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Abstract— The high cost for testing the analog blocks of a
modern chip has sparked research efforts to replace the standard
tests with less costly alternative tests. However, test engineers
are rather reluctant to adopt alternative tests unless they are
evaluated thoroughly before moving to production and they are
proven to maintain test quality. This paper gives a comprehensive
overview of statistical techniques based on density estimation
for evaluating analog parametric test metrics during the test
development phase. A large-scale simulation study is carried out
for the first time with the aim to demonstrate these techniques
in action.

Index Terms— Analog, mixed-signal, RF test, test metrics
estimation, non-parametric statistics, Copulas, density estimation.

I. INTRODUCTION

Consider an analog circuit and let P = [P1, P2, · · · , Pnp ]
be a set of performances that characterize its functionality.
The circuit is designed such that Pi lies within the desired
specification limits si = (si`, s

i
u), i = 1, · · · , np, that is, the

performance acceptability region is AP = [s1
` , s

1
u] × · · · ×

[s
np
` , s

np
u ]. There is always a possibility, however, that one or

more specifications are violated due to process variations or
due to a defect that is induced in one of the fabrication steps.
For this reason, every fabricated circuit needs to undergo a
test to verify that all the performances are met. The current
practice is to perform tests aiming to measure directly the
performances. However, these tests incur a high cost which
drives up significantly the overall cost of the system wherein
the circuit is deployed. Therefore, there is a large incentive to
replace these tests with low-cost alternative test measurements
T = [T1, T2, · · · , Tnt ]. Let the circuit pass the alternative test
Ti if Ti lies within the test limits ti = (ti`, t

i
u), i = 1, · · · , nt,

that is, the test acceptability region is AT = [t1` , t
1
u] × · · · ×

[tnt` , t
nt
u ]. Then, the question that arises is what the test error

is as a result of carrying out alternative tests that do not
measure directly the performances, but on which we place
test limits. The test error may occur for circuits that contain
defects, in which case we refer to it as defect escape, or may
occur for circuits with process variations, in which case we
refer to it as parametric test error. The focus of this paper is
the estimation of parametric test error, which can be broken
down into parametric test escape and yield loss, during the
test development phase.

Parametric test escape is the probability that a circuit is
faulty due to process variations when it has actually been
labelled as functional

TE = Pr{P /∈ AP |T ∈ AT }. (1)

Yield loss is the probability of labelling a circuit as faulty
when it is actually functional

YL = Pr{T /∈ AT |P ∈ AP }. (2)

As is readily seen from (1) and (2), the two parametric test
metrics TE and YL are similar from a statistical point of view.
This means that a technique to estimate TE equally applies
for the estimation of YL. Notice also that TE and YL are
contradictory objectives. By shrinking the test limits we will
achieve a reduction of TE , but simultaneously we increase YL,
and vice versa, by enlarging the test limits we increase TE and
we reduce YL.

The challenge in estimating TE and YL during the test
development phase lies on the fact that their values are
typically very small, in the order of a few hundreds parts per
million (ppm). Thus, in theory, a very large number of Monte
Carlo simulations (e.g. over 1 million) is required so as to
estimate TE and YL with the required precision. Clearly, this
simulation effort cannot be afforded during the test develop-
ment phase, especially when multiple alternative test solutions
need to be evaluated before moving to production. Typically,
the alternative tests are verified across a subset of fabrication
corners and by examining their correlation to the performances
for a small Monte Carlo sample. However, this approach
entails a risk and may lead to erroneous conclusions. This
is perhaps the primary reason why alternative test proposals
have not found grounds in industry to date.

The required step to estimate TE and YL during the test
development phase in reasonable time is to speed up circuit
simulation. To this end, three techniques based on density
estimation have been proposed for the multivariate case [1-3],
i.e. when many alternative tests are replacing many standard
performance tests, and one technique based on extreme value
theory has been proposed for the univariate case [4], i.e.
when a single alternative test is replacing a single standard
performance test. All techniques provide estimates of test
metrics based on a few thousands simulations. The technique
in [4] is based on an analytical model, thus the accuracy of the
test metrics estimates is guaranteed. In contrast, the techniques
in [1-3] tend to be heuristic and the accuracy of the test metrics
estimates cannot be fully guaranteed. In [5], the technique in
[2] was applied to a case study using test production data and
it provided consistent estimates.

