
HAL Id: hal-00769847
https://hal.univ-brest.fr/hal-00769847v1

Submitted on 3 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introducing Problem-Based Learning in a Joint Masters
Degree: Offshoring Information Technologies

Vincent Ribaud, Philippe Saliou

To cite this version:
Vincent Ribaud, Philippe Saliou. Introducing Problem-Based Learning in a Joint Masters Degree: Off-
shoring Information Technologies. International Conference on Engineering Education, Instructional
Technology, Assessment, and E-learning (EIAE 12), Dec 2012, Bridgeport, United States. pp.311-319,
�10.1007/978-3-319-06773-5_42�. �hal-00769847�

https://hal.univ-brest.fr/hal-00769847v1
https://hal.archives-ouvertes.fr

Introducing Problem-Based Learning in a Joint

Masters Degree: Offshoring Information

Technologies

Vincent Ribaud, Philippe Saliou

Laboratoire en Sciences et Techniques de l’Information

Université de Brest, UEB, LabSTICC

Brest, France

{ribaud, psaliou}@univ-brest.fr

Abstract— A young offshore software industry has grown up in

Morocco. The University of Brest has set up a network of major

software companies and Moroccan universities, providing two

mobility schemes towards France. Both schemes include a final

internship on the French side of global companies, with pre-

employment on the Moroccan side – a successful internship being

the key that opens the door to recruitment. Student

heterogeneity, and student reluctance to move towards a

professional attitude are important barriers to employability.

Hence, we redesigned a significant proportion of our technical

courses to use a problem-based learning (PBL) approach. The

PBL approach is illustrated through drawing parallels with the

production of a TV series. Three aspects of the approach are

presented: (i) set-up of the studio in which sessions are run, i.e. a

real software project, its work products and its software

development environment; (ii) pre-production tasks including the

screenwriting of problem-based learning scenarios and the

procurement of input artefacts; and (iii) acting, i.e. students'

interpretation of characters (roles) and teacher direction.

Index Terms— student employability, global software

development, problem-based learning

I. INTRODUCTION

The growth of Global Software Development has impacted

the informatics education system, and universities are now

offering specialized courses or entire programmes dedicated to

Global Software Development / Global Software Engineering

(GSD/GSE) [1, 2, 3, 4]. The young Moroccan offshore industry

has rapidly grown up as an attempt by French software

companies to satisfy their clients’ desire to offshore software

projects. The Moroccan government has completed several

initiatives aimed at fostering offshore industry. With regard to

IT education, government funding has helped start new

programmes called “Masters in Offshoring ” at almost every

Moroccan university. In 2007, an informatics teaching network

was set up, comprising Moroccan and French universities.

Moroccan and French stakeholders agreed to our university’s

proposal to act as a kind of placement agency providing some

students with an internship in France. Ensuring graduates will

return to the country of origin (Morocco) was seen as a crucial

issue, and one that can only be guaranteed by strong

institutional governance of each student’s mobility. Recently,

we replaced this mobility scheme with the possibility of basing

the final year of study in France, leading to the award of a

double Masters degree - Moroccan and French. The whole

programme is called Offshoring Information Technologies

(Offshoring des Technologies de l’Information - OTI). The

programme involves major industrial players in offshore

development: Logica, Capgemini, Atoss – as well as nine

Moroccan state universities.

We introduced a Problem-Based Learning (PBL) approach

within some of the programme courses, mainly in an attempt to

resolve two problems: heterogeneity of knowledge and skills

between students, and reluctance on the part of certain students

to transition from a passive learning attitude to one that is

active. General issues are discussed in section II, and the OTI

programme itself is described in Section III. Section IV

presents an introduction to PBL, the practicum in which it is

run, the screenwriting of problem-based learning scenarios and

procurement of input artefacts, and student interpretation of

roles directed by teachers. We finish with a brief conclusion.

II. ISSUES ANALYSIS

A. Governmental issues

In 2008, Gartner Research published a report on the

Analysis of Morocco as an Offshore Location [5]. This report

pointed out that Morocco is an attractive ‘nearshore’ alternative

for Europe, and that several established companies have

nearshore centres in Morocco. They noted also that Morocco

has yet to provide a clean and democratic environment,

although it is making progress in this area. In order to foster the

development of Morocco as an offshore country, the Moroccan

government has implemented several initiatives to promote the

Information and Communication Technology (ICT) industry -

including, in December 2006, an emergence plan entitled

“10,000 ingénieurs” (10,000 engineers). This plan aimed to

provide the software development market with 10,000 novice

engineers per year. Although in 2006, just 4,000 such novices

had graduated, by 2010, they numbered 10,600 - including

3,700 Masters graduates issuing from state universities. The

government’s current objective is to train 15,000 engineers a

year from 2015, and 25,000 from 2020.

