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ABSTRACT

PILOT (Programming and Interpreted Language Of actions
for Telerobotics) is a high level language dedicated to the
remote control of systems. Our team has built a complete
control system for PILOT, which comprises six main
modules: a human−machine interface, an interpreter, a rules
generator, an evaluator, an execution module and a
communication server. In this paper, we focus on the
interpreter which is one of the most important parts of the
system. For the initial release of the control system software,
the main goal was to have a working environment in order to
validate the concepts of the language PILOT. The various
modules of the control system have been modeled by finite
state automata and the code has been written manually.
Although the experimentation carried out with the first release
of the control system highlighted the benefits of PILOT for
the control of mobile robots such as the robot MARC’H built
by our team, some malfunctions were observed in the software
and particularly in the interpreter. This paper aims at
presenting the work performed, essentially based on testing, in
order to detect and to correct software errors into the
interpreter, at both conceptual and implementation levels. It
ends by our ongoing work related to the use of Petri nets for
modeling and testing the interpreter algorithms, the final goal
being the generation of safe programs from "validated"
models.

Keywords: Control systems, software testing, telerobotics,
modeling, Petri nets.

1. INTRODUCTION

Safety is a critical issue in robots programming and
is to be taken into account when designing a
language for telerobotics or building software
dedicated to the control of robots. In this
perspective, an operational semantics of PILOT has
been defined [2,3] and this makes it possible to
apply formal verification techniques to PILOT
programs. PILOT also integrates several features for
safe programming of robots such as actions
preconditions and supervising rules [6]. In the same
line of thought, PILOT control system software has
been designed following some software engineering
rules needed to produce safe programs. In particular,
the various modules of the software have been
modeled by finite state automata [4]. The
experimentation carried out with the first release of
the control system highlighted the benefits of
PILOT for the control of mobile robots [5]: easiness
of use (partially due to its graphical nature),
portability, possibility to deal with unexpected

situations during plan execution (fault tolerance),
etc.. Nevertheless, some malfunctions were
observed in the software and particularly in the
interpreter. In fact, for the initial software release,
the main goal was to have a working environment
in order to validate the concepts of the language
PILOT. So, some safety related issues such as
software testing were not considered. Since the
initial release, several works have been performed
in order to increase the safety of PILOT applications
[6]. In this paper, we focus on our recent work
related to the testing of PILOT interpreter’s
software in order to detect and to correct errors at
both conceptual and implementation levels.
This paper starts by an overview of PILOT and of
its control system. Then, the structure and the
implementation of the interpreter are briefly
described. Thereafter, our approach for detecting
and correcting the interpreter software errors using
static and dynamic testing is presented. The paper
ends by our ongoing work related to the use of Petri
nets for modeling and testing the interpreter
algorithms.

2. PILOT: A LANGUAGE AND A
CONTROL SYSTEM

The Language PILOT
The language PILOT is based on the notion of
action. An action encapsulates an order executable
by the robot, a precondition and one or more
supervising rules to which processings are
associated. Two kinds of actions are discriminated:
elementary and continuous actions. Unlike a
continuous action whose end is triggered by an
enclosing primitive of the language, an elementary
action generally ends when its predefined goal is
reached. Whatever its kind may be, an action is only
executed when its precondition rule is true (unless
the operator decides to force the execution). In the
same way, if during the execution of an action, one
of its supervising rules becomes true, then the
corresponding processing is performed (the default
processing associated with a supervising rule is the
stopping of the corresponding action). In practice,
preconditions and supervising rules are conditions
on sensors values.



The language PILOT provides control structures for
plan building: sequence, conditional, iteration,
parallelism and preemption. Detailed information
on the language PILOT can be found in [3].