In this work, we demonstrate the three techniques in [1-
3] in action for the first time using a large-scale simulation
study. The simulations took up about 3 months to be completed
and resulted in a rich data set that allows examining in detail
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the accuracy and limits of these techniques. In particular, we
consider an RF low noise amplifier (LNA) and two sensors,
namely a current sensor and an envelope detector, that enable
a low-cost built-in test. Without loss of generality, we consider
only the case of TE . Our objective is to estimate the resulting
TE when the sensor measurements replace the standard tests
for measuring three main performances of the LNA, namely
the gain, noise figure, and S11. For this purpose, we carried
out a Monte Carlo post-layout simulation with 1 million runs.
This allowed us to derive the true value of TE with a good
accuracy. Thereafter, we employed the three techniques in [1-
3] to obtain fast predictions of TE and we compared these
predictions to the true value of TE .

The rest of the paper is structured as follows. Next, we
discuss in detail the challenge in estimating parametric test
metrics. In Section III, we provide brief yet comprehensive
descriptions of the techniques in [1-3]. Given that parametric
test metrics are statistical quantities, it is more appropriate to
report the interval wherein they lie with a certain confidence.
Therefore, Section IV discusses the derivation of confidence
intervals for statistical quantities. In Section V, we present our
case study. In Section VI, we provide the comparison results.
Finally, Section VII concludes the paper and points to future
work ideas.

II. MONTE CARLO ESTIMATES

Let fP|T(P|T ∈ AT ) denote the np-dimensional joint
probability density function of P conditional on T ∈ AT . The
test escape can be expressed as

TE = 1−
∫
AP

fP|T(P|T ∈ AT )dP. (3)

Using the indicator function

I1(P,T) =

{
1 : P /∈ AP |T ∈ AT
0 : P ∈ AP |T ∈ AT

, (4)

we can write

TE =

∫
<n
I1(P,T)fP|T(P|T ∈ AT )dP. (5)

A straightforward method to approximate the above integral
is to perform Monte Carlo circuit-level simulations. For each
Monte Carlo run j, we record the performances Pj and test
measurements Tj and we compute the indicator function
I1(Pj ,Tj). An estimate of TE can be obtained using

T̂E,MC =
1

N

N∑
j=1

I1(Pj ,Tj), (6)

where N is the number of runs for which T ∈ AT .
It is easy to show that T̂E,MC is distributed as N (TE , σ

2)
with variance σ2 = TE(1− TE)/N . Therefore,

T̂E,MC − TE
σ

∼ N (0, 1) (7)

which gives

Pr{−zα
2
≤ T̂E,MC − TE

σ
≤ zα

2
} = 1− α, (8)

where zα
2

is the (1 − α
2 ) quantile of the standard normal

distribution, such that T̂E,MC is contained with confidence
100 · (1− α)% within the interval

[TE − zα2 σ, TE + zα
2
σ]. (9)

If we would like to estimate TE with an accuracy of one
order of magnitude less than TE , i.e. zα

2
σ = 0.1TE , then the

required number of simulations is

N =
(
10 · zα

2

)2 1− TE
TE

. (10)

Table I shows the required number of simulations for
different confidence levels and values of TE . For example,
in a typical scenario, assuming a confidence level of 95% and
TE = 100 ppm, N = 3.8 · 106. It turns out that the number
of simulations required for estimating low values of TE with
high confidence is prohibitive. This demonstrates the need for
fast statistical simulation methods that can replace efficiently
the time-consuming Monte Carlo analysis.

TABLE I
NUMBER OF SIMULATIONS (IN MILLIONS) REQUIRED TO ESTIMATE TE

WITH AN ACCURACY OF ONE ORDER OF MAGNITUDE LESS THAN TE AND

A CONFIDENCE LEVEL OF 100 · (1− α)%.