B. High education issues

The Mediterranean Office for Youth - MOY

(http://www.officemediterraneendelajeunesse.org/en) was

recently established in recognition of the fact that circular

migration for educational purposes is a decisive factor in the

development of wealth, intercultural exchange, and mutual

understanding in the Mediterranean region. The MOY is

operating in 14 countries around the Mediterranean, and is

labelling higher education training programmes of excellence

corresponding to fields of Mediterranean interest. The MOY

label is awarded to Masters and PhD programmes meeting the

conditions and criteria set by MOY for the purposes of

facilitating student mobility in disciplines identified as

priorities for the development of the Mediterranean region, and

promoting the employment of young people in their country of

origin. We responded to the first call for proposals for MOY

labelling, and our programme - along with 41 others - was

selected. It is the only joint Masters in information technologies

/software engineering.

C. Companies’ issues

The notion of distance is considered a major factor

impacting Global Software Development (GSD) [4, 6]. GSD

teams are usually made up of members from different

countries, speaking different languages and with different

managerial traditions. This is called the socio-cultural distance.

Almost all initiatives indented to reduce socio-cultural distance

rely on a long period of immersion in the foreign culture.

When we started the programme in 2007, the major players

in the Moroccan offshore software industry (Logica, AtoS,

Capgemini, and HP-CDG) asked us to provide facilities that

would enable Moroccan and French team members to spend

time together in order to help French and Moroccan teammates

“rub up against one another”. We made a pragmatic response

offering prospective young Moroccan employees the

opportunity of a stay in a French company that is long enough

to understand how French teams behave, professionally.

D. GSD education programme

Few universities offer entire programmes intended to

prepare IT engineers to work in a multicultural environment.

Detroit Mercy University has offered such a course for more

than 20 years now: International Studies in Software

Engineering Program (ISSE). The main course of action is to

immerse students in foreign culture - which is also our

principal method. Our programme differs in that we offer

Moroccan students an experience in a foreign university and in

a foreign business (the French side of the company linked with

the potential Moroccan employer).

In Europe, we are aware of two European Masters

programmes in Global Software Engineering, which are

named: European Master on Software Engineering (EMSE,

http://emse.fi.upm.es/) and Global Software Engineering

European Master (GSEEM, http://www.gseem.eu/). Both of

these use a 1-year mobility scheme, with the first year

completed at the university of origin and the second at a

foreign university. Like our proposal, this is a one-year foreign

immersion leading to a double Masters degree. Both

programmes are research-oriented. Compared to existing

programmes, the most distinctive feature of our programme lies

in its strong career orientation, since it is designed to gain an

initial professional experience in France that is intended to

lead to employment in Morocco.

III. DESCRIPTION OF THE PROGRAMME

A. Fundamental Principles

Professional integration issues have been at the heart of the

programme ever since it was started, back in 2007. Strict

control of mobility is required. The French government’s

priority is to prevent illegal immigration, while Morocco wants

to hang on to its most talented people. The partners have

therefore agreed:

1) A founding principle: Acquire a first experience in

France and then mobilize the skills gained, for the benefit of

Morocco’s economic development.

2) Centralized co-ordination of mobility and employability:

This co-ordination is supported by the University of Brest,

which acts as a hub connecting Moroccan universities,

Moroccan students, future Moroccan employers and French

companies working in offshore software development. The

university also co-ordinates the various academic,

administrative and legal procedures.

B. Terms of mobility

The OTI programme includes two mobility schemes. Since

2007-2008, the scheme called “Stage en France avec une pré-

embauche au Maroc” (SFM), Internship in France with pre-

employment in Morocco, provides mobility over one semester.

In 2010, we replaced this scheme with another, based on

mobility over one year. This is a joint Masters degree from the

University of Brest and any one of 9 Moroccan universities.

The first year of study takes place in Morocco, the second in

France: 6 months of study at Brest, followed by a period of 6

months in France, with pre-employment in Morocco.

Both mobility schemes use internship as a placement

mechanism. All stakeholders share a single goal: the

recruitment of Masters graduates. French companies’

expectations of Moroccan interns are high, especially since

they are considered to be (and indeed are) normal French

Masters graduating students. For almost all Moroccan students,

this internship in France is their first encounter with the

industrial world and its expectations. Some interns experience

difficulty in adopting a professional attitude and in leaving

their student clothes at home - literally or figuratively. We have

the same problem on a five-year curriculum in Computer

Science, where there is just one, final internship: moving

towards the job market is difficult for most students. Preparing

students for the real world was one of the main reasons behind

the introduction of the PBL experience for Moroccan students.

