
HAL Id: hal-00783194
https://hal.univ-brest.fr/hal-00783194

Submitted on 31 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification by Testing for Recursive Program Schemes
Daniel Le Métayer, Valérie-Anne Nicolas, Olivier Ridoux

To cite this version:
Daniel Le Métayer, Valérie-Anne Nicolas, Olivier Ridoux. Verification by Testing for Recursive
Program Schemes. Lecture Notes in Computer Science, 2000, 1817 (Logic-Based Program Syn-
thesis and Transformation, 9th International Workshop, LOPSTR’99, Selected Pa), pp.255-272.
�10.1007/10720327_15�. �hal-00783194�

https://hal.univ-brest.fr/hal-00783194
https://hal.archives-ouvertes.fr

Verification by Testing for Recursive Program

Schemes

Daniel Le Métayer, Valérie-Anne Nicolas, and Olivier Ridoux

Irisa/Inria, Campus de Beaulieu, F-35042 Rennes Cedex, France
{lemetayer|vnicolas|ridoux}@irisa.fr

Abstract. In this paper, we explore the testing-verification relationship
with the objective of mechanizing the generation of test data. We con-
sider program classes defined as recursive program schemes and we show
that complete and finite test data sets can be associated with such class-
es, that is to say that these test data sets allow us to distinguish every
two different functions in these schemes. This technique is applied to the
verification of simple properties of programs.

1 Introduction

The only way to improve confidence that a program really achieves its intended
purpose is to confront it with other means of expressing this purpose. Typically,
such means can be properties that the program is supposed to satisfy or test data
sets with oracles characterizing the expected behavior of the program. However,
despite the fact that they both contribute to the same final objective, verification
and testing remain two independent research areas and we haven’t seen much
cross-fertilization between them so far (except in specific domains like protocol
design). We believe that testing can be formalized in a fruitful way in order to
cooperate harmoniously with verification. Our goal in this paper is to support
this claim by putting forward a technique for the automatic verification of (sim-
ple) properties of programs that relies both on program analysis and program
testing.

Since the systematic construction of complete test data sets is out of reach in
general, we propose to tackle this problem by restricting it to classes of programs
and properties. The key idea underlying this work is a transposition to recursive
programs of the well-known property that n+1 values are sufficient to identify a
polynomial of degree n. We introduce a hierarchy of common recursive program
(or property) schemes which define infinite classes of functions. The main result
of the paper shows that each scheme can be associated with a finite complete
test data set. The test data sets are complete in the sense that they are sufficient
to distinguish any two distinct functions in the class.

This result essentially provides a way to reduce program equivalence to pro-
gram testing (with respect to a given hierarchy of program schemes). In this
paper, we show how this technique can also be used in conjunction with abs-
tract interpretation to prove simple properties of programs. One must have in

mind that we do not want to prove the complete correctness of a program via
testing. Instead, partial correctness properties will be proved via testing. More
than on a list of scheme hierarchies, we want to dwell on a new method for prov-
ing program properties, relying on the association of test data sets to schemes,
independently of the syntactic shape of these schemes.

In the following section we introduce a simple hierarchy of unary recursive
schemes to illustrate our ideas, and we proceed with the technical contribution
of the paper, which makes it possible to associate schemes with complete test
data sets. Section 3 extends this result to some more complex unary and binary
scheme hierarchies our method can deal with. Section 4 describes the use of
these results to prove properties of programs, and Section 5 shows the relevance
of our method on some application examples. Section 6 sketches the more general
context of this work.

2 A Simple Hierarchy of Recursive Schemes

The process that we describe in Section 4 relies on our ability to associate com-
plete test data sets with schemes. In this section, we provide a sketch of the proof
of this result for a simple hierarchy of recursive schemes introduced in Defini-
tion 2. The interested reader can find in [NIC98] the definition of the whole
framework.

A test data set is complete with respect to a scheme if it allows to decide the
equality of any two functions of the scheme. This is stated in Definition 1.

Definition 1

D is a complete test data set for a class C of functions if and only if

∀f ∈ C, ∀g ∈ C, (f 6= g ⇒ ∃x ∈ D s.t. (f(x) 6= g(x)))

In other words, D is a complete test data set for a class C of functions if and
only if ∀f ∈ C, ∀g ∈ C, ((∀x ∈ D , f(x) = g(x)) ⇒ (f = g)).

