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Defining food sampling strategies for chemical risk assessment

Nathalie Wesolek, Alain-Claude Roudot

ABSTRACT

Collection of accurate and reliable data is a prereguifsir informed risk assessment and risk managememt.cRemical
contaminants in food, contamination assessments egablumer protection and exposure assessments. Anthgetccuracy of a
contamination assessment depends on both chemidgbasnand sampling plan performance. A sampling plasvigys used when
the contamination level of a food lot is evaluatedg ¢lu the fact that the whole lot can not be analybet only samples, which are
drawn from the lot. An efficient sampling plan enalii@$ake samples from a food lot, following a giy@aotocol, with a relatively
low risk of misestimating the true mean concentratibthe food lot after analysis of the food samplesnfling plan performance
testing is achieved thanks to mathematical valisathethods. The best fit sampling plan is the o dgiives the best compromise
between the lowering of the risk of misestimating the tati€oncentration and the practical feasibility (not tooch time consuming
nor money consuming). This chapter presents two sampling ydlidation strategies: a parametric method develoged/thitaker
and co-workers from 1972 and a non parametric methodpsély Schatzker al. (Schatzki, 1995; Campbe#t al. 2003). To our
knowledge, these are the only two methods suffiieedolved for having been applied to real situatt@ses for food sampling
validation. These statistical methods are first exgldifrom a theoretical point of view. Then, each an#lustrated by a practical
application to a sampling plan validation for a sfiechemical risk in a food commodity, thanks to able contamination data
gathered in the literature. According to us, in its generathematical principle, the non parametric method is napgropriate to
cases with contaminants distributed heterogeneonsyfood lot. However, due to its ease of use, thenpetrac method applies best
to cases where the distribution of the contaminanhdmogeneous. A food contaminant is homogeneouslyitdised in a
contaminated food lot when the contamination inciderate for individual food items taken from the contartédalot is high, and
when the concentration levels in each food item ateeratlike. Otherwise, when the contamination incidamade is low, and when
the concentrations differ greatly in each food itens theans that the contaminant is heterogeneoushhbdistd within the food lot.
For these reasons, the first sampling plan validatimhrigue (parametric method) is applied, in this chapterphycotoxin
contamination in shellfish lots at the cultivatioone, as it is considered as being a homogeneoustbdied contaminant case. For
the heterogeneously distributed contaminant casegtoyiti contamination data for pistachios at rettife are exploited in order to
put into practice the non-parametric sampling plamdatibn method. Both phycotoxins and mycotoxins areina toxins that are
unsafe for human. Limits of contaminations are set bipnat and international safety agencies, but samgirategies have a great
influence on the detected results in food lots. Thetdrawill show that an optimal sampling strategy carob&ined in each of the
two cases, but that they require different mathematicatagzhes in order to obtain reliable Operating Charactsi§®C) curves
showing:

- the consumer risk (risk of accepting lats true concentration above the contaminant’s concentration threshold);

- the producer risk (risk of rejecting lots at a true concentration under the contaminant(s concentration threshold).

INTRODUCTION

Chemical contaminant analyses in food are of utnmpbitance, as these contaminants can trigger dangeealtt effects on food
consumers, especially for people at risk like pregmanmien or young children. Some contaminants are mesalloh the body and
then eliminated, but may still be dangerous abovkreshold concentration due to acute exposure. Othemnichl contaminants
aren(f eliminated and can accumulate in the body at a level increasing along with time and consumption frequency of contaminated
food. By this way, besides acute exposure, they genenaonic exposure due to very high body burdens.

Knowing consumption levels and dangerous doses lemethe body thanks to toxicological studies, l&jirs set maximum
contamination levels in food for human consumptiéood having levels above these thresholds are ndbo@zed for sale.
Furthermore, legislators set sampling plans, which méaey define the way samples must be taken fronod fft, as function of
the food lot size. A food lot of a given food typan be a food consignment, an industrial batch, fendng the same origin, etc., and
is supposed to have a contamination level as honemges as possible.

In case Europeategislators don(fl define a sampling plan in detail for a food type and contaminant type, they state at least that a
sampling plan, enabling the detection of any overshgmf the levels, must be set.sAmpling plan(s objective is to obtain samples
having a contamination level representative of tle@mcontamination level of the food lot. A very slenpnaginary example of an
inappropriate sampling plan can be given with an applek consignment. This inappropriate sampling plan.(E)gnvolves taking
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one sample of three apples from the rear of the truekees the contaminated apples, represented in bladkcated in the centre.
In this example, even in case of rigorous laboratoryyaizain an accredited laboratory, the level of cortation obtained for the
sample is not reflecting the mean contamination le¥éhe whole consignment.

Fig.1. An inappropriate sampling plan example witle sample taken in an apple truck consignment

One
sample

ey taken

for
analyse

(O uncontaminated apple :
@ contaminated apple

The sampling plan defines many criteria:
- for the lot (type and size) and
- for the sampling process.

The Sampling Process
A sampling process comprises many steps involvinguarkinds of samples as described in fig. 2.