C. Statistical data

While the initial Moroccan partners followed a common

curriculum framework (called Masters in Offshoring), the first

year of the Masters in Morocco can now be performed in four

quite different specialties:

 Software development and quality: Hassan II
Mohammedia (UH2M-Casablanca), Chouaïb Doukkali
(UCD-El Jadida), Sidi Mohamed Ben Abdellah
(SMBA-Fès) and Ibn Tofaïl (UIT-Kenitra) universities;

 Networking and Systems: Ibn Zohr (UIZ-Agadir),
Hassan II Mohammedia (UH2M-Casablanca), Hassan
1

er
 (UH1-Settat) and Abdelmalek Essaâdi (UAE-

Tanger) universities;

 Information System Engineering: Cadi Ayyad
(UCAM-Marrakech) university;

 Applied Informatics Offshoring: Mohammed V-Agdal
(UM5A-Rabat) university.

1) Students' origin: Table I shows the number of double

Masters students for whom the University of Brest was

responsible between 2010 and 2013 (the current year).

TABLE I. MASTERS’ STUDENTS COUNT BY UNIVERSITY OF ORIGIN

University 10-11 11-12 12-13 Σ

Agadir (Ibn Zohr) 5 5 1 11

Casablanca (Hassan II Mohammedia) 9 8 5 22

El Jadida (Chouaïb Doukkali) - 3 2 5

Fès (Sidi Mohamed Ben Abdellah) - - 5 5

Kenitra (Ibn Tofaïl) 9 5 3 17

Marrakech (Cadi Ayyad) 2 4 4 10

Rabat (Mohammed V-Agdal) 6 6 5 17

Settat (Hassan 1er) - 2 - 2

Tanger (Abdelmalek Essaâdi) - 2 2 4

Total 31 35 27 93

2) Employment: The cumulated counts of both mobility

patterns give the hiring rate at the end of the internship. Table

II presents the percentage of interns kept on at their companies

following the internship. The overall percentage is 103 interns

employed over 143 internships, i.e. a hiring rate of 72%. But it

may be that student reluctance to move towards a professional

attitude is an important barrier to employability, the issue that

first led us to introduce the PBL approach.

TABLE II. EMPLOYMENT COUNT AFTER INTERNSHIPS

Company 08 08 09 09 10 10 11 11 12 12 Σ

 Int. Hire Int. Hire Int. Hire Int. Hire Int. Hire

AtoS 3 3 2 2 - - 6 3 2 1 69%

Capgémini 6 6 13 10 - - - - 3 3 86%

HP-CDG 2 2 - - - - - - - - -

Logica 3 3 12 6 20 19 41 30 30 15 68%

Total 14 14 27 18 20 19 47 33 35 19 72%

D. Content of the double Masters degree

The knowledge base acquired by the end of the first year

may vary from student to student, raising a problem of

heterogeneity – and this was the second reason for deciding to

try out the PBL approach reported in this paper.

From September to March in the second year of the

Masters, all students attend 8 technical courses: Database and

Java Programming, Development Environments, Object-

Oriented Design, Distributed Systems, Web Technologies,

Software Engineering, Information Systems, and J2EE

Development. They also attend courses in English and

Communication in French, and a course providing a general

introduction to offshore context. The 6-month internship takes

place from April to September. The programme curriculum has

been designed to train engineers in the development (design,

production and maintenance) of software projects, rather than

just focusing the curriculum (as other GSD courses or

programmes do) on offshore-specific aspects. The programme

objective is to acquire a foundation of skills and knowledge on

the new technologies and industrialization tools used in large

software development companies. It is assumed that the

processes, methods, techniques and tools of offshore

development vary from company to company and are taught

and mastered during the training internship, which should also

be a formative period.

IV. PROBLEM-BASED LEARNING

A. Introduction

Boud [7] introduces his book on Problem-Based Learning

with: “PBL is a way of constructing and teaching courses using

problems as the stimulus and focus for student activity. [...] It

is a way of conceiving of the curriculum as being centred upon

key problems in professional practice.”

We have experience of applying PBL to the entire final

year of a Software Engineering Masters degree [8]. We decided

to infuse PBL in three courses. The selected courses are:

Database and Java Programming (48h), Software Engineering

(60h), and Information Systems (60h): a total of 168 hours –

one third of the technical courses as a whole. They are taught

by three professors, including both authors of this paper.