Definition 2

S1
1 = {λx. Succk(x) | k ∈ IN}

⋃
{λx. k | k ∈ IN}

S1
i+1 = {f | f(0) = k

f(n + 1) = g(f(n)) , k ∈ IN , g ∈ S1
i }

The scheme of lower level in the hierarchy S1 (S1
1) is made of all the succes-

sor and all the constant unary functions on IN. Functions in scheme S1
i follow a

recursive pattern where the result is a constant in the basic case, and a composi-
tion of a recursive call with a function belonging to a scheme of lower level in the
hierarchy in the recursive case. The schemes S1

i are inspired by previous work on
inductive data types and the associated inductive program schemes [PDM89].
These schemes are called unary schemes because they allow the definition of
some unary functions (in Section 3, we consider some binary schemes to express
functions on pairs of natural numbers). The first observation to be made about

functions of the S1
i schemes is that they can be split into two different classes of

functions: the first class contains increasing functions,1 in fact even only separa-
ble functions in a sense made precise below. Functions of the second class, that
we call periodic have a finite codomain. For example, in S1

1 , the class of separable
functions is the set of successor functions, and the class of periodic functions is
the set of constant functions.

Definition 3

Two functions f and g from IN to IN are said α-separable if and only if there
exists α open intervals I1, . . . , Iα with Ii =]Ai, Ai+1[, A1 = −1, Aα+1 = ∞,
i > j ⇒ Ai > Aj and

∀i ∈ [1, α], (even(i) ⇒ (∀x ∈ Ii, (f(x) < g(x)) and f(Ai+1) ≥ g(Ai+1)))

∀i ∈ [1, α], (odd(i) ⇒ (∀x ∈ Ii, (f(x) > g(x)) and f(Ai+1) ≤ g(Ai+1)))

Two functions f and g are α-separable if it is possible to decompose IN into
α intervals I1, . . . , Iα such that one of the two functions is strictly greater
than the other on each interval. In the definition, α is the least value satisfying
this property. The relevance of α-separability for testing stems from Property 1,
which follows directly from Definition 3 (card(D) denotes the cardinality of the
set D):

Property 1

If f and g are α-separable and D is a subset of IN such that ∀x ∈ D, f(x) = g(x)
then card(D) < α.

Property 1 means that two α-separable functions can at most be equal on
α − 1 values. It is thus necessary and sufficient to test them on α values to
distinguish them. For example, {0, . . . , α− 1} is a complete test data set for any
pair of α-separable functions, and so for any set of α-separable functions.

We now turn our attention to periodic functions. A periodic function begins
returning some distinct values, afterwards it has a cyclic behavior.

Definition 4

A function f from IN to IN is said δ-periodic if and only if ∃λ ≥ 0, ∃π > 0,

s.t. (λ + π ≤ δ) and

∀x ≥ λ . ∀y ≥ λ . (x mod π = y mod π ⇒ f(x) = f(y))
∧ ∀x < λ + π . ∀y < λ + π . (f(x) = f(y) ⇒ x = y)

where mod is the modulo function.

Notice that the whole behavior of a δ-periodic function can be determined
by just knowing its behavior on the first (λ+π +1) natural numbers (the λ first
values give the initial non-cyclic behavior, the following π values give the cyclic
behavior and the last one the value of the period).

The relevance of periodicity for testing is expressed by the following property,
which is a direct consequence of Definition 4:
1 A unary function f is increasing if ∀x.f(x) ≥ x.

Property 2

If C is a set of δ-periodic functions then {0, . . . , δ} is a complete test data set
for C.

The notions of separability and periodicity can be generalized to sets of
functions and the above results can be gathered as follows:

Property 3

If a class C of functions is the union of a class C1 of δ-periodic functions and
of a class C2 of increasing α-separable functions then {0, . . . , µ} is a complete
test data set for C with µ = max(δ, α − 1).

This result can be proven using Property 1 and Property 2 and showing that
the test values necessary to distinguish two functions from C1 or C2 respectively
are sufficient to distinguish a function from C1 and a function from C2. It relies
mainly on the fact that functions of C2 are injective whereas functions of C1

are not (the test of a function of C1 on the value δ will yield a value already
obtained by its test on the previous test data).

The observation made at the beginning of this section can now be stated
formally:

Property 4

∀i, S1
i = C1

i

⋃
C2

i with C1
i i-periodic and C2

i increasing i-separable.

This property is proven by induction on i, relying on lemmas which establish
the propagation of separability and periodicity through the hierarchy of schemes
[NIC98].

Property 4 and Property 3 joined together allow us to derive Property 5,
which is the fundamental property on which all the other results presented in
this paper rely.

Property 5

∀i, {0, . . . , i} is a complete test data set for S1
i .

We have considered only one simple hierarchy of schemes so far. It has mainly
allowed us to introduce the key ideas of our method. In the next section, we show
how the result presented above can be used to derive complete test data sets for
other unary and binary schemes.

3 Extension to Some Other Scheme Hierarchies

In this section, we first present a larger hierarchy of program schemes where the
recursive call is not direct (the recursive call to the function does not need to be
applied to the argument n directly) and then consider some binary functions in
Section 3.2. We can benefit from the result presented in the previous section to
associate test data sets to these more complex scheme hierarchies.