Fig.2. The sampling process
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Incremental samples are taken from the food lot andggesgated to form global samples. These global leasnape usually simply
called [samples[] They are homogenized and may be divided in sub-samples, before being further divided in analysispdasa The
analysis samples are the ones submitted to cheame}se.
A sampling process is specific to a food type andrdasuinant type, due to a sampling complexity incragasilong with:
- the heterogeneity of the product (solid versus liquiatiucts);
- the heterogeneity of contamination (contaminant speeevenly in the food commodity, see the abstradtfpr more
details);
- the low maximum concentration level of the contaanin(i.e. 100 pg/kg is harder to detect than 100 mgfkg more
details see Blanc, 2006).

A complex sampling process for a contaminant spretatdgeneously and at a low concentration level in awsa food product, for
a reliable concentration result, consists of:

- taking a sufficient number of incremental samples of gr@riate size from the lot with an adapted device;

- selecting proper locations to take incremental sampkgsatte representative of the lot mean concentratior; leve

- mixing the incremental samples in a sufficient nemtsf global samples;

- using a proper homogenisation method.

The complexity of the sampling process vouches faxgpropriate accuracy of the inspection results.
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An example of a complex sampling process is givethénpractical procedure for grain handlers (USDA, 2009) faingsampling in
order to determine the aflatoxin level. In this proceduaeyes must be representative and sufficiently largeiinenended sizel
4.5 kg) to compensate for the uneven distributiorhefdontaminant. Each sample is taken with a probebgritlis way, consists of
many incremental samples (Fig. 3b). For stationary lotgrain in trucks and in other open-top carriers, at leastprobe samples
from any point in the shaded area (Fig. 3a), for lotsdn@t21,120 L or less, are taken. For larger lots, at {beet probe samples are
drawn.

Fig.3. a) Sampling Pattern for Sampling Trucks, Trailens, Wagons (Courtesy: Charles R. Hurburgh, Jr., lowa State UityWeby
Mechanical probes used to sample stationary lotsaofi gn trucks and in other open-top carriers (USDA, 2009)
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Lot Type and Size

The selection of the food lot type and size is pathe sampling plan too. It is a complex selectioat involves a choice as function
of:

- the final objective that might be identifying blnds in order to track the contamination back to therse or assessing

the population(s exposure;

- the contamination pattern.
These two criteria of choice are going to be furthetampd hereunder and in fig. 4.
As chemical analyses are very expensive, systeraatityses are very seldom achieved on each foodhktead, for a given food
(Fig. 4a):

- at a given sampling frequency, some food lots akect®l by chance or food brands are selected in ordbe to

proportional to the consumption levels of each brand,

- food lots that are suspected of being contaminatedelected.
The most relevant steps of the process from farm toucopson (flow diagram in Fig. 4b) must be chosen for damgm lot: farm
level, industrial level, transport level, storage level, consumption level[] Indeed, contamination might occur or develop at a step and
not at another. This is due to specific contamimapatterns for each contaminant. The objective iglitninate bad quality lots as
soon as possible in the process to ensure consumer!s safety and to lower the global mean contamination level. Moreover, still due to
these patterns, chemical contaminants can be witistifibuted or locally distributed at each process atepthen generate plant and
animal product widespread or local contaminationsreMprecisely, the contaminated zone within a farmanga, fishing zone,
storage area etc. can be either vast or very smallthése reasons, the choice of the lot size to belsdmnmust be judicious. A
proper food lot size choice must be guided by thetfatta food lot must have a globally constant aorimation level within the lot
(Fig. 4c) even in the cases when contamination pagshipattern drives to located contaminated zondsnwiite lot. It says that
these contaminated zones must be quite evenlyeldaeithin a lot. This enables to avoid mixed upteamination levels within the lot
as much as possible.
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Fig.4. Lot selection for sampling: a) Sampling strgtéay food lots selection; b) Choice of the steps efphocess for food lots
selection; c) Size of the lots.
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Sampling Plan Validation

Finally, an accurate sampling plan ensures thatdotsen for sampling are properly defined and selecatddtteat samples in the
whole sampling process are properly obtained. Thédioal is to state that the contamination levethaf analysis samples is strictly
the same as the contamination mean level of théenbbtested with the lowest error as possible.

In order to enable the scientific validation (matheoatvalidation) of a given sampling plan, both g@mnpling process and the lot
selection process must be studied. Two sampling m¢idation methods are going to be discussed: a parameethod developed
by Whitaker and co-workers from 1972 and a non parame&tboa set up by Schatzkial. (Schatzki, 1995; Campbelt al. 2003).
To our knowledge, these are the only two methodscgeriitly evolved for having been applied to real afiion cases.

ACCEPT PROBABILITIES OBTENTION FOR SAMPLING PLAN VAIDATION
Parametric Method from Whitaker: Principle and Application to Phycotoxins