PBL is performed through PBL sessions. The PBL

approach raises several issues that can be illustrated using the

production of a TV series as a metaphor; when someone

decides to create a new series, she develops the show's

elements – namely, concept, characters, crew, and cast.

The concept and characters yield the background of each

PBL episode. The concept of the PBL series is the maintenance

and the development of an information system (IS). The

characters are the representation of the different jobs that are

involved in maintaining and developing an IS.

The crew is a group of people in charge of producing the

PBL series. Crew are distinguished from cast, the actors. The

crew is divided into different sectors, each of which specializes

in a specific aspect of production. Some crew positions will be

highlighted in this paper. Crew members are academics.

The cast consists of the actors who appear in front of the

camera or provide voices for characters in the film. Actors are

students. They have to learn, and portray, their characters.

In the film industry, the main production phases are pre-

production, principal photography, and post-production. Pre-

production begins when a script is approved. Pre-production

tasks include storyboarding, construction of sets, props, and

costumes, casting, budgeting, acquiring resources, etc.

Principal photography is the actual filming of the episode,

where people gather at a television studio or on location to film

the scenes of the episode. Once principal photography is

complete, the producers co-ordinate post-production tasks.

In our PBL production, pre-production consists of all tasks

required to prepare the PBL session, including script writing - a

major task. Since the purpose of the sessions is not to record

episodes for broadcasting, but to focus instead on the role play,

we will call this phase Enacting. We do not have post-

production tasks.

B. The practicum

The concept runs through the series, and in our case,

concerns the development of information systems through

successive phases performed by specialized characters who

must stay in role. Concept and characters are set up in a

practicum: all together on the sets where the sessions are

performed, the decors used in each session, and the accessories

required for interpretation of the characters.

1) Architecture: A Management Information System, called

SIGILI, has been developed to meet the needs of our

Informatics Department. SIGILI was designed to manage

schooling and was used by administrative staff and

programme managers. SIGILI is composed of 3 sub-systems:

 SIGILI1, a schooling management system;

 SIGILI2g, an internships management system;

 eCompas, a competencies management system.

The whole system was developed between 2005 and 2007

with the second author acting as project manager (the job he

used to perform at software companies for 13 years prior to

joining our university); each sub-system was developed by a

team of 5-6 full-time interns during their 7-month Masters

internship (17 interns in all). The three sub-systems use a 3-tier

architecture in which the user interface, functional process

logic, computer data storage and data access are developed and

maintained as independent modules, on separate platforms.

SIGILI1, the first sub-system, was developed with open-source

tools and uses Eclipse/Struts as a development framework, and

Tomcat as an application server. SIGILI2g and eCompas both

use JDeveloper and ADF Faces as an application development

framework and the Oracle Application Server. Oracle is used

as the DataBase Management System (DBMS) in all three

cases.

2) Legacy, complexity and heterogeneity: A major

challenge for IT students is dealing with the complexity and

heterogeneity of legacy systems. Information systems are built

through successive projects, with people, processes and

technologies changing over time. A typical banking or

insurance information system includes sub-systems and

components produced over a period of 30 years. “Problem-

based learning can help students to learn with complexity, to

see that there are no straightforward answers to problem

scenarios, but that learning and life take place in contexts,

contexts which affect the kinds of solutions that are available

and possible [9].” The SIGILI Management Information

System and its technical environment will be used throughout

all PBL sessions. The SIGILI data model is – like any IS -

fairly complex: 90 tables, 60 views, 50 packages, 600 triggers,

and 270 indexes. SIGILI code is managed within several

configuration software components. The SIGILI infrastructure

relies on different technologies. This complex, heterogeneous,

legacy environment is the practicum in which PBL sessions

run - a software studio corresponding to studio facilities that

are used to make episodes of a series.

3) SIGILI artefacts: As mentioned in previous sections, a

key component of the practicum is the SIGILI Information

System. Although the work has been done by interns led by an

experienced project manager, the project manager has never

accepted weak deliverables - because the priority was not the

project but rather the internship learning outcomes. Moreover,

since the major objective of the internships was the learning-

by-doing of software engineering processes, the development

cycle was performed with a rigor that might not be matched in

real software companies, resulting in an exhaustive set of

major deliverables issued in a software project at our disposal.

Obviously, the purpose of these project artefacts was not to

serve the PBL approach - which we built only recently - and

most of these need reworking before they can be used in a

PBL setting. SIGILI artefacts are part of the furnishing

required to run PBL sessions and form a set that is comparable

to a film set (decor and props used in a film).