(1-α)
TE@
@

100 ppm 200 ppm 300 ppm 500 ppm 1000 ppm

90% 2.71 1.35 0.90 0.54 0.27
92% 3.06 1.53 1.02 0.61 0.31
95% 3.84 1.92 1.28 0.77 0.38
97% 5.41 2.71 1.80 1.08 0.54
99% 6.63 3.32 2.21 1.33 0.66

III. ESTIMATE BASED ON DENSITY ESTIMATION

Let X = [P,T] = [X1, X2, · · · , Xd] be the d-dimensional
random vector that comprises the performances and test mea-
surements, d = np + nt, and let fX(x) denote the joint
probability density function of X. From (1) we can write

TE =
Pr{P /∈ AP ,T ∈ AT }

Pr{T ∈ AT }
. (11)

Using the indicator functions

I2(P,T) =

{
1 : P /∈ AP ,T ∈ AT
0 : otherwise (12)

I3(P,T) =

{
1 : T ∈ AT
0 : otherwise , (13)

(11) becomes

TE =

∫
<d I2(P,T)fX(x)dx∫
<d I3(P,T)fX(x)dx

. (14)

If f̂X(x) is an estimate of the density fX(x), then an estimate
of TE is obtained as
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T̂E,DE =

∫
<d I2(P,T)f̂X(x)dx∫
<d I3(P,T)f̂X(x)dx

. (15)

The density estimation approach consists of simulating N � 1
observations Xj = [Pj ,Tj ] of X from the density f̂X(x)
and calculating the indicator functions I2 and I3 on each
observation. Then, an estimate of TE is obtained as

T̂E,DE =

∑N
j=1 I2(Pj ,Tj)∑N
j=1 I3(Pj ,Tj)

. (16)

A. Multinormal density [1]

We assume that fX(x) is Gaussian with d× 1 mean vector
µ and d× d covariance matrix Σ, i.e.

f̂X(x) =
1

(2π)
1
d |Σ| 12

e−
1
2 (x−µ)TΣ−1(x−µ). (17)

The mean vector and the covariance matrix are estimated based
on data from an initial Monte Carlo circuit-level simulation
with n runs that we can afford. A new sample from f̂X(x) can
be generated as

X = µ+AW, (18)

where A is the Cholesky decomposition of the covariance
matrix Σ and W is a d × 1 vector whose components are
independent random samples of the univariate standard normal
distribution.

B. Non-parametric density [2]

This approach revokes the normality hypothesis and can
be applied regardless of the parametric form of fX(x), i.e.
even when the marginal distributions of fX(x) have distinct
parametric forms resulting in an undocumented form for
fX(x). Let Xj , j = 1, ..., n, be the data from an initial Monte
Carlo circuit-level simulation with n runs that we can afford.
The data are pre-scaled such that in each coordinate we have
the same spread. For the purpose of simplicity, however, we
do not change the notation. The inverse transformation can
be applied any time to return to the original space. The non-
parametric kernel density estimate of fX(x) is given by [6]

f̂X(x, α) =
1

n

n∑
j=1

1

(λj(α) · h)d
K

(
x− Xj

λj(α) · h

)
, (19)

where

h =
{

8c−1
d (d+ 4)(2

√
π)d
}1/(d+4)

n−1/(d+4) (20)

is a smoothing parameter called bandwidth,

cd = 2πd/2/(d · Γ(d/2)) (21)

is the volume of the unit d-dimensional sphere,

Ke(t) =

{
1
2c
−1
d (d+ 2)

(
1− tT t

)
if tT t < 1

0 otherwise
(22)

is the Epanechnikov kernel, λj are local bandwidth factors
defined by

λj(α) =
{
f̂X(Xj , 0)/g

}−α
, (23)

and g is the geometric mean

log g = n−1
n∑
j=1

log f̂X(Xj , 0). (24)

The density estimate in (19) is a weighted sum of kernels
centered on the n observations. The bandwidth h defines
the width of the kernels. The parameter λj(α) multiplies the
bandwidth of the kernel of the j-th observation. By increasing
α, the tails of the density estimate become smoother and
longer, but less heavier [6]. Practically, by increasing α we
increase the probability of sampling an “extreme” vector X. It
can be shown that f̂X(x, α)→ fX(x) in probability as n→∞
provided that the selected bandwidth satisfies h → 0 and
nh → ∞ as n → ∞ [6]. The choice of the bandwidth in
(20) is made following an approach known as rule-of-thumb
[6] and satisfies these conditions. The default value of α often
adopted by practitioners is α = 0, resulting in λj(0) = 1 for
all n observations.

A new sample X can be generated as follows:
Step 1 Consider an observation XI with I chosen from

{1, ..., n} uniformly at random.
Step 2 Generate v to have probability density function

Ke (v) in (22).
Step 3 Set X = XI + hλI(α)v.