3.1 A More Complex Unary Scheme Hierarchy

In this section, we consider a slight generalization of the unary scheme hierarchy
S1 presented in Section 2. The difference is that our new {S2

n, n ∈ IN} hierarchy
allows recursive calls which do not need to apply directly to the argument n:

Definition 5

S2
i = {f | f(0) = k

f(n + 1) = g(f(h(n))) , k ∈ IN, g ∈ S1
i , h ∈ S1

i }

One first difference with respect to S1
n schemes is that S2

n do not contain only
total functions. Depending on the value of the function h, the recursive call to f

can apply to an argument greater than the initial one. Consequently, we begin
with characterizing a definition domain for the functions of S2

n.

Property 6

Consider the following definition of f

f(0) = k

f(n + 1) = g(f(h(n)))

with g ∈ S1
i and h ∈ S1

i .
Function f is total if and only if f is defined on each value of the set {1, . . . , i}.

For a function h which is i-periodic, the resulting function f , when it termi-
nates, is neither periodic (as defined in Definition 4) nor increasing α-separable.
However, it has a cyclic behavior (just like periodic functions) but it may repeat
certain values where periodic functions ensure distinct values. Nevertheless, the
following property allows us to distinguish this new kind of function from the
periodic and increasing α-separable ones.

Property 7

Consider the following definition of f

f(0) = k

f(n + 1) = g(f(h(n)))

with h ∈ S1
i i-periodic and g ∈ S1

i .
If f is total then the set {0, . . . , 2i} is sufficient to determine f (i.e. to determine
the value of its period and its behavior on a period).

Gathering the above results, we can prove that: ∀n . S1
n+1 ⊂ S2

n. We are now
able to derive a complete test data set for the total functions of the S2

n scheme.

Property 8

∀n . {0, . . . , 2n} is a complete test data set for the total functions of the S2
n

scheme.

3.2 Some Binary Scheme Hierarchies

All the functions considered so far are unary. We now turn our attention to
binary functions (n-ary functions can be treated in a similar way). The following
schemes capture some common recursive definition patterns:

Definition 6

B1(X1, X2) = {f | f(0, m) = h(m)
f(n + 1, m) = g(f(n, m)) , g ∈ X1, h ∈ X2}

B2(X1, X2) = {f | f(0, m) = h(m)
f(n + 1, m) = f(n, g(m)) , h ∈ X1, g ∈ X2}

B3(X) = {f | f(0, m) = k

f(n + 1, m) = g(m, f(n, m)) , k ∈ IN, g ∈ X}

Binary schemes B1 and B2 are parameterized by the unary schemes associ-
ated with the functions occurring in their definitions, and binary scheme B3 is
parameterized by one of the binary schemes of the definition. Property 4 shows
that each unary scheme S1

i is made of two classes of functions corresponding to
δ-periodic functions and increasing α-separable functions. In order to establish
the required results for binary schemes, we need to consider these two subclasses
separately. We call them Pi and Ii (for Periodic and Increasing respectively).

Definition 7

P1 = {λx. k | k ∈ IN}
Pi+1 = {f | f(0) = k

f(n + 1) = g(f(n)) , k ∈ IN, g ∈ Pi}

I1 = {λx. (x + k) | k ∈ IN}
Ii+1 = {f | f(0) = k

f(n + 1) = g(f(n)) , k ≥ i − 1, g ∈ I ′i}

I ′1 = {λx. (x + k) | k > 0}
I ′i+1 = {f | f(0) = k

f(n + 1) = g(f(n)) , k 6= 0, g ∈ I ′i}⋃
{f | f(0) = 0

f(n + 1) = g(f(n)) , g ∈ I ′′i }

I ′′1 = {λx. (x + k) | k > 1}
I ′′i+1 = {f | f(0) = k

f(n + 1) = g(f(n)) , k > 1, g ∈ I ′i}⋃
{f | f(0) = 0

f(n + 1) = g(f(n)) , g ∈ I ′′i }⋃
{f | f(0) = 1

f(n + 1) = g(f(n)) , g ∈ I ′′i }

The sub-class of functions I ′i is used to exclude the possibility that g =
id in the definition of Ii+1. The intermediate scheme I ′′i allows us to remove
syntactically the different possible definitions of the identity function and the
successor function.

We can now state the main results concerning binary schemes.

The following properties allow us to associate a complete test data set to
most of the parameterized schemes of Definition 6. The first property concerns
the scheme B1(X1, X2).

Property 9

({0} × {0, . . . , j − 1}) ∪ ({1} × {0, . . . , i − 1}) is a complete test data set for
B1(Ii, Ij).
{0, . . . , i} × {0, . . . , j} is a complete test data set for B1(Ii, Pj).
{0, . . . , i + 1} × {0, . . . , j} is a complete test data set for B1(Pi, Pj).

The next properties establish the same kind of results as Property 9 for the
schemes B2(X1, X2) and B3(X) respectively.