The Control System of PILOT
The control system of PILOT comprises six
concurrent modules: 
• The graphical interface also called man−

machine interface,
• The interpreter,
• The communication server,
• The rules generator,
• The evaluator and
• The execution module or driver.
These processes communicate through sockets and
shared memory and can execute either on a single
computer or on a network of computers.
The man−machine interface provides different
features for designing plans. It stores the plan into a
memory space shared with the interpreter. The
interpreter reads the plan from the shared memory
and sends orders (precondition request, order to start
an action, ...) to the other modules in order to
achieve the plan execution. The communication
server handles inter−process communications. The
purpose of the rules generator is to transform
character strings of precondition and supervising
rules into binary trees. It stores the result into shared
memory for future use by the evaluator. The rules
evaluator is in charge of calculating the Boolean
expressions of precondition and supervising rules.
The execution module is the interface between the
robot and the control system. It translates high level
orders of the plan into low−level orders which are
understandable by the teleoperated machine.

3. THE INTERPRETER: INITIAL
STRUCTURE AND IMPLEMENTATION

The interpreter is one of the most important parts of
the control system. It reads the plan stored into
shared memory by the graphical interface, then it
performs some requests to the other modules of the
control system in order to achieve the plan
execution. The behavior of the interpreter can be
summarized as follows:
Begin interpreter

Set interrupt handling routines
Create structures for plan execution
Initialize communication medium
Loop

MessageHandling
End loop

End interpreter

The interrupt handling routines are the following:
�

Handler: this procedure is called when signal
QUIT is received. Its effect is to close the
communication medium, to finalize the
execution of the interpreter (closing open files,
releasing allocated spaces, etc.) and to end the
execution of the interpreter.

�

MessageHandling: this procedure is called
when signal SIGUSR1 is received. This signal
may arrive at any time. The behavior of the
procedure MessageHandling is the following:

Begin MessageHandling
Reset interrupt handling routines
Wait Until message received
Case

Message Kind = "START_EXECUTION" =>
{Message from the graphical interface to ask to
start the interpretation of the plan}
Courant ← Head (Plan)
Interpret (Plan)

Message Kind = "PRECONDITION_ACCEPTED" =>
{Message from the evaluator indicating that the
precondition of an action is true}
Send a message "START_ACTION" to request the
launching of the related action
Mark the action into shared memory as started
{the graphical interface will update the graphics 
accordingly for supervision}

Message Kind = "STOP_ACTION" =>
{Message from the evaluator when an action is 
terminated}
Stop the given action and interpret the primitive 
following the action terminated
Suppress marking on the action into shared
memory

End case
End MessageHandling

In this description, we have only mentioned the
messages which are useful for the understanding of
the paper. The procedureInterprethas the following
shape:
Begin Interpret

Initialize various structures for actions execution and
termination handling

While (not EndOfPlan) loop
Process (Courant)
While (AlreadyProcessed (Courant)) loop

Courant ← Next (Courant)
EndOfPlan ←  IsNul (Courant)
Exit when EndOfPlan

End loop
End loop
...

End Interpret

As mentioned above, the main goal of the initial
release of the control system of PILOT was to
validate the concepts of the language PILOT. So,
very few importance was attached to the testing of
the control system software. Before describing our



approach for detecting and correcting interpreter
errors, we first present, in the next section, a brief
overview of software testing.

4. AN OVERVIEW OF SOFTWARE
TESTING

Software testing [1,7,8] is an important step in the
software development process. It is principally
interested in the final product of the programmer’s
activity, which is the program code, and to its
behavior. Testing is one of the traditional means
used to reach software safety. Its goal is to
minimize failures appearance chances in the course
of software use. Testing activity consists in:
• Either searching statically for simple and

frequent errors: this approach is also called
software control,

• Either defining input data which will be given
to the software during its execution. These input
data are also called test data. The set of test data
generated for testing is designated as atest data
set. The last step of testing is to compare the
output data obtained to the expected output for
the given software.

In order to increase the efficiency of the testing
process, test data should constitute a representative
sample of all the possible input data which can be
submitted to the software.

