domain
and its confluence with the subantarctic zone

Silicate, nitrate and phosphate concentrations were ex-
tremely low (< sub-micromolar levels) in the upper 200 m
of the subtropical region, and kept to low levels in the sub-
antarctic domain despite a slight increase of nitrate and phos-
phate concentrations (Fig. 2). Such extremely low nutri-
ents concentrations compared well with those previously ob-
served at the same latitudes slightly earlier in the season (e.g.
January) along 45◦ E (Table 1; Mohan et al., 2004).

In the subtropical domain, the subsurface relative maxima
of Chl a associated with the extremely low concentrations
of nutrients (close to detection limit) were typical of olig-
otrophic system conditions. It is likely that the ammonium
which is kept at low value here was rapidly taken up. Olig-
otrophic conditions were further supported by15N incuba-
tion experiments which showed that the new production rate
was low in this domain, unlike the regenerated production,
as exemplified by a f-ratio of 0.24 compared to f-ratios of
0.41–0.49 south of this domain (Joubert et al., 2011). PIC and
BSi concentrations were extremely low in this area, indicat-
ing that the biomass resulted from non-mineralizing phyto-
plankton. Furthermore, the radionuclides derived export pro-
duction (e.g.234Th /238U) showed that the transfer rate of
carbon to the mesopelagic zone was quite low in this domain
(Planchon et al., 2012), consistent with a low new produc-
tion (Joubert et al., 2011), and probably leading to the rel-
ative accumulation of particulate organic N and C observed
in the subtropical region (Fig. 5). These observations all sup-
port that waters were strongly oligotrophic in the subtropical
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gyre south of South Africa, and production was sustained by
recycling processes.

At the confluence zone of the subtropical and subantarctic
domains, Chla and phaeopigments (degradation pigments)
displayed their highest levels (Fig. 4), as well as particulate
organic C and N (Fig. 5). The accumulation of particulate
material can partly result from a low export rate, as evidenced
by 234Th /238U measurements (Planchon et al., 2012), the
biomass being remineralized or grazed within the mixed
layer, as further supported by an ammonium peak in this area
(Fig. 3). The transition between the two domains was marked
by a slight increase in nitrate and phosphate concentrations
southward (Fig. 2). The accumulation of particulate organic
material (Figs. 4–5) and the low biominerals concentrations
(Fig. 5) also occurred where the highest cell abundance was
recorded along the section (Beker and Boye, 2010). Taxon-
omy study using an inverted microscope showed that uniden-
tified nanoflagellates (< 5 µm) and dinoflagellates (Gymno-
dinium spp.) were the most abundant phytoplankton groups
in the subtropical domain (Beker and Boye, 2010). Further-
more, cyanobacteria are often too small to be recognized
clearly in light-microscope studies, but the cyanobacteria
Synechococcus sp. andProchlorococcus sp. often dominate
the picophytoplankton assemblage in oligotrophic regions
(Partensky et al., 1999; Zhang et al., 2008). At the con-
fluence zone of the subtropical and subantarctic domains,
the concentrations of dissolved iron (DFe) ranged between
0.098 and 0.179 nM in surface waters (Chever et al., 2010).
Cyanobacteria are capable of adapting to such low DFe by
activating siderophore-mediated iron transport systems (Wil-
helm, 1995). Culture experiments have also shown that the
growth of Synechococcus sp. is significantly reduced below
10−14–10−13 M of DFe (Timmermans et al., 2005), suggest-
ing that the growth of cyanobacteria was probably not limited
at the confluence zone. Additionally, the coastal dinoflagel-
latesGymnodinium chlorophorum have cellular Fe/P quotas
of 14.4 mol mol−1 (giving a Fe/C quota of 0.13 mol mol−1;
Ho et al., 2003; and using a ratio C/P of 106), and the coastal
nanoflagellates have Fe/C quotas of 0.10 to 0.12 mol mol−1

(adapted from Ho et al., 2003). Those cellular Fe/C quotas
are much higher than that of the oceanic cyanobacteriaSyne-
chococcus sp. (e.g. Fe/C = 5.8 nmol mol−1; Timmermans et
al., 2005), suggesting higher requirement for DFe than the
cyanobacteria. However, oceanic species of dino- and nano-
flagellates can have lower DFe requirement than their coastal
counterparts.