Property 10

({0} × {0, . . . , i − 1}) ∪ ({1} × {0, . . . , j − 1}) is a complete test data set for
B2(Ii, Ij).
({0}×{0, . . . , i−1})∪({1}×{0, . . . , j}) is a complete test data set for B2(Ii, Pj).

Property 11

{(0, 0)} ∪ ({1} × {1, . . . , i}) ∪ ({1, . . . , j} × {1}) is a complete test data set for
B3(B1(Ii, Ij)).

The whole proof of these properties is detailed in [NIC98].

Note that we have proposed some complete test data sets for the more com-
mon instantiations of the binary schemes. The ones which have not been treated
correspond to unusual combinations in real programs. For example, the scheme
B1(Pi, Ij) is defined by:

B1(Pi, Ij) = {f | f(0, m) = h(m)
f(n + 1, m) = g(f(n, m)) , g ∈ Pi, h ∈ Ij}

Actually, it is the recursive application of a periodic function, ending with a call
to an increasing function.

Furthermore, it is interesting to notice that these unusual combinations lead
to not easily testable program schemes. For the scheme B1(Pi, Ij) for example,
the difficulty comes from the fact that there is no way to ensure that a finite
number of arguments of the increasing function h produces a set of results cov-
ering the domain of g (modulo its periodicity).

In Section 4 we illustrate the use of the results presented in Sections 2 and 3
to derive complete test data sets to prove properties of programs.

4 Verification of Properties Using Complete Test Data

Sets

Let us consider a simple program for reversing lists, written in a first-order
functional language. Function Rev reverses a list, and function App adds an
element (the second argument) at the end of a list (the first argument):

Rev(nil) = nil

Rev(n : l) = App(Rev(l), n)

App(nil, m) = m : nil

App(n : l, m) = n : App(l, m)

One property that a reverse program must satisfy is the fact that the length
of its result must be equal to the length of its argument. In order to check this
property, we have to express it as a function computing the expected length of
the result of Rev from the length of its argument. Obviously, this function is the
identity Id here.

The next stage consists in deriving an abstract version of Rev computing
the length of the result of Rev from the length of its argument. Though the
choice of an actual abstraction is dependent on the property to be proved and
is not automatic, its application to the program can be achieved automatically,
applying the abstract interpretation technique [CC77]. We choose the natural
numbers IN as the abstract domain and the abstraction function associates each
list with its length. Non-list values are abstracted in a one point domain because
they are not relevant to the analysis considered here. Rather than keeping these
dummy arguments, we abstract a function with some non-list arguments into a
function with fewer arguments. The primitives of interest here are basically the
list constructor (denoted by “:” in our programming language) and the empty list
nil. Not surprisingly, their abstractions are, respectively, the successor function
Succ = λx.(x + 1) and the constant λx.0. Thus, we get the following abstract
interpretation Lrev for the Rev function.2

Lrev(0) = 0
Lrev(n + 1) = Lapp(Lrev(n))

Lapp(0) = 1
Lapp(n + 1) = Succ(Lapp(n))

Now we are left with comparing Lrev with the identity function. Of course,
in this simple case we could rely on symbolic manipulations and inductive proof
techniques to show that Lapp is equivalent to the function Succ and then replace
it in the body of Lrev. But it is well known that mechanizing these techniques is
difficult in general. What we do instead is to analyze the definitions of Lrev and

2 Note that the second argument of App is not of type list, which explains why Lapp

has a single argument

Id to derive a complete test data set to decide their equivalence (or provide a
counter-example if they turn out to be different). The goal of this simple syntactic
analysis (called scheme inference) is to identify the scheme (or skeleton) of each
function and find its position in the hierarchy of schemes.

We do not dwell on the scheme inference algorithm here. It is achieved by
pattern matching on the structure of the definition of the functions and relies
on a set of inference rules akin to a type inference system. Details about its
implementation can be found in [NIC98]. For example, the definition of Lrev

matches the generic pattern of the schemes S1
i defined in Section 2 :

f(0) = k

f(n + 1) = g(f(n))

with k = 0 and g = Lapp. The definition of Lapp matches the generic pattern
with k = 1 and g = Succ, which belongs to scheme S1

1 . So Lapp is associated
with scheme S1

2 and Lrev is associated3 with scheme S1
3 .

It is not difficult to show that the schemes S1
i define a hierarchy which

is strictly increasing with respect to set inclusion (in other words i < i′ ⇒
S1

i ⊂ S1
i′). Id belongs to the scheme S1

1 , so we have to take the least upper
bound of S1

1 and S1
3 , which is S1

3 . This shows that it is enough to test Id and
Lrev on the values 0, 1, 2, and 3 to decide their equality. In order to express these
values in terms of the original program, we just have to use the correspondence
relation between the abstract and the concrete domains. Here, this means that it
is enough to test the program Rev on four randomly chosen lists of lengths 0, 1,
2, and 3 to decide if Rev always returns lists of the same length as its argument.
In practice, one can prefer to choose lists made of distinct elements, which have
a greater power of discrimination and can allow the detection of bugs apart from
the property of interest.