C. Pre-production tasks

An important job in the pre-production crew is - in our

opinion – that of the scenario writer. Savin-Baden and Howell

Major [10] conclude a chapter on curricula models with “In

problem-based curricula the problem scenarios should serve as

the central component of each module [...] the starting point

should be a set of problem situations that will equip students to

become independent inquirers [...] and perceive that there are

also other valid ways of seeing things besides their own

perspective.”

A PBL session should be run according a scenario that is

intended to be interpreted on the basis of student performance,

rather than serving as a "finished product". From our

experience, a PBL session works well when a story is told and

when students feel themselves involved in the story.

"Storytelling is one of the most powerful techniques we have as

humans to communicate and motivate [11]." Hence, the

writing of PBL scenarios is an activity very close to

screenwriting - and PBL session designers act as screenwriters

and are responsible for researching the problem and its story,

developing the narrative, writing the screenplay, and delivering

it, in the required format, to the PBL tutors.

Screenwriting theories help writers approach screenplay by

systematizing the structure (Goldman's famous quote

"Screenplays are structure" [12]), goals and techniques of

writing a script. In the three acts paradigm, act I is the setup

(location and characters), act II is the confrontation (with an

obstacle), and act III resolution (culminating in a climax and a

dénouement). Field [13] preached the three-act structure at 1/4

– 1/2 – 1/4 proportions, built around page-number-specific

turning points. 1/4 - 1/4 - 1/2 proportions are more appropriate

to the case of problem-based learning. In a 4-hour session, one

hour will be devoted to understanding the setup, then students

will spend one hour getting to grips with the problem and

tackling obstacles, and resolution will take more than two

hours.

1) Problem design: Curricular content must be organized

around problem scenarios rather than subjects or disciplines.

One key aspect for designers is that we just have to accept the

amount of curriculum knowledge that will be taught and

learnt, without allowing resentment about this to get in our

way. The complexity of problem design is a challenge to many

tutors implementing problem-based learning. Relying on

previous experience, each author designs their own problems.

2) Development cycle: The plot of the PBL sessions

concerns the maintenance or development of an information

system. Practical understanding of the development cycle of

an IS is an underlying objective of any PBL session. PBL

sessions can be grouped in logical units, each related to a

phase of the development cycle: maintenance, coding, design,

etc. It will gradually be revealed to students that each PBL

session is contributing to some extent to the development of a

new sub-system. Our development approach relies on a

waterfall process: requirement capture, requirement analysis,

design, implementation. Like most information systems, we

are using a systemic method. First, data and processing have to

be separately modelled, and then coupled to constitute a

unique and integrated system. The building of the system

moves through different abstraction levels: statement of work,

requirements, design and implementation.

3) Artefacts: software development activities rely on work

products, called artefacts, either as inputs or as outputs. PBL

scenarios are played out within software development phases

where output artefacts of one phase are used as input artefacts

for the next. Successive cases should rely on sound and

complete artefacts (even though they should, ideally, have

been produced by students). But it might happen that students

have been unable to solve the problem and produce strong

artefacts – so that their weak artefacts have to be replaced with

strong products. Hence PBL designers have themselves to

produce good artefacts to accompany the case; otherwise

tutors will find themselves unable to run successive cases with

students. To understand the burden of this task, recall that an

episode (a PBL session) will go through successive scenes,

each scene requiring a different film set, which includes the

furnishings and all the other objects that will be seen in the

scene. For each scene of the PBL session, a new artefacts set is

required. Unfortunately, in most cases, the artefacts have to be

built by the PBL designer, acting as head carpenter, set

decorator and prop maker, to use film industry terminology.

4) Inverting the cycle: project-based approaches have to

follow the development cycle along its normal path: from

requirements to code. During a project, students are supposed

to learn the different phases according to the waterfall

schedule. Unfortunately, teaching and learning are much more

difficult in the uphill phases than they are in the downhill

phases. Nobody will try to learn to ski at the top of a mountain

where the runs are vertical; instead we learn where the slope is

gentle and gradually move up. Applied to software

engineering, this means that students are passing through an

inverted cycle; the first sequence of PBL sessions is intended

to master the implementation activity (from design to code);

then a steeper segment is envisaged: the design activity (from

requirement analysis to technical solution design); and the last

PBL sessions sequence is devoted to requirements analysis,

the steepest part of the cycle.