The sampling plan validation method developed byitster consists of calculation steps achieved from ddt@ontaminant
concentration of samples taken from a lot. The saspbncentrations from a lot are adjusted to a thealetistribution thanks to a
goodness of fit test. This operation is made for a fetw. IFurthermore, the variability between samples agnatons from a lot is
studied in order to predict this variability for any loean concentration within a given range of concedotrat Both the theoretical
distribution and the prediction of concentrations valigbbetween samples of the same lot are used toutzk the accept
probabilities of lots for the sampling plan testedl thlese steps are further explained in the followiegtisns and applied to
phycotoxins with the evaluation of sampling plans toedethe contaminant okadaic acid in mussels. Okaaldit is a phycotoxin
and part of the diarrhetic shellfish poison family. &8ite molluscan shellfish feed on phytoplankton (mialgae) which might
potentially contain biotoxins like okadaic acid.drder to ensure food safety in Europe, the level of akadcid equivalents in live
bivalve molluscs must not exceed 160 pg per kg (Reigml 853/2004/EC). Therefore, sampling plans musteiebg official
authorities, in each European country, in order to reompitoduction areas to check the presence of okad&idrashellfish, knowing
that mussel may be used as an indicator species @iegu854/2004/EC). It is a good point to take samptdbe production areas,
due to the fact that the phycotoxin concentratioshallfish, is not going to vary in the next stepshe process (transport, shelf life)
as many shellfish are sold raw. The only processisfegncing the okadaic acid concentration level is ¢beking step (McCarron
et al., 2008), as concentration increases in steamed muomeesl in comparison to raw mussel meat. During a conttiom event,
although the contaminant is spread quite homogeheouall the mussels, there is a high inter-indivituariability as regards the
contamination levels between mussels, even for mussiedsn at the same sampling point and at the sanee(Edeboer al., 1988;
Duinkeret al., 2007). For this reason, setting an appropriate samplig igldifficult and must be made on a scientificiba®tter
than suggested by an approximate rule of thumb b@asedppositions. However there has never been a prattiabdvaluation of the
impact that the sample size and the number of samplen, have on the analysis results and the comdspg decision for the
shellfish lot.

Theoretical Distribution

In order to estimate the probabilities associated watimpling lots of a food product for a contaminantlyis, the suitability of a
theoretical distribution is studied. This means that observed distribution afie contaminant(s concentration in samples (of the
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same size) drawn from one lot is compared to a theokeéiigtaibution. This operation is repeated for severt loith the use, at each
time, of a statistical test to validate the goodrad&.
First of all, for the selection of a theoretical distiion to test, the observed probability density fior are drawn (one per lot). In
order to do this, the data are spread into classes afemndeation of the number of classes as shown heredfter Sturges method
can be used to determine the number of classes:

Number of classes = sup(kfg) + 1) |

With n, the number of samples within the lot and sup(): rounchtiraber to the superior integer. In order to set the afdssral, the
following formula can be used:

Maximum valuelIminimum value
Class interval =

Number of classes

Then, the observed probability density functions are dras a histogram of the proportion of samples as fumatib the
contamination class intervals. The observed probabdipsity functions shape characterises a distributior. typ might be
symmetric (normal), when the 2 [halves[Jof the histogram appear as mirror-images of one another. If it is not the case, thenshape
is called skewed (non-symmetric). For skewed distrilmgtidt is quite common to have one tail of the distion considerably longer
or drawn out relative to the other tail. A [skewed right[ldistribution is one in which the tail is on the right side. A [Skewed left[]
distribution is one in which the tail is one thet lsifle.

Results of practical application to okadaic acid:

Data used:

For the application to okadaic acid in mussels, da¢a used are from Pr. Arne Duinker who has supplied ussaipe
communication) with raw data on individual musselstaminated with okadaic acid equivalents obtainednduexperiments that
lead to a publication in 2007 (Duinker al.). These data consist of contamination levels inseisscontaminated on collectors
rather high density in a stratified fijord. Four differéotis were sampled, and all the samples from a lot waten at the sam
sampling point, at the same time. For each lot: 23Msamples were taken, each sample consisting efrarssel. Then eac
individual sample was submitted to chemical analySiven the Regulation 853/2004/EC, the data, exprdasseancentrations i
steamed mussels, must be converted to concentratiosag/imussels. This conversion is done thanks to thegatioin of McCarron
et al. (2008). Indeed, they published a theoretical conversadue: Concentration sy mear= CONcentration, sieamed medt 1-2667.

f

[]

=

Results:
The probability density functions obtained for eaclhihaf four lots show distributions highly skewed to tight, which says that the
right tail is longer, the mass of the distributionc@ncentrated on the left of the figure. An example afght-skewed distribution
obtained is given in Fig. 5.

D

Probability density function for a lot

Il = — [

[181; 480.3] 1480.3; 779.7]1779.7; 1099]  ]1099; 11398.3; 116977
1398.3) 1697.7) 1996.9]
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PEgRastian of

e 2 9o 9o
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Fig.5. Histogram of observed probability density fuoietfor a lot with concentrations in pg/kg

The choice of a theoretical distribution type mustizle between continuous data distributions: Norméiilaligion; Gamma family
distributionswith Exponential, Beta, Pareto, Weibull and Gumbel distributions(] For right-skewed distributions, Exponential, Beta,
Pareto, Weibull, or Gumbel might fit; whether for lefesved distributions, Beta or Gauchy distributions couddappropriate.
Furthermore, the slope of the tail, as well as a commaoetipeain the field of application may guide a thearatidistribution choice.
Secondly, the cumulative distribution functionsiué sensed theoretical distributions and of the obsedistribution are compared to
each other. In order to draw the observed and theoreticalilative frequency distributions, the concentratialues of the samples,
named X, are ranked within each lot into ascendidgrowith x the value of the concentration in the rank. For theutation of the
parameters of each theoretical distribution, the meadnvariance are calculated for each of the lots on dhgpke results (observed
data). Then, the method of moments is used to calculate each theoretical distribution(s parameters. Afterwards, the observed and
theoretical frequency distributions must be plotted on lgsdp order to enable a visual comparison. In order litege this goal, the
ordinates of the cumulative frequency distributionscaleulated as follows for the observed and theoretisalibutions:
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- For the observed distribution, the proportion of sasmorresponding to eachwalue must be recorded within each lot.
Furthermore, there are two graphs per lot that are plotied the following ordinates:

F1 opservedX): P(X < %): sum of the proportion of individuals until the rank.
Fs opservelXr): P(X[Jx,): sum of the proportion of individuals until the rank

-For each theoretical distribution, there is only greph per lot that is plotted using the followingioede:

Ftheorilical (Xr) = P(XUXF)
Following of the practical application to okadaicdaci

As it is used for continuous data and can simulatelhigbsitively skewed probability density functionkeettheoretical distributiorn
tested is the lognormal distribution. Furthermore, the lograd distribution parameters can be easily calculatadks to the method
of moments (Calculations in Annex 1). The comparisorhefdbserved and lognormal cumulative frequency distabsitfor each lot
shows a good visual fit (theoretical ordinates candreputed as shown in Annex 2).

An illustration of cumulative distribution functions cgerisons is given in Fig. 6.

Comparison of the lognormal cumulative distribution function to the
observed distribution functions

* Observed distribution function (P(X<=x))
~Log normal distribution function
Observed distribution function (p(X<x))

Cumulative proportion of samples

N
0 10002000 30004000 5000 6000
Contaminant concentration

Fig.6. An example of comparison of theoretical ansested cumulative distribution functions with concetibrain pg/kg

Thirdly, the statistical goodness of fit test mustdhosen. The goodness of fit of the observed ddteettheoretical distributions can
be tested thanks to the Kolmogorov-Smirnov and the fsweDarling statistical tests. Both tests are goodoéds tests of an
empirical distribution of a sample of a random variaiolea theoretical distribution of this random variabléese tests must be
performed on cumulative frequency distributions ineord compare the observed distribution to a theoreadis#iibution. Both tests
measure the differences between the theoretical asdnadd probabilities for each contaminant concentratidhirwone lot.
However, the Kolmogorov-Smirnov test involves findinge tmaximum vertical distance between the cumulatieguency
distributions, whereas the Anderson-Darling test isdap®n a weighted square of the vertical distanoadmst these distributions.
The main difference between these tests is that tlersnn-Darling test is more sensitive to deviatiorthéntails of the distribution
than is the older Kolmogorov-Smirnov test. For the Kolorog-Smirnov test, if the parameters of the theoretizahulative
frequency distribution are calculated from the lot ikaested, which is the case here, the results mustkea with caution, because
the test has got a tendency towards validating thteilalition tested in all cases.

For each Kolmogorov-Smirnov goodness of fit test:

Test hypothesis:
Ho: The observed distribution conforms to the theorktsribution.
Hi: The observed distribution doesn[f conform to the theoretical distribution.

At the desired risk level, Hcan not be rejected if the variable tested,(Pis inferior to a critical value found in a table for the
corresponding number of samples in the lot This meaatdtie adjustment of the observed data to the theatetistribution test can
not be rejected at the risk level chosen. Furthermorey-thadue is the probability of observing the,pvalue under K

For each Anderson-Darling goodness of fit test:

This test is similar to the Kolmogorov-Smirnov test. Thst hypothesis is the same, but it uses a differentstasistic: A, The
critical values and the test statistic depend orsgieeific distribution that is being tested.

Anderson-Daihg can be applied to any distribution, but finding tables of critical values isn(f so easy. If the estimated statistic
exceeds the critical value at a particular signifiealewvel the null hypothesis can be rejected.
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Following of the practical application to okadaiddac

The conformity of the observed distribution to the lognal distribution is further tested thanks to the two gaesinof fit statistical
tests. The theoretical calculations, as well as thag tlvey can be put into practice are given in Annéar3he Kolmogorov-Smirnov
test and in Annex 4 for the Anderson-Darling test. fidseilts of these tests are given in Table 1.
Table 1. Goodness of fit test results

Kolmogorov-Smirnov test I Anderson-Darling test |
D.u Critical value p-value AL Critical value p-value
Lot n°1 0.1393 0.2437 57.91% 1.0639 249 32.438%
Lot n°2 0.1829 0.2457 25.39% 1.01 240 35.14%
Lot n®3 0.2503 0.2417 3.84% 6.704 249 0.05%
Lot n®4 01547 0.2417 42 .66% 1.2052 249 26.52%

Critical values and p-values are obtained for the askllof 5%.

For lots n°1, 2 and 4, for both tests, the test $izgi¢D...c and A, ) are inferior to the critical values, which means thathypothesis
Ho can not be rejected at a 5% risk level. Moreover, thalpes are above 5%, which means too thashhot rejected. So, at a 5
risk level, the lognormal distribution of the popubatican not be rejected. There is a discrepancy far’®tas it shows opposit
results. However, we consider that three lots validatedbbfour by the two goodness of fit tests is ertotg consider that when
samples from any lot are drawn, their contaminatioel#efit the lognormal distribution. Moreover, the saasptlistribution is still
considered to be lognormal, even if the samples takeiof a bigger size than one mussel per sample.