The acceptance-rejection method is used in Step 2, in order
to simulate from the kernel estimate Ke. The method relies
on identifying a density function f0 that can be (a) simulated
much easier and (b) scaled with some constant c so that it
majorizes Ke, that is, so that Ke (v) ≤ c·f0 (v), ∀v ∈ Rd. The
method can be visualized as choosing a subsequence from an
independent identically distributed sequence drawn from f0,
in such a way that the subsequence has probability density
function Ke:

Step 2a Generate v to have probability density function f0.
Step 2b Generate u from a uniform distribution in [0, 1].
Step 2c If u ≤ Ke (v) / (c · f0 (v)) accept and return v,

otherwise return to step 2a.
In the case of the Epanechnikov kernel, we can select f0 to
be the uniform distribution in [−1, 1]n+d and c = c−1

n+d(n +
d+ 2)/2.

C. Gaussian copula [3]

Let Fi(xi) ≡ Pr{Xi ≤ xi} denote the distribution function
of Xi, i = 1, · · · , d. This approach uses the transformations
Ui = Fi(Xi) to map X to U = [U1, U2, · · · , Ud], where
U ∈ [0, 1]d. The distribution function of U is called the
copula of X. If the distribution F (x) of X is Gaussian, then
the resulting copula is called the Gaussian copula. The key
observation is that even if F (x) is not Gaussian, then it
is possible that the resulting copula is Gaussian. Under the
assumption that the resulting copula is Gaussian, we can apply
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the following procedure to generate N � 1 observations of
X. Apply the transformations Yi = Φ−1(Ui), i = 1, · · · , d, to
map U to Y = [Y1, Y2, · · · , Yd], where Φ denotes the standard
Gaussian distribution function. Then, by definition, the density
fY(y) of Y is Gaussian. Therefore, we can fit a Gaussian
density to the observations Y = [Y1,Y2, · · · ,Yn] and sample
this density to obtain N � 1 observations of Y, as discussed
in Section III-A. Then we apply the inverse transformation
Xi = F−1

i (Φ(Yi)) to obtain N � 1 observations of X.

IV. STATISTICS AND CONFIDENCE INTERVALS

A. Classical approach

Let X = [X1, X2, · · · , Xd] be a d-dimensional random
vector and let ρ(X) be some interesting quantity of X with
mean µρ and variance σ2

ρ. The simplest way to estimate µρ
and σ2

ρ is to generate N samples of size n. In particular,
let Zi = {X1i,X2i, · · · ,Xni}, i = 1, · · · , N , denote the i-
th sample, where Xji is the j-th observation of X in the i-th
sample, and let ρ(Zi) denote the value of ρ for the i-th sample.
Then, natural estimators for µρ and σ2

ρ are the sample mean
ρ̄ and sample variance s2

ρ

ρ̄ =
1

N

N∑
i=1

ρ(Zi), (25)

s2
ρ =

1

N − 1

N∑
i=1

(
ρ(Zi)− ρ̄

)2
. (26)

Furthermore, by the central limit theorem [7], for large N ,

√
N(ρ̄− µρ)

σρ
∼ N (0, 1). (27)

Thus,

Pr{−zα
2
≤
√
N(ρ̄− µρ)

σρ
≤ zα

2
} = 1− α. (28)

Rearranging (28) gives

Pr{ρ̄− zα
2
σρ/
√
N ≤ µρ ≤ ρ̄+ zα

2
σρ/
√
N} = 1− α (29)

such that

[ρ̄− zα
2
σρ/
√
N, ρ̄+ zα

2
σρ/
√
N ] (30)

is the 100 · (1−α)% confidence interval for µρ. Replacing σρ
by sρ leads to

[ρ̄− zα
2
sρ/
√
N, ρ̄+ zα

2
sρ/
√
N ]. (31)

R1 =
500 Ω

100/0.35

Vdd

RFIN 

RFOUT 

R2 =
3 KΩ

Cin

 5 pF
Lg = 12.2 nH

Ls = 200 pH

100/0.25

160/0.25

Cout = 600 fF

Cd =
250 fF

Ld =
4.85 nH

M3

M1

M2

Fig. 1. CMOS low noise amplifier (LNA).