In the subantarctic zone, silicate distribution appeared as
upward pointing tongues of high values (and low values for
CFCs; Arhan et al., 2011) in the core of the cyclonic eddy
(Figs. 2 and 6a). This also appears in nitrate and phosphate
distribution (Fig. 2). However, as the tongue-shaped patterns
generally cross the density contours, these eddy anomalies
were probably more than just an isopycnal uplift of prop-
erties, and reflected trapping and transport of distant water
by the eddy (Arhan et al., 2011). The nutrients signatures of

the Agulhas anticyclone ring observed adjacent to the SAF
were characterized by pronounced low values at the core
station down to∼ 600 m, relative to values at the surround-
ing stations (Figs. 2 and 6b) indicative of winter convection.
Both eddies were found to transport subtropical water and
illustrated the capacity of eddies to transfer subtropical and
along-slope water properties, such as nutrients, into the sub-
antarctic zone (Arhan et al., 2011).

4.2 Biogeochemical features of the central and southern
Antarctic Circumpolar Current domain and the
Weddell Gyre

4.2.1 The diatom bloom along the Polar Front

In the surface waters, the nutrients distributions showed
meridional gradients with a southward increase, whereas the
location of the sharp increase differed for the silicate gradi-
ent relative to the nitrate and phosphate (Fig. 2). The high-
est gradient of silicate was indeed located southward of the
PF in these late summer conditions, while for nitrate and
phosphate they were highest at the PF (Fig. 2), consistently
with previous observations (Pollard et al., 2002). In the Polar
Frontal Zone, silicate concentrations were lower in the late
austral summer (this study) compared to spring (e.g. Octo-
ber 1992; L̈oscher, 1999), while nitrate and phosphate lev-
els were within the same range (Table 1). This suggests that
silicate is depleted over the productive season in the PFZ,
unlike nitrate and phosphate. Similar southward move of the
sharp gradient of silicate across the PF from spring towards
late austral summer has already been observed in the Pa-
cific sector of the Southern Ocean (Franck et al., 2000; Nel-
son et al., 2002). Conversely, the southern side of the ACC
was marked by relatively high silicate levels (and high ni-
trate and phosphate) in the surface waters, with no seasonal
variability (Table 1). The spatial and temporal variability of
the silicate gradient in the vicinity of the PF is caused by
the migration of the PF, and by the shifts in space and time
of the production of the Antarctic diatoms (Bathmann et
al., 1997; Pollard et al., 2002). Early spring blooms of large
diatoms are indeed reported in the Polar Frontal Zone (Bath-
mann, 1998). These blooms cause the depletion of silicate in
the Polar Frontal Zone over the productive season, hence re-
sulting in the southward migration of the sharp gradient of
silicate observed here in late summer. Besides the depletion
of silicate (Fig. 2), the extremely low concentrations of Chla

and phaeopigments reported here (Fig. 4) associated with
the relative accumulation of ammonium (Fig. 3) further re-
flected a post-diatom blooms situation centred on the PF dur-
ing the late summer conditions. The flourishing diatoms are
heavy silicified due to iron limitation (De Baar et al., 1997),
whereas their biological uptake of nitrate can decrease (De
La Rocha et al., 2000). This causes a strong depletion of sili-
cate relative to nitrate. In the surface waters of the diatoms
post-bloom area, the value of Si∗ (defined as [Si]-[NO3];
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Fig. 7.Contour plot of Si∗ (defined as [Si]-[NO−3 ] in µM; Sarmiento et al., 2004) in the upper 1500 m along the MD166 BONUS-GoodHope
section. Figure prepared using Ocean Data View (Schlitzer, 2012).