To summarize, the four main stages of the test data derivation process are
the following:

Abstraction of the program: Program → Abstract program

↓

Scheme inference: Abstract program → Scheme1

Property → Scheme2

↓

Abstract test data inference: Lub(Scheme1, Scheme2) → Abstract test data

↓

Concrete test data generation: Abstract test data → Concrete test data

3 Since both Id and Lrev are semantically equal to the identity function, we could
have expected that they are just associated with S1

1 , but we have to keep in mind
that this knowledge is not available at this stage (in fact, it is exactly what we are
trying to prove).

5 The Method at Work

In the previous section, we have used the Reverse program and the Id property
to explain the different stages of the method introduced in Section 2. In this
section, we present further examples illustrating it. We are still considering list
functions, and our aim is to prove properties about the lengths of their argu-
ments and results. So, we are using the same abstraction as the one used in
the previous section. We start with a replacement program, which is supposed
to return a list whose length is the product of the lengths of its arguments ;
we continue with two sort programs returning a list of the same length as their
argument.

5.1 A Replacement Program

Let us consider a program Rep replacing each element of its first list argument
by its second argument. This program can be written:

Rep(nil, l2) = nil

Rep(n : l1, l2) = Apnd(l2, Rep(l1, l2))

Apnd(nil, l2) = l2
Apnd(n : l1, l2) = n : Apnd(l1, l2)

We would like to check that the length of the result of Rep is the product of
the lengths of its argument. The product function can be written as follows:

Mult(0, m) = 0
Mult(n + 1, m) = Add(m, Mult(n, m))

Add(0, m) = m

Add(n + 1, m) = Succ(Add(n, m))

The abstract interpretation outlined in Section 4 returns the following ab-
stract function for Rep:

Lrep(0, n2) = 0
Lrep(n1 + 1, n2) = Lapnd(n2, Lrep(n1, n2))

Lapnd(0, n2) = n2

Lapnd(n1 + 1, n2) = Succ(Lapnd(n1, n2))

The scheme inference algorithm associates the scheme B3(B1(I1, I1)) with
both Lrep and Mult (the scheme returned for Lapnd and Add is B1(I1, I1) since
λx.x and Succ both belong to I1). So D = {(0, 1), (1, 0), (1, 1)} is a complete
test data set for Lrep and it is sufficient to test Rep on lists of the lengths
indicated by D to decide if the length of its result is indeed the product of the
lengths of its arguments.

5.2 A Selection Sort Program

A selection sort program Selsort can be defined as follows in our functional
programming language:

Selsort(nil) = nil

Selsort(n : l) = let (n1, l1) = Maxl(l, n)
in n1 : Selsort(l1)

Maxl(nil, m) = (m, nil)
Maxl(n : l, m) = let (n1, l1) = Maxl(l, n)

in (Max(m, n1), Min(m, n1) : l1)

The abstract interpretation returns the following abstract function for this
program:

Lselsort(0) = 0
Lselsort(n + 1) = Succ(Lselsort(Lmaxl(n)))

Lmaxl(0) = 0
Lmaxl(n + 1) = Succ(Lmaxl(n))

Note that Lmaxl is of arity 1 since Maxl has only one list argument, which
allowed us to simplify the function by removing the let expression. The scheme
inference returns the scheme S2

2 for Lselsort (Lmaxl being associated with the
scheme S1

2). Since the identity function belongs to S2
1 , {0, 1, 2, 3} is a complete

test data set to decide if Lselsort = Id; it is thus sufficient to test the program
Selsort on four randomly chosen lists of length 0, 1, 2, and 3 to decide if it
possesses the required property.

Note that a standard proof of this property (that program Selsort respects
the length) would have used an induction on the length of the argument. So, it
would have required a non-trivial proof technique, while our method boils down
to the comparison of test outputs.

However, it should be clear that only errors which have an impact on the
length of the result are guaranteed to be detected using this test data set (since
it is the very purpose of this test). Let us imagine for example that we have
forgotten the introduction of the value Min(m, n1) in the result of Maxl:

Maxl(nil, m) = (m, nil)
Maxl(n : l, m) = let (n1, l1) = Maxl(l, n)

in (Max(m, n1), l1)

The mistake would be revealed through the application of Selsort to a list
of length 2. But if we had inadvertently replaced Max by Min, the bug would
not necessarily be captured by a test data set including random list of lengths
0, 1, 2, and 3. In this case however, if we consider the extra condition that the
lists of the test data set contain different elements, then the bug is detected.