D. Enacting the PBL sessions

Bear in mind that courses chosen for PBL are centred on

the development (in the broad sense of software engineering:

from requirements to implementation) of information systems.

In a systemic development method, the first phases aim to

reach sufficient consensus on problem understanding to

produce, as a basis for the next phases, a conceptual data model

(as an E-R schema or an UML class diagram) and a conceptual

processing model (such as a use case diagram or function

hierarchy). Based on this broad understanding, data and process

modelling may, to some extent, be separately modelled. Later

on in the cycle, data and processing implementation will be

coupled again and tightly integrated. Since the PBL sessions

are focused on the left branch of the V-model, we gather the

PBL sessions into a 3 topic-breakdown: information system

engineering (data & processing), database server (data), and

application server (processing).

Apart from the development cycle dimension, systemic

methods also consider a dimension using an abstract-concrete

axis in which models transition from abstract representations to

concrete constructs with three different levels: conceptual,

logical and physical. Broadly speaking, the "information

system engineering" topic focuses on conceptual and logical

levels, while "database server" and "application server" topics

focus on the physical level. As mentioned in the previous

section, we have inverted the development cycle so that the

first PBL period is related to physical models.

1) Database server: due to student diversity, very few pre-

requisites are required, mainly a knowledge of SQL DDL and

DML. The first sessions are intended to improve student

familiarity with real-scale database schemas. Examples of

PBL sessions are:

 Restructuring a set of Data Definition Language (DDL)

scripts in a design-based hierarchy

 Checking consistency between code artefacts and

technical detailed specification

 Refactoring the DDL sources of a complete sub-system

according to naming and organization rules

Once a practical understanding of what a real-scale physical

data model is, the next step is to train students in data

implementation activities, i.e. transforming a logical model

into DDL constructs. It should be pointed out that an

understanding of this transformation is obviously key not only

to successful implementation but also to successful design.

Hence, our approach is to perform a retro-design of the DDL

sources prior to the implementation itself. In the educational

field, retro-engineering is an inductive approach. It is the

reconstruction of a process from back to front, having the result

of an activity as its starting point. Examples of PBL sessions

are:

 Retro-designing a set of DDL sources (the physical

model) in a logical model

 Producing (mostly generating) the DDL sources again

from the logical model and drawing up the logical

model and iterating the generation process until the

logical model can serve as a reference for the

development of the data server side of a complete sub-

system.

2) Application server: once again, due to student diversity,

very few pre-requisites are required, mainly a knowledge of

Java. The first sessions are intended to familiarize students

with the application development environment (JDeveloper /

ADF Faces). Examples of PBL sessions are:

 Running a step-by-step tutorial, then applying it to

programming a small software component having a

similar structure

 Retro-designing then developing a set of Web pages

with the user’s manual yielded as specifications

 Performing a code review on an existing module

Obviously, with a complex development framework such

as Eclipse / Struts or JDeveloper / ADF Faces, a long learning

curve is inevitable, and such PBL sessions are only intended to

prepare students to implement either interactive or batch

processing functions from a design specification.

Unfortunately, programming tools do not provide the same

maturity as data modelling tools, and there is no substitute for

programming experience. PBL sessions are similar to typical

programming labs, except in that they take place in a real

system and can be related to the database server PBL sessions.

To assist students in using a complex development

environment, some areas of PBL lessons are formulated as a

tutorial, scaffolding students if necessary. Examples of PBL

sessions are:

 Integrating existing pieces of code in a bottom-up

approach

 Examining the gap between the solutions provided in a

tutorial and expected implementation

 Finally, developing - in a traditional fashion - the code

of a sub-system component

3) Information system engineering: as mentioned before,

database server programming and application server

programming were performed in relatively-independent PBL

sessions, and focused on the physical levels. We now reach the

uphill phases: requirement analysis and software design - and

deals with conceptual and logical models or logical models

only. Both data and processing functions are modelled. At the

time of writing, an initial PBL period of 8 weeks has been

completed and reported on in this paper. During the upcoming

period, PBL will be applied to analysis and design. We will

continue to climb the mountain from bottom to top, learning

software design before requirements analysis. The inductive

approach will be used: from detailed design to architecture,

from architecture to requirements. The last sequence of PBL

sessions will be devoted – at last – to performing the uphill

phases in the usual, top-down fashion – from requirements to

architecture, from architecture to detailed design, from

detailed design to implementation – with the practical

knowledge and skills gained during the inductive PBL

sessions.