B. Bootstrap

The bootstrap technique offers a general approach to esti-
mate the statistics of ρ(X) based on a single sample of size n,
denoted by Z = {X1,X2, · · · ,Xn}. It is particularly appealing
in the case where it requires a large computational effort to
collect N × n observations of X, in order to use (25) and
(26). The basic idea is to generate B samples of size n by
successively selecting uniformly with replacement from Z. In
particular, let Z∗i = {X∗1i,X∗2i, · · · ,X∗ni}, i = 1, · · · , B,
denote the i-th bootstrap sample and let ρ(Z∗i) denote the
value of ρ for the i-th bootstrap sample. Then, the bootstrap
estimators for µρ and σ2

ρ are

µ̂ρ =
1

B

B∑
i=1

ρ(Z∗i) (32)

σ̂2
ρ =

1

B − 1

B∑
i=1

(
ρ(Z∗i)− µ̂ρ

)2
. (33)

Assuming that the distribution of ρ(Z∗) is symmetrical and
reveals no bias, that is, it is centered on µρ, then the 100 ·(1−
α)% confidence interval for µρ is given by

[µ̂ρ − zα2 σ̂ρ/
√
B, µ̂ρ + zα

2
σ̂ρ/
√
B]. (34)

V. CASE STUDY

Our test vehicle is an inductive source-degenerated cascode
LNA used in the 802.11g standard receivers that operate
in the 2.4 GHz ISM band. The schematic of the LNA is
shown in Fig. 1. It is designed using the 0.25µm Qubic4+
technology by NXP Semiconductors. In this case study, we
are investigating whether it is possible to replace the standard
tests for measuring gain, NF, and S11 by two built-in tests
that employ an envelope detector (ED) and a current sensor
(CS). In the test mode, the LNA is stimulated with a 2.4 GHz
sinusoidal of amplitude -30 dBm. The ED, shown in Fig. 2,
measures the RMS value of the LNA’s RF output. The CS,
shown in Fig. 3, measures the dynamic power supply current
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RFIN 

RMSRF

M1 M2

P1

P2 P32/1            40/1

4/2 2/1

4/2

C1 = 100 fF

R1 = 
8 KΩ 

R2 = 1 KΩ

Ipol

Vdd

Vdd

C2 = 
100 fF

Fig. 2. CMOS envelope detector.
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100/5

ρ = 10 Ω

     
100/5

Imeas

Vout
M1

M2 M3 M4

5/1

1/51/5 1/1

Vdd

Vdd
IDUT

Fig. 3. CMOS built-in current sensor.

flowing through the LNA. Its operation is based on monitoring
the voltage drop across the small parasitic resistor ρ between
the power supply pad and the core of the LNA. First, we record
the output of the ED, then the input of the ED is switched
to the output of the CS, in order to record the RMS value
of the power supply current. The built-in test approach using
envelope detectors and current sensors has been extensively
studied in the literature [8-12]. It is cost-effective since only
DC signals carrying RF information are extracted off-chip.

The specifications of the three performances are set at k1 ·σ,
i.e.

gain ≥ sgain = µgain − k1 · σgain (35)

NF ≤ sNF = µNF + k1 · σNF (36)
S11 ≤ sS11 = µS11 + k1 · σS11 , (37)

where the means and standard deviations are computed on an
initial small Monte Carlo sample and k1 is a multiplication
coefficient. From simulations, we observed that the DC mea-
surements provided by the ED and CS, denoted respectively
by TED and TCS , are proportional to gain and inversely
proportional to NF and S11. Thus, we place lower test limits
on TED and TCS at k2 · σ, i.e.

TED ≥ tTED = µTED − k2 · σTED (38)
TCS ≥ tTCS = µTCS − k2 · σTCS , (39)

where as before the means and standard deviations are com-
puted on an initial small Monte Carlo sample and k2 is a
multiplication coefficient. Therefore, the parametric test escape
is expressed as

TE = Pr{gain < sgain ∪ NF > sNF ∪ · · ·
∪S11 > sS11

|TED ≥ tTED , TCS ≥ tTCS}.(40)

VI. RESULTS

We carried out a post-layout Monte Carlo simulation anal-
ysis of the LNA with the embedded sensors. We generated
in total 106 samples which took up about 3 months. For each
sample, we recorded the performances and test measurements,
that is, the values of X = [gain,NF, S11, TED, TCS ]. Using
(6), we obtained an estimate of TE which is close to the true
value. Next, we considered a random set of n = 5·103 samples
out of the available 106 and we used the three techniques
discussed in Section III, in order to generate N = 106

observations of X corresponding to 106 instances of the LNA.
These data are used to obtain estimates of TE using (16).
Notice that obtaining 106 instances of the LNA using any of
the techniques in Section III takes up a few minutes. The fast
estimates of TE are compared to the true value of TE that is
obtained using the time-consuming Monte Carlo experiment.