Table 1.Surface concentrations of silicate and nitrate (> 200 m) recorded in the several oceanic provinces of the Southern Ocean delimited
by the frontal systems at different seasons

Area Longitude Season [silicate] (µM) [nitrate] (µM) [phosphate] (µM) Reference

North STF 45◦ E Jan./Mar. 1–6 0–7 0–1.6 Mohan et al. (2004)
0◦ E Feb./Mar. 0–5 0–5 0–1.5 This study

STF-SAF 45◦ E Jan./Mar. 2–10 1–23 0–1.5 Mohan et al. (2004)
0◦ E Feb./Mar. 0–5 5–20 0.3–1.6 This study

SAF-PF 6◦ E Oct. 18–73 24–32 1.2–1.9 Löscher et al. (1997)
6◦ E Nov. 1–60 23–35 1.1–2.0 Löscher et al. (1997)
0◦ E Feb./Mar. 0–5 15–30 1.2–2.3 This study

PF-SACCF 6◦ E Oct. 28–82 27–36 1.8–2.3 Löscher et al. (1997)
6◦ E Nov. 27–87 27–35 1.9–2.5 Löscher et al. (1997)
0◦ E Feb./Mar. 0–41 25–35 1.6–2.5 This study

SACCF-SBdy 6◦ E Oct. 28–82 27–36 1.8–2.3 Löscher et al. (1997)
6◦ E Nov. 27–87 27–35 1.9–2.5 Löscher et al. (1997)
0◦ E Feb./Mar. 41–72 26–35 1.7–2.4 This study

Sarmiento et al., 2004) was indeed negative (Fig. 7), further
suggesting a decoupling between the silicon and nitrogen ex-
port in the vicinity of the PF. These blooms generate intense
flux of BSi towards the deep ocean. The BSi is remineralized
slowly in the deep ocean (Tréguer and Jacques, 1992), result-
ing in relatively high opal levels in the sediment of the Po-
lar Frontal Zone (DeMaster, 1981). Within the PF, the lower
BSi concentrations in the upper water column compared to
that observed in the central PFZ (Fig. 5) can be due to an in-
crease in export of particulate material, as exemplified by the
relatively high234Th derived POC export recorded at∼ 51◦ S
(Planchon et al., 2012). POC and PON concentrations were
also low at the PF (Fig. 5), consistent with an efficient ex-
port of particulate material. The export of POC has been
estimated between 2.6 and 4.7 mmol C m−2 d−1 in the PFZ
(Planchon et al., 2012), and the export of BSi to be approxi-
mately 3 mmol Si m−2 d−1 (Fripiat et al., 2011). Using these

estimates, the C/Si ratio in the exported material ranges be-
tween 0.9 and 1.6 in the PFZ, a ratio lower than those ex-
pected in diatoms (e.g.∼ 7, Brzezinski, 1985). Production of
heavily silicified diatoms due to iron limitation (De La Rocha
et al., 2000) may have caused the increase of BSi relative
to organic carbon in the exported material within the PFZ
and PF. Large Antarctic diatoms such asChaetoceros bre-
vis andActinocyclus sp. have a higher requirement for DFe
than smaller Antarctic diatoms likeChaetoceros dichaeta,
with half-saturation constants for DFe of 1.12–1.14 nM and
0.59 pM, respectively, for large and smaller species (Tim-
mermans et al., 2001, 2004). Hence, the low DFe concen-
trations observed in surface waters around the PF (0.121–
0.249 nM; Chever et al., 2010) would be strongly limiting
the growth of the large Antarctic diatoms, and less severally
the growth of the smaller species. A recent study suggests,
however, that iron limitation in the Southern Ocean can be
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Fig. 8. (a) Seasonal net assimilation ratio of silicate and nitrate
(1Si/1NO−

3 ) in the surface waters in the Antarctic Circumpolar
Current (ACC) along the MD-166 BONUS-GOODHOPE cruise
(see text for calculation method). Front positions are indicated:(b)
silica daily net production rate (mmol m−2 d−1) and (c) nitrogen
daily net production rate (mmol m−2 d−1) (see text for calculation
methods). All the uncertainties are based on observations that ni-
trate and silicate concentrations in the remnant winter waters are
within ±7 % of that at the sea surface.

less severe than previously estimated (Strzepek et al., 2011).
Furthermore, DFe concentrations recorded during the cruise
(Chever et al., 2010) may not reflect the DFe concentrations
at the beginning of the productive season, which were likely
higher.