E. Students' and teachers' role

Active learning refers to several education paradigms that

focus the responsibility of learning, on learners. PBL is one

active learning method that follows a constructivist perspective

in learning. Constructivism can be summed up in two

fundamental statements [14]: (i) learning is defined as an active

process for knowledge building rather than a knowledge

acquisition process; (ii) teaching is essentially aimed at helping

students in this process rather than transmitting knowledge.

Among practices belonging to the constructivist stream

(and cognitive psychology), D. Dwyer [15] and J. Tardif [16]

define a learning paradigm, in opposition to the main teaching

paradigm.

1) Teachers' roles: J. Tardif defines teachers’ roles as

creators of pedagogical environments; interdependent, open-

minded, critical professionals; development instigators;

mediators between knowledge and students; coaches;

collaborators for the student success of a whole school.

As mentioned in [17] “In many universities, the adoption of

problem-based learning is adding another dimension to what it

means to be a lecturer in higher education.” Among the roles

mentioned above, we emphasize the roles of creating

pedagogical environments for the PBL sessions and of

coaching whilst PBL sessions are running. Both authors feel

they have a lot to learn themselves about the job of being PBL

coaches (called PBL facilitators in the literature). We lack

support from the university for those staff who are Problem-

Based Learning facilitators. We also have little understanding

of the complex interactions between team and facilitator during

the PBL - and how both sides adapt their behaviour as PBL

practice matures.

2) Student roles: J. Tardif defines student roles as

investigators; co-operators sometimes experts; clarifying

actors; strategic users of available resources. Among the roles

mentioned above, the investigator and strategic user roles are

most important.

PBL research is usually enthusiastic about PBL adequacy

and effectiveness applied to engineering and medical science.

For instance, [18] claimed that “Student learning changed and

student knowledge increased as a result of implementing PBL.”

Satisfied students report the same viewpoint. But, as pointed

out by Boud [7]: “The principal idea behind problem-based

learning is [...] that the starting point for learning should be a

problem, a query or a puzzle that the learner wishes to solve.”

But it can happen that some (or all) students do not wish (or are

unable) to solve a problem. Another point is that students do

notice when, for one reason or another (inadequate preparation,

lack of experience of the PBL tutor, weaknesses in the inputs

artefacts provided, etc.) a PBL session fails to work. Unless

students sign up to the PBL approach, they might use the failed

lessons to weaken the approach. Sweenev [19] clearly pointed

out that the PBL concept should be clear to all and that

everybody should understand PBL to mean the same thing,

otherwise it may frequently induce discomfort, confusion,

antipathy, lack of co-operation and general disbelief in PBL.

F. Assessment

If we consider the SWEBOK topics addressed in the PBL

series (http://www.computer.org/portal/web/swebok), they

belong to three Knowledge Areas (KA): software requirements,

software design, software construction. Annex D of SWEBOK

presents a classification of KA topics according to Bloom's

taxonomy: Knowledge (K), Comprehension (C), Application

(AP), Analysis (AN), Synthesis (S), Evaluation (E). We

consider the scope of PBL sessions and mention the topics

addressed within the sessions together with the associated

Bloom level in brackets:

 SW requirements sessions are focused on requirements

classification (AP), conceptual modelling (AN),

architectural design and requirements allocation (AN),

software requirements specification (AP)

 SW design sessions are focused on architectural

structure and viewpoints (AP), structured design (AP),

object-oriented design (AN)

 SW construction sessions are focused on construction

design (AN), construction language (AP), coding (AN)

All topics are AP-classified (action verbs: apply, change,

construct, manipulate, operate, produce, solve, use, ...) or AN-

classified (analyse, compare, deconstruct, identify, illustrate,

infer, outline, select, ...). Obviously, assessment cannot be

performed in the same manner as usual. PBL assessment is part

of the PBL itself, as is true of almost all active teaching

approaches - what J. Tardif [16] calls “the entrenchment of

assessment in learning”.

Our assessment relies essentially on portfolio assessment.

When a PBL session artefact is delivered, the tutor examines it

and provides feedback about certain points to be improved

upon or started over. Ideally, feedback is given in front of the

authors, allowing the authors to delve deeper, discuss, and even

contest remarks made by the tutor. But the workload may be

too heavy and we also practice a stop-and-go approach: it

works or it does not work. In the latter case, students are poorly

assessed but are provided with a working artefact that allows

them to continue their work.

Formal examinations take place every two months; this was

therefore the case at the end of the fully-PBL period.

Examinations are based on work performed by students during

the session, and may be considered as PBL sessions themselves

- though without any help from tutors.