5.3 An Insertion Sort Program

Insertion sort can be defined as follows:

Insort(nil) = nil

Insort(n : l) = Insert(Insort(l), n)

Insert(nil, m) = m : nil

Insert(n : l, m) = Max(n, m) : (Insert(l, Min(n, m)))

The abstract interpretation of this program returns the following abstract
function:

Linsort(0) = 0
Linsort(n + 1) = Linsert(Linsort(n))

Linsert(0) = 1
Linsert(n + 1) = Succ(Linsert(n))

The scheme inferred for Linsort is S1
3 , so Insort has the same complete test

data set as Selsort. As an illustration of the accurateness of this test data set,
let us consider a wrong definition of Insert:

Insort′(nil) = nil

Insort′(n : l) = Insert′(Insort′(l), n)

Insert′(nil, m) = m : nil

Insert′(n : l, m) = Max(n, m) : (Min(n, m) : nil)

The abstract interpretation of Insort′ is the function

Linsort′(0) = 0
Linsort′(n + 1) = Linsert′(Linsort′(n))

Linsert′(0) = 1
Linsert′(n + 1) = 2

Linsert′ can be cast into the S1
i schemes as:

Linsert′(0) = 1
Linsert′(n + 1) = 2̄(Linsert′(n))

where 2̄ denotes λx. 2, the constant function which returns 2.

So Linsert′ also belongs to S1
2 ; as a consequence Linsort′ and Linsort belong

to the same scheme S1
3 .

It turns out that the erroneous definition Insort′ returns correct results for
lists of length less than or equal to 2. Thus, it is indeed necessary to include a
list of length 3 into the test data set to capture this bug.

6 Related Work

6.1 Program Testing and Program Verification

The work presented here stands at the crossroad of three main trends of activ-
ities: program testing, program analysis and program verification. It presents
similarities but also differences with each of them.

The main departure with respect to “traditional” verification techniques and
formal development methods like Z [SPI92], VDM [JON90], LARCH [GH93],
B [ABR96] is that we trade generality for mechanization. Our goal is not to
provide complete correctness proofs of a program but rather to “formally test”
it against specific properties. This strategy is shared by the program analysis
community, but the verifications that are made possible by our method are out of
reach of static analysis techniques. These techniques rely on iterative algorithms
to compute fixed points of recursive equations [CC77]. Restrictions have to be
introduced in order to ensure the termination of these iterations. One typical
restriction is to impose that the abstract domains are finite (or, more generally,
that no infinitely increasing chain of values can be constructed by the algorithm).
The kind of restriction introduced in this paper is of a different nature: it is a
restriction on the structure of the definition of the program. One advantage
of this kind of restriction (which is due to its syntactic nature) is that it can
also be used in a top-down process, to favor the construction of more easily
testable programs. Another advantage is that it can be checked mechanically
(in contrast with classical test hypotheses). Further work is needed to decide if
traditional program analysis techniques can be extended to take advantage of
such restrictions.

Most of the properties we have proven using testing in this paper also could
have been proven using inductive proof techniques. Our method can be seen as
a factorization of the proving effort in the association between a test data set
and a scheme. Moreover, in the context of a syntactically restricted formalism,
determining the scheme of a function is easier than directing a proof by induction.

The research activities in software testing can be classified into two very
distinct categories:

1. General theories of testing have been proposed including notions like test
data adequacy [BA82, WEY83, DO91], testability [FRE91, GAU95], robust-
ness [GG75], reliability [DO91], ideal test data sets [GG75], valid and unbi-
ased test data sets [GAU95], test hypotheses [GAU95], etc. But test criteria
with the desired qualities usually lead to infinite test data sets or test hy-
potheses which do not necessarily hold.

2. On the practical side, a number of test coverage criteria have been put for-
ward [BEI90, NTA88, RW85]. Some of them are supported by test coverage
measure tools [OW91]. These tools are automatic but they only provide a
posteriori information about the test coverage of a given test data set. In any
case, these criteria are not exactly formal in the sense that there is no link

between the satisfaction of a test coverage criterion (at least for the effective
ones) and the correctness of the program.

A distinctive feature of our work with respect to testing (which makes it closer
to verification) is that it is not limited to the detection of bugs in a program: we
know that a program which passes a complete test data set satisfies the tested
property. Also, since our test data generation process takes both the program
and a property into account, it can be seen as an hybrid of structural and
functional testing. Such an integration has already been advocated in a more
general framework in the past [RC85], but without any mechanical procedure. A
similar approach has been successfully investigated for protocol testing [FJJV96,
BP94], but these contributions focus on the control aspects of programs (rather
than on data). They are thus complementary to our work.

6.2 Program Testing and Program Learning

By another way, one can compare our testing technique, and more generally the
test generation process, with techniques from the program learning community.
These techniques are about synthesizing programs from examples [BIE78] (as
opposed to generating test data sets from programs). This trend of research is
concerned with both the learning procedures and the classes of functions that
can be learned. The framework that is common to all these methods is called
inductive inference.