The Causes of Software Errors
The software development process has an impact on
the potential number and on the potential kind of
errors. For example, a software built following
software engineering principles and submitted to
formal verifications will potentially have less errors
than a software built with a less rigorous method or
without formal verifications. The knowledge of the
programming language used to write the programs
as well as the experience of the programmers also
have an impact on the errors (nature, number): an
inexperienced programmer is potentially subject to
more errors than an experienced programmer. Some
errors are inherent in information distortion or loss
throughout the development process. Failures may
be due to a wrong specification, a misunderstanding
of the specification, an imperfect knowledge of the
programming language, ....

Classification of Errors
The set of failures which can affect software is
infinite and it is difficult to classify them.
Nevertheless, six classes of software errors can be
defined:

• Calculation errors: for example writing "x:= x +
2" instead of "x:= y +2"

• Logic errors: wrong expression of a predicate.
For example writing "if (a < b) then" instead of
"if (a > b) then"

• I/O errors: wrong formatting, bad access to
communication medium, etc.

• Interface errors: wrong communication between
the software components (for example call to a
function F1 instead of F2, wrong parameter
passing, etc.).

• Data processing errors: wrong data access or
wrong data handling (misuse of pointers,
undefined variables, array index out of range,
etc.).

• Data definition errors: wrong type in data
declaration (for example, data is declared as
integer whereas it should have been declared as
real), error in the precision (for example, a value
is defined with a simple precision instead of a
double precision).

Classification of Testing Techniques
Different testing techniques exist. They can be
classified according to the criteria they use to
choose representative test data. Two categories are
distinguished in this case:
• Functional techniques also calledblack box

techniques: in such techniques, the production
of test cases is based on the software
specification, without worrying about the
internal structure of the software.

• Structural techniques also calledwhite box
techniques: test cases are produced by analyzing
the source code.

Testing techniques can also be classified according
to the execution or not of the binary code. The
following categories are distinguished:
• Dynamic testingtechniques: the binary code is

executed and the real behavior of the program is
examined.

• Static testingtechniques: the passive form of
the program (source code) is examined.

Testing process often use a combination of
functional, structural, dynamic and static testing.
Whatever the testing strategy is, whatever the
mechanism used for error detection is, each
correction leads inescapably to the risk of new
errors appearance. It is therefore useful to make sure
that the actions performed in order to correct the
errors will not lead to new errors (software
regression). This strategy is callednon−regression



and is materialized by the re−execution, on the
program tested, of a significant part of the old test
data.

After this overview of software testing we relate, in
the next session, our practical experience of
software testing with PILOT interpreter.

5. TESTING THE INTERPRETER
SOFTWARE

The Software Development Process
As mentioned above, some errors are inherent to the
software development process itself. As far as the
interpreter is concerned, its global behavior has
been modeled by a finite state automaton [4], and
interpretation algorithms have been defined for the
various structures of the language PILOT [3]. The
finite state automaton and the algorithms provide a
good basis for avoiding some errors (errors due to
information distortion, etc.). Nevertheless, no
rigorous verification (formal or other) has been
applied neither to the interpreter automaton nor to
the interpretation algorithms. The control system
software has been developed and modified by
different persons with different programming
experiences (less/more experienced).

The Testing Environment
Robots are reactive systems and the control system
(and consequently the interpreter) in charge of the
plan execution, has to deal with events generated by
the robot. Such events are generally difficult to
master and their presence increase the complexity of
testing operations. Another important point is the
impact of a test performed directly on the real robot.
In fact, the consequences of a test are often
unpredictable and the robot or its environment may
be damaged. Our solution to these problems has
been to build a simple simulator for the robot for
our testing operations.