D S

Variability

Associated to the theoretical distribution that fite distribution of samples from a lot, the caldolatof the mean and the variance
from samples of a lot enable to compute the proipalilat one sample taken by chance from this Istdgiven concentration. This
is why mean and variance data between samples neus@loulated, knowing that the variance is a meastireow far the
concentrations of samples are spread out from eachfothene lot. So variance data are studied in ordenabke a prediction of the
contaminant concentration variability between samples.

The variability, more precisely the variance, betweample concentrations is due to the sampling proeess Fig. 2) and more
specifically to the following points:

taking incremental samples and aggregating thensan@le;

homogenizing and dividing the sample into sub-das)p

dividing the sub-sample into analysis samplesaufdeving a chemical analysis.
The first point generates variability due to the mgit inter-individual concentration variability. Thariability at the second point is
mostly caused by the grinding method in case thécfestobtained are not small enough to ensure thet difvision in sub-samples,
the concentrations in each sub-sample are strictlyséme. The latest point triggers differences in camnagon levels mainly
because of the errors induced by the analysis method.
These observations are used to form a mathematical equilfie know that total variance is the sum of varias@m®ponents, due to
the fact that variance components are additive in tasg are due to independent sources of random error.eGoastly, for
estimating components of variance, there must noyftemmatic error sources, stemming per example from aielfiinstrument, a
wrong use of the instrument by the experimenter, etcthBumore, we approximate that the inter-sample vditigbthe inter-
subsample variability and the inter-analysis sampl&ability have not link one with the other. So, vesame, according to Whitaker
et al., that total variance (Variancg,) is the sum of sampling variance (Variangging, Sub-sampling variance (Variangg,.
sampiing @Nd analysis variance (Variangguysis:

Variancergis = Variancesampingt Variancesyy.sampiingt VarianCeanaysis

However, sampling variance is not of the same order of imatmat all as sub-sampling variance and analysis vaian

In Whitaker[s method, total variance, sub-sampling variance, and analysisnegiare accurately quantified. But, given the fact, that
when working on experimental data, Whitaker/. always found that sub-sampling variance, and analysian@e were negligible
in comparison to total variance we assume that we natl calculate the negligible variances. This islight modification of
Whitaker[s method that makes the method much easier to achieve. Moreover, we can demonstrate, in an intuitive approach, that theses
variances are always negligible. In the following, théers of magnitudes of the variance components ang ¢m be further defined.
Indeed, while the laboratory analysis management tiglaytstanding thanks to the validated and efficégtection methods and
procedures available for quality assurance in laborat@aiecreditation), this is not necessarily true of tmepsiag operation, which
seems to be the weak link in the sanitary control sydte agricultural products. The sampling operationfisrothe main source of
error when assessing the sanitary quality of a lot gricaltural commodities for pesticides, mycotoxins orahe metals
contaminations (Blanc, 2006). It can be added thatitnsequite logical that the variability is very muokver between sub-samples
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than between samples of the same origin, becausathple consists of aggregated whole individualdenthie sub-sample consists
of aggregated particles after grinding. This is paldidy true for individuals of big size. Per example, focantaminant spread in a
lot of apples, on one individual apple out of 10,hwihe contaminant spread homogeneously into the fiéghe apple, consider
taking two samples of 10 apples and dividing eachpde after grinding into two sub-samples (Fig. 7). Wier-sample variability is
the variability between the contamination level ofestst two samples taken from the same lot. The smmpight have contained
zero, one, two or even more contaminated apples gwtbn probabilities. So the inter-sample variabilisyhigh. Consider, per
example, that the sample contained one contaminateld.appr this sample, a grinding process, dividing eaghleamto 1,000
particles, would trigger a sample contamination level@®0 contaminated apple particles out of a total@D00 particles in the
sample. The inter-subsample variability is the vatighbetween the contamination level of at least sub-samples coming from the
same sample. Each subsample contamination level noighsist of a certain amount of contaminated particléh & given
probability, so the inter-subsample variability isheatlow.

Fig.7. An example of sampling and sub-sampling vex@acomponents for a contaminated lot of apples thithcontaminated apples
or particles in black

Proportion of apples contaminated in
the food lot: 1/10.

0]
Number of apples contaminated in this
example: -in sample 1: 1out of 10; -in
sample 2: 2out of 10.

(o)

Number of contaminated particles in sample 1 after

grinding grinding: 1,000 out of a total of 10,000.

nter-subsample
J variabi |ty .
When assuming that sub-sampling variance and analysanea are negligible in comparison to the samplingavese, the following
approximation can be made:

Variancerg [ Variancesampiing

This approximation is now used to mention sampliagance instead of total variance.
In order to better comprehend which type of experimetatd must be used, it is useful to further defiresimpling variance. When
two samples &ven(t got the same mean and when they come from the same population, then the difference between their means is
simply due to sampling error. Sampling error is not theséor all the samples and all the populations. iit fsa small or big. Two
factors determine its magnitude: the population variaaed the number of individuals in the sample:

The variance of the population: the bigger the fajfmn variance, the bigger the sampling error.