The Antarctic Intermediate Water (AAIW) and Subantarc-
tic Mode Water (SAMW) transport nutrients within the ther-
mocline, which can drive a large part of the primary and
export production at low latitudes (Sarmiento et al., 2004).
However, the production of SAMW can be insignificant in
the Atlantic sector of the Southern Ocean (Whitworth and
Nowlin, 1987; McCartney, 1975). The water masses encoun-
tered along the section did not reveal the occurrence of
SAMW. Contrastingly, the Atlantic variety of AAIW formed
in the subantarctic region of the southwest Atlantic (A-
AAIW; Piola and Gordon, 1989) was depicted in the ACC
south of the Agulhas Ridge, as those waters subduct north-
ward along the SAF (Arhan et al., 2011). These waters were
also observed in the southern side of the subtropical domain
(Arhan et al., 2011). These waters were characterized by neg-
ative Si∗ values (< −10 µM; Fig. 7), reflecting the nutrient

depletion of silicate (and to a lesser extent of nitrate) in the
PFZ (Fig. 2) generated by the early spring diatom bloom. Ac-
cording to the model (Sarmiento et al., 2004), the negative
Si* signature of the A-AAIW can lead to a decrease in ex-
port production outside the Southern Ocean as these waters
likely fuel the low latitudes productivity with nutrients. Fur-
thermore, Si∗ is deemed to be an indicator of nutrient status
related to the requirements of diatoms, provided Si/N ratio
of non-starving diatoms (e.g. by light, macro- and micro-
nutrients) is close to 1 (Brzezinski, 1985), which requires
Si∗ ≥ 0 (Sarmiento et al., 2004). Thus, the negative value of
Si∗ recorded in the A-AAIW can provide indirect evidence
of limiting conditions for diatom growth in the upper layers
of the Polar Front region during summer conditions.

Estimations of the seasonal net silicate/nitrate removal ra-
tios (1Si/1NO−

3 ) (e.g. biological uptake minus regenera-
tion) in the mixed layer of the ACC domain varied from 0.7/1
to 4.8/1 µM µM−1 (Fig. 8a). Those estimates were similar to
those previously recorded in the Indian sector of the South-
ern Ocean (Le Corre and Minas, 1983) and in the Weddell
Sea (Hoppema et al., 2007). Furthermore, the1Si/1NO−

3
ratios estimated in the diatom post-bloom region were above
1 (Fig. 8a), suggesting a lower seasonal net nitrate uptake
relative to that of silicate. This is in line with the decrease of
nitrate uptake rate and the unaffected silicate uptake rate of
diatoms observed in culture experiments under Fe-depleted
conditions (De La Rocha et al., 2000). Nevertheless, the
seasonal net nitrogen and dissolved silicon removal may
be higher than that estimated for nitrate (1NO−

3 ) and sil-
icate (1Si) due to the nitrite oxidation and the remineral-
isation of BSi, respectively, as neither were considered in
our estimations. Another silicate assimilation rate based on
a mass balance in the mixed layer was estimated on aver-
age at 3.0± 0.8 mol Si m−2 yr−1 south of the PF (Fripiat et
al., 2011), which can also be underestimated due to the sup-
ply of dissolved silicon to the mixed layer during the stratifi-
cation period (Fripiat et al., 2011). Therefore, the seasonal
net assimilation ratio1Si/1NO3 could be actually higher
than our estimates, but still supporting lower seasonal net ni-
trate consumption as compared to that of silicate.

The silica daily production rate (P Si) ranged from 1.5 to
55.5 mmol m−2 d−1 in the ACC domain (Fig. 8b). These val-
ues are similar to those reported at these latitudes (Table 2;
Pondaven et al., 2000). P Si was slightly higher in the vicinity
of the PF (Fig. 8b), in line with the diatom post-bloom con-
dition. Iron-limited Antarctic diatom blooms ofFragilariop-
sis kerguelensis reported at these latitudes in spring (Bath-
mann et al., 1997; de Baar et al., 1997) accumulate a large
amount of silicate to grow, possibly accounting for the rela-
tively higher P Si in the vicinity of the PF. Nevertheless, the
silica daily production rates could have been underestimated
by not taking into account additional Si inputs in the sur-
face waters. The nitrogen daily production rate (PN) spreads
from 2.3 to 48.4 mmol m−2 d−1 in surface waters of the ACC,
with no significant meridional trend (Fig. 8c). This range is
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Table 2. Comparison of the estimated daily net production rate of
silica (P Si, mmol m−2 d−1) and nitrate (PN , mmol m−2 d−1) in
the Atlantic sector of the Southern Ocean during summer 2008 (this
study) and in 1994 (Pondaven et al., 2000).