Table II shows the 95% confidence intervals of TE based
on 10 bootstrap samples using different estimation techniques,
namely the time-consuming MC, the multinormal density, the
non-parametric density using two different values for α, and
the Gaussian copula. The specifications are set at k1 = 4 sigma
while the test limits are set at k2 sigma with k2 = {1, 2, 3, 4}.
Fig. 4 plots Table II. Table III and Fig. 5 show the respective
results for k1 = 5. The following observations can be made:

1) As shown by the “reference” MC curve, as k2 increases,
the test becomes less strict and, thereby, TE increases.

2) The techniques based on multinormal density and Gaus-
sian copula underestimate the TE for certain values of k2. The
reason is that the underlying assumptions for these techniques
are not satisfied. In particular, NF and S11 turn out to follow
a generalized extreme value (GEV) distribution while gain,
TED, and TCS turn out to follow a Gaussian distribution.
As a result, the joint distribution fX(x) is not Gaussian. The
resulting copula is not Gaussian either. It turns out to be a
mixed copula where most pairs of performances and tests have
a Gaussian copula, but others appear to have a Gumbel copula,
i.e. a copula resulting from a Gumbel bivariate distribution.
The theory for mixed copulas is not well developed yet. Notice
that the multinormal density and Gaussian copula techniques
should be used only if their assumptions are met, otherwise
their utilization entails a risk. Nevetheless, we used them in
our case study with the aim to evaluate the prediction errors
that we commit.

3) The non-parametric density technique with the default
value α = 0 provides estimates that track well the increase of
TE with k2. The confidence intervals of the estimates overlap
with those of the MC except in the case of k2 = 4: for k1 = 4
the TE is overestimated by about 150 ppm while for k1 = 5
the TE is underestimated by about 10 ppm. There are two
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TABLE II
TE 95% CONFIDENCE INTERVALS USING DIFFERENT ESTIMATION

TECHNIQUES FOR k1 = 4.

Non-param. Non-param.
k2

MC Multinormal
α = 0 α = −0.1

Copulas
(106) (5 · 103)

(5 · 103) (5 · 103)
(5 · 103)

1 [0,1] [10,14] [0,0] [0,0] [0,0]
2 [27,33] [27,33] [31,39] [17,24] [8,11]
3 [278,311] [52,65] [311,332] [265,285] [52,62]
4 [377,400] [86,93] [536,584] [467,487] [106,115]

TABLE III
TE 95% CONFIDENCE INTERVALS USING DIFFERENT ESTIMATION

TECHNIQUES FOR k1 = 5.

Non-param. Non-param.
k2

MC Multinormal
α = 0 α = 0.1

Copulas
(106) (5 · 103)

(5 · 103) (5 · 103)
(5 · 103)

1 [0,0] [0,0] [0,0] [0,0] [0,0]
2 [0,0] [0,0] [1,1] [0,2] [0,0]
3 [10,16] [0,0] [9,13] [13,16] [0,0]
4 [27,34] [0,1] [15,20] [20,27] [0,0]

reasons for this small disagreement. First, the convergence of
the non-parametric density in (19) to the true density fX(x) is
not guaranteed for a small initial sample of size n. Second,
there exist no technique to chose optimally the values of h
and α such that the convergence is expedited. For k1 = 4, a
better choice would have been to choose an α lower than zero,
in order to have shorter tails and, thereby, less TE . Following
the same argument, for k1 = 5, a better choice would have
been to choose an α larger than zero. As shown in Tables II
and III and in Fig. 4 and 5, these choices improve the results
for k2 = 4.

VII. CONCLUSION

We carried out for the first time a time-consuming Monte
Carlo experiment to examine the accuracy of three test metrics
estimation techniques previously reported in the literature.
The multinormal technique should be used provided that the
underlying distribution is Gaussian. If not, then the Gaussian
copula technique should be used provided that the underlying
copula is Gaussian. If not, then the last resort is to use
the general non-parametric technique. For our case study,
the assumptions of the multinormal and Gaussian copula
techniques are not met while the non-parametric technique
provided good estimates with ppm precision. Future work
will focus on generalizing the univariate technique in [4] to
many dimensions, on extending the Gaussian copula technique
to mixed copulas, and on generating more case studies for
comparison purposes.
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