The number of individuals pooled together in eaie: the bigger the number of individuals, the fendhe sampling
error. This principle is called the law of large numbers.

The latest factor requires further explanations:

The variability between samples consisting of padlgdividuals is the variability between means. lediewe can consider that the
concentration of a pool is equal to the mean oftctirecentrations of the individuals in the pool. Thensiard error of the mean is the
standard deviation of the sample mean estimatepopalation mean. It is usually estimated by the samsgtimate of the population
standard deviation divided by the square root of dmepde size (assuming statistical independence ofahees in the sample):

Standard errofea.= Standard deviation / #v) ‘

Knowing that the standard deviation is the square rbthteovariance, we can deduce that:

Variancefor pools X numberof individuals in a pool= Variancefor individuals ‘

Finally, we consider that:

VarianCe individuals = VarianCesamping= Varianceroai |
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Variance experimental data must be plotted againeir ttespective mean concentration levels: Variaggging = f(mean
concentration). Each dot in the graph corresponds t@ dldtained for one lot with sampling variance and nmeancentration
calculated from the samples taken from the lot. Tlaeregression curve is obtained in order to have aatequof the variance as
function of the concentration. This equation is gdio be useful to compute the accept probabilities.

Results of practical application to okadaic acid:

Data used:

An illustration with real data is given for okadaidcam mussels with sampling variance and mean cdreton data gathered fron
the literature. Total variance data (roughly equal topsguy variance) were compiled from 11 publications fromiai@s countries
(Sweden, Italy, Germany, Ireland, Hong Kong, Tunisia) @mel master thesis (Sweden) with the references in Anrida\VBever, the
literature review involved a much higher number of putians about okadaic acid levels in mussel, buthallgublications were ng
relevant for variance data gathering. More concretelytdtal variance data to be relevant, there had totHeaat two separat
mussel samples analyzed for one sampling point (meapecific area in the water), the minimum of two @asbeing taken at th
same time. Furthermore, total variance for concentrationéndividual shellfish were used directly as thegre, whether tota
variance for concentrations on pools of shellfish viemasformed following the formula:

Variance{or pools of musselX numberof shellfish in a pool™ Variancefor individual mussels

The concentration data in hepatopancreas given ubkcption had to be transformed in whole flesh dasathe European regulation
853/2004 states that the okadaic acid results mustiven ger kg of whole flesh. In order to achieve this t@amsation, the
following formula has been used:

(Concentration in hepatopancreas) / 6 = Concentratiomate flesh

The corresponding total variance data had to be neadifio, as it had to be divided b$; shich means divided by 36. Moreover, i
was decided to take into account total variance é@taas much countries as possible in order to enfwethe sampling plan
validation would not be country specific, but wowld the contrary represent a global validation. The g®od way to check that the
variability is not climate specific either. So, tot@riances data recorded in scientific publications wetbered and adapted in order
to enable the development of a regression equatiprettict the total variance between individual musgewhole flesh as function
of okadaic acid concentration (Fig. 8).

Inter-individual total variance evolution as function of the
concentration
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Fig. 8. Development of an exponential regression eguatio

Accept Probabilities

For a lot of a given mean concentration, the accepigintity is computed as the probability that a sanguasisting of a pool of
individuals taken from the lot, has got a concentralésel inferior or equal to the threshold (usually kbgal food safety threshold).
This probability is calculated thanks to the theaadtdistribution and the total variance equatioraoted in the previous sections.

Results of practical application to okadaic acid:

Table 2. An example of calculation of the accepbplilities

Lat mean . variance for | muforthe |sigma for the|
concertration P\(/:g:j:g apool logharmel | lognomdl mtrty
((gkg) of 30stelfish | dstitution | distribution [ ™

10 7.36211953| 024507065 | 2.301361234] 0.04947432 1
2 100340936 0.334469783 | 299631436 | 0.02891064 1
0 136A426| 0456480755 | 340094385| 0.02251826 1

The lot mean concentration is an input. The poputatiariance is the total variance calculated withfétlewing formula: variance =
5.387* exp(0.0311*concentration). The variance for al mda30 shellfish is equal to the population variarteided by 30 (the
number of individuals). The parameters of the lognomiigttibution: mu and sigma are calculated thanks ¢ontiethod of moments
(Calculations in Annex 1). The accept probability is coteduas the ordinate of the lognormal theoretical catiud frequency
distribution.

Non-Parametric Method from Schatzki: Principle and Application to Mycotoxins

In this section, for the whole method description, the notations are different from Whitaker(s method. Due to the complexity of
Schatzkils method, the theoretical description is given directly for aflatoxin contamination in pistachios. However, the particular case
of retail pistachios is given as a practical appigcaof the method for retail data computed from a feiblications.
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For granular materials and heterogeneously distributetheonants, this methods appears as better adaptiede are going to see
the reasons for this.
Many granular materials, which contain chemical coimtants, frequently have such contaminants distribatedng the granules so
that while the individual granules are uniform, th@taminant concentration varies widely among the gemuA small fraction of
granules may contain the bulk of the contaminatidris is why such type of contamination is callebederogeneously distributed
contamination. The contamination level of a lot isadhéd by taking one or more samples of a predetermirzed sieasuring the
level of contamination in the sample and assumirgglével(s) measured are representative of the lot ctatien. However, such
measurements are subject to analytical, subsamplimysampling errors. Of these, the sampling errors arer lyefdargest, so that
the other errors may be ignored to a first approximaf®uhatzki and Pan, 1996). Due to the low incidenceootamination (per
example, only one granule out of 10,000 might be comated), a non-parametric method is more adapted tharampttic method
due to the difficulty of getting a distribution clogethe reality. Indeed, sources of error are minimizexlse, contrarily to the other
method, there is no adjustment to a theoretical Higion and no variance data required.
The steps of Schatzki’s method are the following:

Step 1: Calculating bins and their geometrical means

Step 2: Distributions for individuals calculated from sd@s results and for many lots of various mean condémns

Step 3: Calculating a merged master distribution

Step 4: Determining mean lot concentrations thankshé& rerged master distribution after calculating bins ther
concentrations of individual granules

Step 5: Calculations for the distribution of simulated pbas

Step 6: Accept probabilities

The method, primarily developed by Schatzki on pisthwas applied to retail data. To our knowledges thithe first time that
sampling plans for retail data have been evaluatistidhios might potentially contain aflatoxin B1 (ABBWhich is a mycotoxin
produced by the fungusspergillus. In order to ensure food safety, the level of AFBtdady-to- eat pistachios must not exceed 8
ppb (Regulation 165/2010/EC). Therefore, sampling planst ime set by official authorities in order to monitdailepistachios to
check the presence of AFB1. The incidence of contamimas very low, as a very low number of individualghin a lot might be
contaminated; and the contamination level sustéénap a single nut is as high as®}pb (Schatzki and Pan, 1996). This study is a
probabilistic evaluation of the impact that the skngize and the number of samples taken, have canidigsis results reliability.

Binning Sample Concentrations

Throughout this method, upper case will be used #&r tefthings related to C, the n-sized sample coration. The corresponding
lower case is used for things related to c, the cdration in a single nut.

The relation between sample size, n nuts, sampleeadration, C, and the probability;(#), that this concentration falls within a
predetermined range [Kirof C is based on the underlying probability distribatfunction (pdf), f(c), of aflatoxin concentration,ic
individual nuts. For this reason, a number J of binG afust be set in order to bin sample concentratioritsefeu lots, obtained from
real testing. The number of levels J which need todmesidered is determined by the number of distingbishkevels of C. This
number depends on the dynamic range and precisiGn of

Results of practical application:

The dynamic range of C is limited by the minimum dtgble level G of aflatoxin (approximately 0.1 ppb) and the maximurele
sustainable by a single nut (which appears to betd@bppb or a little more) or approximately 7 decades:/10* = 10'.
The precision was indicated by Schatzki thanks tcegmpental data to be approximately 25%, from whicloltofvs that a half-
decade in C (approximately a factor of 3) covers + 2 SD (¥ 22% or 0.5-1.5):
Confidence Intervadsy, [1C [12*0.25*C
=C(1+05)
=C*[0.5;1.5]
And 1.5/0.5 = 3110 %%
Thus, the experimental data can be expressed asQ15==714 independent probabilitiegr), corresponding to J logarithmic bing
of fixed size] = log,o Ci*/C;” = 0.5, where € and G = C ;" are the limits of B
Bin limits for B,, C; = 0.1 (Limit of detection) and Cis calculated as follows:
LOGio (C1*) = 0.5 + log (0.1), so G' = 10 A0-5+leg 0.1)
This calculatiogsmust be continued for the followlrigs. Then, for each bin, the geometric midpoinheflhin: Gis calculated.
C=(G"*Ci)”
The bins obtained (in ppb) are in Table 3.

93]
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Table 3: Concentration bins in ppb
C- C+ c

Bin1 0.1] 0.31622777| 0.17782794
Bin2 0.31622777 1] 056234133
Bin3 1| 3.16227766] 177827941
Bind 3.16227766 10| 562341325
Bins 10[ 31,6227766| 17.7827941
Bin6 31,6227766 100] 56,2341325
Bin7 100[ 316,227766| 177.827941
Bing 316,227766 1000] 562341325
Bing 1000| 3162,27766] 177827941
Bin10 3162,27766 10000] 562341325
Bin11 10000] 31622.7766] 17782.7941
Bin12 31622.7766 100000| £6234,1325
Bin13 100000 316227.766| 177827941
Bin14 316227.766]  1000000] 562341325

Distributions for Individuals

Two points are going to be discussed here. The foistt is that a theoretical reasoning enables to detertfie sample probability
from the individual nut probability. The second poigtthat a sparse approximation is required to do the revetimate the
individual nut probability from the sample probalyiliDue to the fact that the contamination incideigdow, it would not be

possible to have probability data on individuals diseeta experiments. This is the reason why these prdibabiata on individuals

must be computed from probability data on samples.

Determining the sample probability from the individpabbability:

First, lets simplify the sample distribution by considgrthat all contaminated nuts have the same aftatexel, g, and occur with a
probability p, a fraction p = 1 - p, being noncontaminated. This distribution may be apprated by a Poisson distribution
(Schatzki, 1995 for further details). The Poisson distidlouis a discrete probability distribution that fiere events. In practice, an
event is rare if its probability of occurrence is ldgt0.05 and if n is at least equal to 50 (Scher8&4 1

An example of a Poisson probability density functibat is obtained if n (the number of pistachios in sheple) is equal to 1,000
pistachios and if pis equal to 1/10,000 is given in Fig. 8.