The Testing Strategy
For efficiency reasons, the interpreter testing has
been performed by other persons than the initial
developers. In fact, when the program is written and
tested by the same person, the test is, most often,
thoughtlessly less objective. Two main approaches
have been used: 

a− Static testing:this approach has been the first
one applied to the interpreter software. It has
consisted in reading the source code in order to
detect programming errors such as those mentioned
in the subsection "classification of errors" of section
4, and also in analyzing the source code in

comparison with the interpretation algorithms and
the semantics of PILOT available in [3].

b− Dynamic testing:test cases have been defined
and applied to the binary code of the interpreter.
The test data have been defined using first a
functional approach and secondly the feedback from
test shots.

In the two next subsections we detail these two
testing steps.

Static Testing
The reading and analysis of the source code has led
to the detection of the following errors: 

a−Wrong interrupt handling:The code destined
to the interpretation of a parallel structure contained
the following sequence:
/* For the termination of the parallel box, one awaits the end
of the elementary actions launched in the parallel box. If there
are elementary actions still executing, one awaits their end as
follows */
For (index = 0; index < MAX_NB; index++)
{

if ((elem_actions[index]→state == ON) && (...))
{

...
MessageHandling
...

}
...

}
elem_actions is an array containing all the
elementary actions launched since the beginning of
the plan execution. According to the comments
appearing in the program, the goal of the calls to
MessageHandlingin the for−loop is to wait for the
end of the elementary actions of the parallel box
which are still executing. Given that the interpreter
may be interrupted at any time, the execution of the
code above may be interrupted just before the call to
MessageHandling, after a test on an action whose
state is ON (an action under execution). The
interrupt may itself originate from the end of the
same action and its handler (which is also the
MessageHandling procedure) will have been
executed. Therefore, if this action is the last one
under execution in the parallel box, the
MessageHandlingcall of the for−loop will never
end. As a consequence, a deadlock situation will
occur in the interpretation of the plan. The same
error appears in the interpretation of preemption. An
error of the same nature also exists in the loop
"While (AlreadyProcessed(Courant))loop" of the
procedure Interpret.

b−Wrong handling of continuous actions
termination:The code appearing after the for−loop
described above consists in stopping the continuous



actions of the parallel box. In fact, the following
assumption is done: the for−loop ends when all the
elementary actions have ended their execution. But
this isn’t true since the state of an elementary action
may change from PRECONDITION_REQUEST to
ON just after the evaluation of the for−loop
condition. In such a case, the for−loop may end
whereas an elementary action of the parallel box is
still running. Failures due to this error have been
observed during the use of the software (execution
of the action following a parallel box whereas an
action of the parallel box is still running, etc.).

c−Inexperienced programmer errors:Among
these errors, we can cite the modification of the
index of a for loop, functions returning a pointer to
a local variable, etc.

The wrong interrupt handling and the wrong
handling of continuous actions termination are
conceptual errors whereas the other errors
mentioned above are programming errors. These
errors have been corrected before applying dynamic
testing to our software. In the next subsection, we
describe the dynamic testing of the interpreter
software.

Dynamic Testing
a− Defining the representative test data:Our

approach for the definition of the representative test
data has been anincremental approach. We have
started by testing an empty sequence, then the
primitives of the language have been tested
individually. Thereafter we have considered three
combinations of the primitives of the language:

�

Combination in length by increasing the
number of elements in the sequences of the
plan.

�

Combination in widthby increasing the number
of branches within parallelism, preemption or
conditional.

�

Combination in depth by increasing the
encapsulation level.

The following questions are raised. How to choose
the proper length, width or depth? What are the
pertinent combinations? Our choices have resulted
from both the feedback from test shots and the
following assumptions:

�

Elementary actions are interchangeable and so
are continuous actions.

�

The set of sequences resulting from the
combination of any two primitives of the
language is representative of all the possible
sequences of the language made of two or more
primitives, except for memory space issues.

�

The set of valid combinations of any two
branches is representative of all the possible
combinations in width of the language of two or
more branches, except for memory space issues.
The validity mentioned here is relative to the
encapsulating primitive. For example, in the
case of parallelism, one of the two branches
should not contain continuous actions.