The programs that are learned belong in fact to restricted fragments of a pro-
gramming language. This is because inductive learning uses a notion of learning
bias to narrow the search space. The role of the learning bias is to make the
learning process feasible and as efficient as possible. A learning bias restricts the
language in which the concept to be learned is expressed. Such a bias makes
the learning process incomplete because the intended concept may be better ex-
pressed outside the learning bias, or even may not be expressible in the learning
bias. However, a learning bias establishes a formal relation between the examples
and the concept that is learned.

Tools and methods exist for program testing and program learning. However,
a deeper examination of these two activities shows that they are based on very
different hypotheses.

In the learning activity, a finite suite of examples or traces is used to generate
a program that is guaranteed to satisfy the examples. In other words, if one
considers the suite of examples as a test data set, it is certain that the generated
program will pass it. Note also that the input document is assumed to be correct.
A learning bias is used to narrow the search space and to infer only regular
programs. This restriction is in the same spirit as testing hypotheses, which also
assume regularity in the tested programs.

In the context of structural testing, test data sets are generated from a pro-
gram according to a test criterium (e.g., all-instructions, all-def-use). But finite
test data sets are generally not robust (which means that they can accept incor-
rect programs). Finally, the input document (the program) cannot be assumed

to be correct. This shows that the situation is less favorable than in the context
of program learning. The basic reason is that classical approaches to the genera-
tion of test data sets deal with general programs (i.e., written in Turing-complete
languages), whereas program learning deals with biased programs.

A solution to make the situation of test data sets generation more favorable
is to borrow from program learning some of its hypotheses. We will call testing
bias a syntactic restriction that corresponds in program testing to a learning
bias in program learning. Our method goes in this direction, taking inspiration
from automated program learning to do test generation via a testing bias. Here,
testing biases are defined as recursive function schemes and our method deals
with hierarchies of testing biases.

The relation between program learning and program testing has been rec-
ognized in the past by several authors [WEY83, BG96]. In fact, Bergadano et
al. actually use program learning as a means for generating test data sets. In
their case, a program learning process generates incrementally a family of pro-
grams that are “close” to the program to be tested. Each time a new program
is produced, a new test case is added to the set of examples. The new test case
must be such that it distinguishes the new program from the program to be
tested. Our technique does not actually perform program learning. We mainly
use it as a fruitful metaphor to establish a tight relation between a finite set of
input/output data, a program and a property. The key idea is that the program
must belong to a “learnable” family. On the contrary, usual testing theories ei-
ther involve infinite sets of data, or lack a well defined relation between test data
sets and programs.

7 Conclusion

The approach put forward in this paper is based on a tight integration of static
analysis and testing techniques for program verification. These techniques are
traditionally studied by different communities without much cross-fertilization.
Furthermore, considering the three types of documents used in programming,
i.e., properties (e.g., specifications), programs, and data (e.g., test data and
examples), one can observe that all point-to-point relations between these doc-
uments have been explored in both directions (e.g., the program-data relation
corresponds to testing and program learning). However, it is seldom the case
that the relation between the three types of documents is considered globally.
We think that great benefits can be gained from a better understanding of the
connections between them [LMNR98].

Our method is both formal and automatic. Once the abstraction is chosen
(that is to say, the abstract domain and the abstraction function), all the different
stages of the method are fully automated. There is no way to find automatically
the abstraction, it is the only point in our method for which the user has to
be a bit intuitive. From a practical point of view, it is possible to construct
libraries of abstractions by associating some different generic abstractions to

several inductive types. This could be an help for the user. Our method has been
implemented in a prototype system which, as a consequence, does not require any
specific knowledge from the user. This system is powerful enough to deal with
all the examples used in this paper. It is our belief that there is plenty of room
for software engineering tools between the following two extremes: unrestricted,
but only semi-automated, techniques requiring significant efforts from highly
qualified users, and fully automated processes with restricted power [LM97].

Of course, the price to pay for complete mechanization is to limit one’s am-
bitions: we have introduced restrictions on both programs and properties to be
verified. Note however that the restriction on programs is weaker than the re-
striction on properties since it is only their abstraction that must belong to one
scheme of the hierarchy. Because of the restriction on properties, our method
should be seen as an extended type checker rather than a program verification
technique. For instance, a typical type checker can verify that a program returns
a result of type list, when our technique can also provide information about the
length of this list. Further works are needed to assess the impact of the current
limitations of the method and to suggest ways to enhance it to increase its prac-
tical significance. We just sketch now some extensions which are currently under
investigation.