Area P Si (mmol PN (mmol Reference
m−2 d−1) m−2 d−1)

SAF-PF 11.9± 6.5∗ 16.1± 6.1∗ This study
20.2± 4.4 16.1± 8.8 Pondaven et al. (2000)

PF-SBdy 21.1± 8.8∗ 14.2± 9.5∗ This study
30.3± 6.0 13.5± 6.7 Pondaven et al. (2000)

∗Uncertainties are calculated from the confidence interval of the meanp<0.05.

similar to those reported at these latitudes (Table 2; Pondaven
et al., 2000). As already mentioned, the nitrogen daily pro-
duction rates may have been underestimated since the nitrite
oxidation rate was ignored here, whereas recent studies about
nitrification suggest that the nitrification can be significant in
the photic zone (Yool et al., 2007).

4.2.2 The Weddell Gyre

Relatively high levels of BSi persisted in the upper water
column (Fig. 5), possibly suggesting a low dissolution rate
of BSi leading to an accumulation of BSi. Low tempera-
tures are deemed to limit the BSi dissolution rate (Natori et
al., 2006). Another interesting feature of the northern branch
of the Weddell Gyre is the relatively small depletion of sil-
icate (at stations 103–104), associated with a slight increase
of Chl a and phaeopigments concentrations (Fig. 4), sug-
gesting a late stage of a relatively minor diatom bloom. The
diatom-dominated assemblage observed here contained de-
graded frustules with small or absent chloroplasts (Beker and
Boye, 2010), also suggesting a late stage of a diatom bloom.
Such production of diatoms has been already reported south
of the SBdy (Arrigo et al., 1999).

In the Weddell Gyre, surface DFe was fairly low although
more variable than in the PFZ (e.g. 0.064–0.313 nM; Chever
et al., 2010). Such low DFe would strongly limit the growth
of the large Antarctic diatoms such asChaetoceros brevis
and Actinocyclus sp. (e.g. half-saturation constant for DFe
of 1.12–1.14 nM; Timmermans et al., 2001, 2004). However,
it is possible that sea-ice melting stimulated the diatom pro-
duction, as recently suggested in the Weddell Sea (Smith et
al., 2007), providing sea-ice can be a source of iron to the
surrounding waters (Boye et al., 2001; Lannuzel et al., 2008;
Klunder et al., 2011; Boyd et al., 2012) that can support lo-
cal and episodic diatom production. Despite being late in the
season and at northerly latitudes of the Weddell Gyre (55–
57◦ S), a large number of drifting icebergs were indeed ob-
served there, which can support this hypothesis.

In the Weddell Gyre, P Si and PN were similar compared
to the ACC (Fig. 8b–c), suggesting that consumption of Si

andN were comparable in the ACC and in the Weddell Gyre
on the seasonal timescale.

5 Conclusions

Comprehensive datasets of several biogeochemical parame-
ters were presented in the under-sampled HNLC region of the
Southern Ocean during late summer. Different biogeochemi-
cal provinces were identified in the southeastern Atlantic and
the Southern Ocean based on their previously known bio-
geochemical features. The subtropical region was character-
ized by oligotrophic conditions with extremely low nutrients
concentrations. The confluence zone between the subtropical
and the subantarctic domains was characterized by a relative
sub-surface maximum of Chla and by the accumulation of
particulate matter due to low export production and signif-
icant recycled production. In the ACC, the occurrence of a
vast diatom post-bloom was depicted in the vicinity of the
Polar Front during the late summer. The preferential removal
of silicate by diatoms relative to that of nitrate under iron-
limited conditions can lead to the surface depletion of silicate
in the post-bloom area and the southward migration of the
silicate gradient beyond the Polar Front. Coupled biogenic
silica production and accumulation throughout the water col-
umn suggest that low dissolution has played a significant role
in the silicon cycle in the ACC and the Weddell Gyre.
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