PERSPECTIVES AND CONCLUSION

This article presented the introduction of a PBL approach in

a mobility programme for Moroccan students coming to

France, governed by a strong principle of directing skills for

the benefit of Moroccan economic development. However,

student heterogeneity and lack of industrial experience

confronted us with new challenges, hence the PBL approach

was trialled on a few courses in order to develop a reflective

practice.

Although PBL has proved its worth in engineering

education, an immediate conclusion is that the price of starting

a PBL approach is high, a drawback to bear in mind. Our

experience is too limited to draw any conclusions about student

perception of PBL or the pros and cons of the approach. We

plan to relate student participation in PBL with their

involvement in problem-solving during the internship - one of

the fifth assessment indicators used in awarding a mark to the

internship.

REFERENCES

[1] C. Deiters, C. Herrmann, R. Hildebrandt, E. Knauss, M.

Kuhrmann, A. Rausch, B. Rumpe, K. Schneider, "GloSE-Lab:

Teaching Global Software Engineering," 6th IEEE Int. Conf. on

Global Software Engineering, pp.156-160, Aug. 2011.

[2] D. Petkovic, R. Todtenhoefer, G. Thompson, "Teaching

Practical Software Engineering and Global Software

Engineering: Case Study and Recommendations," 36th Annual

Frontiers in Education Conference, pp.19-24, Oct. 2006.

[3] N. R. Mead, D. Shoemaker, A. Drommi, J. Ingalsbe, "An

Immersion Program to Help Students Understand the Impact of

Cross Cultural Differences in Software Engineering Work,"

32nd IEEE Int. Conf. Computer on Software and Applications,

pp.455-459, July-Aug. 2008.

[4] P. Lago, H. Muccini, L. Beus-Dukic, I. Crnkovic, S. Punnekkat,

H. Van Vliet, H.; , "Towards a European Master Programme on

Global Software Engineering," 20th Int. Conf. on Software

Engineering Education & Training, pp.184-194, July 2007.

[5] S. Karlsson and I. Marriott, Analysis of Morocco as an Offshore
Location, ID Number: G00161819, Gartner Publications, 2008.

[6] M. J. Monasor, . i ca no, M. Piattini, I. Caballero,

"Preparing Students and Engineers for Global Software

Development: A Systematic Review," 5th IEEE Int. Conf. on

Global Software Engineering, pp.177-186, Aug. 2010.

[7] D. Boud and G. Feletti, “Changing problem-based learning
[Introduction].” In D. Boud & G. Feletti (Eds.), The challenge of
problem-based learning (2nd ed). London: Kogan Page, 1997.

[8] V. Ribaud and P. Saliou, "A project-based immersion system" In
21st IEEE-CS Conference on Software Engineering Education
and Training Workshop (CSEETW '08), pp.25-28, April 2008.

[9] M. Savin-Baden, Problem-based Learning In Higher Education:
Untold Stories, Maidenhead: Open University Press- McGraw-
Hill Education, 2000.

[10] M. Savin-Baden and C. Howell Major, Foundations of Problem
Based Learning, Maidenhead: Open University Press- McGraw-
Hill Education, 2004.

[11] L. Widrich, " What listening to a story does to our brains",
http://blog.bufferapp.com/science-of-storytelling-why-telling-a-
story-is-the-most-powerful-way-to-activate-our-brains (last
visited, 2012, December 1th.

[12] W. Goldman, Adventures in the Screen Trade: A Personal View

of Hollywood and Screenwriting, 1983, NY: Warner Books.

[13] S. Field, Screenplay: The Foundations of Screenwriting, 2005,

New York: Delta.

[14] M. Duffy and D. J. Cunningham, "Constructivism : Implications

for the design and delivery of instruction", In Handbook of

Research for Educational Communications and Technology,

London: MacMillan, 1996.

[15] D. Dwyer, Apple Classrooms of Tomorrow : What we have

learned, In Educational Leadership, vol. 54, num. 7, 1994.

[16] Jacques Tardif, Intégrer les nouvelles technologies de

l’information – Quel cadre pédagogique ?, Paris: ESF, 1998.

[17] M. Savin-Baden, Facilitating Problem-based Learning:
Illuminatiing Perspectives, Maidenhead: Open University Press-
McGraw-Hill Education, 2003.

[18] I. Richardson and Y. Delaney, "Problem Based Learning in the
Software Engineering Classroom," 22nd Conf. on Software
Engineering Education and Training, pp.174-181, 2009.

[19] G. Sweenev, “The challenge for basic science education in
problem-based medical curricula”, Clinical and Investigative
Medicine, 22, pp. 15-22, 1999.