�

The set of combinations in depth of
encapsulation level 2 is representative of all the
possible combinations in depth of the language
whose encapsulation level is greater or equal to
2, except for memory space issues.

�

The test of conditional iteration with a condition
set to true, such as to execute an important
number of loops, covers a wide range of
memory space management errors.

�

For a given encapsulating primitive, ifn is its
maximum number of branches (n≥2), then any
combination in width of n branches is
representative of all the combinations in width
of 2 or more branches of that primitive, for
memory issues.

E1 E2 E1

Fig. 1 A test with a sequence of actions

E2

E1

C1

//

Fig. 2 A test with parallelism

On1=0 E1 E2

Fig. 3 A test with conditional iteration

b−Errors detected:Several test data (plans) have
been defined following the approach described
above. Figures 1 to 3 show some of the test data
whose execution led to interpretation errors.
The execution of the plan of figure 1 revealed a
problem in the interpretation of plans containing
several occurrences of the same action (case of the
action E1 in the plan). The second occurrence of
this action was never executed. After analyzing the
problem (debugging), we found the source of the
problem: upon reception of the message
PRECONDITION_ACCEPTED (this message
includes the name of the action for which the



precondition is accepted), the interpreter did a
search of the action into a list and launched the first
one matching the name of the action. For the plan of
figure 2, the action following the parallel box was
executed twice. The analysis of the problem
revealed that the cause was a redundant handling of
parallel execution termination.

As far as the plan of figure 3 is concerned, it has led
to 2 main errors detection. The first one was a
general memory space management problem
concerning all plans: after few loops a BUS
ERROR exception was raised. This error was due to
a wrong size for the memory space allocated for the
execution of plans. The second error was specific to
iteration: in fact, a new structure was allocated for
the execution of each primitive of the plan and this
led to memory space problems when an important
number of loops was executed. This problem has
been solved by allocating only the space needed for
the execution of one loop and reusing it for the
various loops.

6. TOWARDS A FORMAL APPROACH
FOR INTERPRETER TESTING

The benefits of the application of code reading and
dynamic testing to the interpreter software is
immediate: very few bugs have been observed since
this work. Nevertheless, it doesn’t ensure the
conformance of the interpretation algorithms to the
semantics of PILOT. For this reason, we have
modeled and simulated the execution of the
interpretation algorithms of PILOT with colored
Petri nets. The idea is, in a first step, to verify the
validity of the existing algorithms with respect to
the operational semantics of PILOT and, in a second
step, to proceed to a revision of the interpretation
model if needed, and finally to generate safe
interpretation algorithms from the validated model.
This work is ongoing.

7. CONCLUSION

In this paper, we have related our practical
experience in software testing of PILOT interpreter.
The application domain has an impact on the testing
activity. In our case, the context is that of reactive
systems (robots) and the events generated in such
systems are often difficult to master. This adds
some complexity to testing operations. Another
difficulty is the potential risk of direct testing on the
real system (the robot or its environment may be
damaged). To avoid this problem, we have built a
simple simulator. Only "all−or−nothing" sensors
have been simulated.

Two testing approaches have been applied to the
interpreter software: static testing consisting in
reading and analyzing the source code, and dynamic
testing. Each of them has enabled the detection of
errors of different nature (conceptual errors in the
handling of interrupts and in the management of
continuous actions termination, programming
errors, etc.). The errors detected have been
corrected.
Our incremental approach for the choice of
representative test data has been presented. The test
data have been generated manually. Future work
will include the automatic generation of test data set
based on the rules defined in our approach, the
implementation of an environment for the automatic
testing of the control system. All our tests shots
have been done interactively and each test is time
consuming. The automation of the testing process
will reduce considerably the testing time and will
make it possible to run more tests and to cover more
errors. A more realistic model of the simulator is
also necessary in order to reproduce some categories
of errors (errors whose activation depends on the
frequency of messages or events, etc.).
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