So far, we have studied only the length abstraction presented in this pa-
per. We are now considering other properties on integers (like size, or depth)
and other structured types (like trees, or general inductive types). One impor-
tant constraint on the schemes (which plays a crucial role in the proofs of our
results) is their uniformity with respect to the structured data type (natural
numbers here). This choice is inspired by previous work on inductive data types
and the associated inductive program schemes [PDM89]. Uniformity means that
conditions in programs are based only on the structure of the arguments. It
can be seen as a programming discipline, favoring the construction of programs
which can be tested or verified more easily. It is also possible to alleviate this
limitation on the source programs since it is only their abstraction that must
belong to a scheme. One possible solution is to derive two approximate abstract
versions of the program representing a lower bound and an upper bound of the
property of the result. Consider for example a modification of the replacement
program Rep of Section 5.1 to include a conditional statement on the elements
of its first argument, replacing only the values different from zero. We can then
derive two abstract functions corresponding to the two extreme cases: the first
one returns its first argument (when no element is replaced) and the second one
is the product (when all the elements are replaced). Further work is needed to
assess the significance of this extension.

More generally, different works on protocol testing and verification of prop-
erties by model-checking have already shown that restricted formalisms could
be of great use in the search for automation. We believe that domain specific
languages could also gain benefits from our method and be the ideal target to
exercise it.

References

[ABR96] J.-R. ABRIAL. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[BA82] T.A. BUDD and D. ANGLUIN. Two Notions of Correctness and Their
Relation to Testing. Acta Informatica, 18, 1982.

[BEI90] B. BEIZER. Software Testing Techniques, 2nd Edition. Van Nostrand
Reinhold, 1990.

[BG96] F. BERGADANO and D. GUNETTI. Testing by means of inductive pro-
gram learning. ACM transactions on Software Engineering and Method-

ology, 5(2), 1996.
[BIE78] A. BIERMANN. The inference of regular LISP programs from examples.

IEEE transactions on Systems, Man, and Cybernetics, 8(8), 1978.
[BP94] G.V. BOCHMANN and A. PETRENKO. Protocol Testing: Review of

Methods and Relevance for Software Testing. Proceedings of ISSTA, Au-
gust 1994.

[CC77] P. COUSOT and R. COUSOT. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. Proceedings of the 4th POPL, 1977.

[DO91] R.A. DEMILLO and A.J. OFFUTT. Constraint-Based Automatic Test
Data Generation. IEEE Transactions on Software Engineering, 17(9),
September 1991.

[FJJV96] J.-C. FERNANDEZ, C. JARD, T. JÉRON, and C.G. VIHO. Using on-
the-fly verification techniques for the generation of test suites. Proceedings

of the Conference on Computer-Aided Verification, July 1996.
[FRE91] R.S. FREEDMAN. Testability of Software Components. IEEE Transac-

tions on Software Engineering, 17(6), June 1991.
[GAU95] M-C. GAUDEL. Testing can be formal, too. Proceedings of TAPSOFT,

1995.
[GG75] J.B. GOODENOUGH and S.L. GERHART. Toward a Theory of Test

Data Selection. IEEE Transactions on Software Engineering, 1(2), June
1975.

[GH93] J.V. GUTTAG and J.J. HORNING. Larch: languages and tools for formal
specification. Texts and Monographs in Computer Science, 1993.

[JON90] C.B. JONES. Systematic software development using VDM. Prentice Hall
International, second edition, 1990.

[LM97] D. LE MÉTAYER. Program analysis for software engineering: new appli-
cations, new requirements, new tools. ACM Sigplan Notices, (1), Janvier
1997.

[LMNR98] D. LE MÉTAYER, V.-A. NICOLAS, and O. RIDOUX. Exploring the
Software Development Trilogy. IEEE Software, November 1998.

[NIC98] V.-A. NICOLAS. Preuves de Propriétés de Classes de Programmes par

Dérivation Systématique de Jeux de Test. PhD thesis, Université de
Rennes 1, December 1998.

[NTA88] S.C. NTAFOS. A Comparison of Some Structural Testing Strategies.
IEEE Transactions on Software Engineering, 14(6), June 1988.

[OW91] T.J. OSTRAND and E.J. WEYUKER. Data Flow-Based Test Adequacy
Analysis for Languages with Pointers. Proceedings of POPL, January 1991.

[PDM89] B. PIERCE, S. DIETZEN, and S. MICHAYLOV. Programming in Higher-
Order Typed Lambda-Calculi. Research report CMU-CS-89-111, March
1989.

[RC85] D.J. RICHARDSON and L.A. CLARKE. Partition Analysis: A Method
Combining Testing and Verification. IEEE Transactions on Software En-

gineering, 11(12), December 1985.
[RW85] S. RAPPS and E.J. WEYUKER. Selecting Software Test Data Using

Dataflow Information. IEEE Transactions on Software Engineering, 11(4),
April 1985.

[SPI92] M. SPIVEY. The Z notation - A reference manual. International Series
in Computer Science. Prentice Hall International, second edition, 1992.

[WEY83] E.J. WEYUKER. Assessing test data adequacy through program infer-
ence. ACM Transactions on Programming Languages and Systems, 5(4),
October 1983.