Fig.8. An example of probability density function

Probability density function for n =1,000 and
p1=1/10,000
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To be closer to the reality, for a given mean contatiinaf the lot, the above concepts need to be géredato more than a single
level of contamination ¢ knowing that to each level of contaminatiqearesponds a probability. frhe lot distribution is modeled
as a collection of nuts with a fraction mving aflatoxin concentration,d = 1, ..., J and a fraction, uncontaminated. For each
concentration level, the distribution of the numbecarfitaminated pistachios in a sample, is the Poidgiribution. So, there are as
many Poisson distributions as there are concentragioeld. More theoretical details on the sample probwgbiticulated from
individual probability are in Annex 6.

Determining the individual probability from the sampl@bability:

A sparse approximation is required in order to calculate itldévidual nut probability from the sample probabilityvgn by
experiments (More details in Schatzki, 1995).

Experiments giving contamination levels of samplesusesl to calculate and p. The sample size n is chosen to be small compared
to 1/p for all i except i = 0, then all n*p<< 1. Moreover, if the sample size is small enoughnta single nut is the sole nut that is
contaminated in the sample. Sample concentrations fsom lot that fall within a concentration bin are @gpimated by the
geometric midpoint of the bin:;CThe proportion of samples from a lot that fall withini<called R From the observed Bnd G, the
¢;and pcan be calculated:

¢=n*C andp=PR/n ‘
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Then, for each lot, a distribution can be drawn wijtaspfunction of ¢

Results of practical application:

Data used:

Sample results from publications for pistachios takeretail stage (supermarket, grocery, market, etc.) ad. dsmust be possibl
to approximate the number of nuts in each sample (sasige n). Sample size must be small enough in oadeonsider, with the
smallest risk of error as possible, that at most onésraontaminated per sample.

Each publication taken into account gives aflatoxin sample results aiming to assess the population’s exposure. So, in this particular
case, a lot is considered to be a snapshot of wieatdhsumers could have consumed. The samples fam@nthis lot must be
representative of the average consumers habits vipmomiate sharing out between pistachio brands, gauiaizes, places wher
they are bought All the sample data from one publication are consiiésecome from one single lot. As the next step istaof
obtaining one probability density function per Idtem solely publications comprising at least 2 coimated samples at 2 differen
concentration levels were taken into account.
The publications are the following: Sarhang Paurl. (2010), Ghali al. (2009), Sekt al. (2010), Thuvande#t al. (2001), Fernane
et al. (2010).

13%

@

=3

Calculations and results:

For each publication found (that gives retail pistashkanalysis data with a known sample mass) the pitdpdh for each level Cis
assigned. Then the Bnd Gare transformed into;@nd ¢ which means that the probabilities and concentratfor the samples are
transformed into probabilities and concentrations fatividual nuts. An example of results obtained isegivfor the data from
Thuvandert al. in Table 4.

Table 4: Example of results obtained for the distrimutdf individual nuts (from Thuvander al. raw data)

Sample Individual nut
Ci Fi n cl pi
0,56234 | 0.23809524 393 220.99962 | 0.00060584
177.83 0.04761905 393 63867.19 | 0.00012117
1778,28 | 0,04761905 393 698664,04 | 0,00012117

Concentrations are given in ppb.
For each lot, the;@re plotted against thefor the lot distribution.

Merged Master Distribution for Individuals

Source: Schatzki 1999:

Schatzki (1995a) noted that the different lots showedlai distributions, differing mainly by a constanuttiplier of p;, i > O.
Accordingly, all the experimental distributions were gdftvertically on a log p plot to coincide as closa$/possible to obtain a
merged master distribution (Schatzki, 1999). This distidvuis going to be used afterwards to computdop different mean
concentrations (m) of the lot. Indeed, per exampleptbbability p for an individual nut contaminated at;a€25 ppb is lower for a
slightly contaminated lot than for a highly contaated lot.

Results of practical application:

The lot distributions are plotted on a graph (full kale) and regression curves are drawn for each lot. Tagsession curves tak
the form: y = k * x*z, as shown in Fig. 9.

Distribution of the contamination levels in individual pistachios with
regression curves for each lot
(which take the form: y = k * x*z)

D

AFB1 concentration épEb)
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Fig.9. Lot distributions with calculated data représdrby dots and their corresponding regression curves
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In order to calculate a merged master distribution (fohdat mean concentration level), the relationshipwvben k and z is studied:
z is plotted as function of k and a regression cuws\wabtained (Fig. 10).

Regression curve to obtain z as function of k

k
0 T T T T T 1
0,1 0,02 0,04 0,06 0,08 0,1 0,12
z'gé y = -0,0383Ln(x) - 0,4731
e R’ = 0,9485
-0,4 —
-0,5 z=-0.0383 * In(k) —0.4731

Fig.10. Graph in order to obtain the equation of fuastion of k

Determining Mean Lot Concentrations

Mean lot concentrations are determined thanks to temyed master distribution after calculating bins for ¢hacentrations of
individual granules.

The quasi-continuous distribution of aflatoxin amaheg individual nuts of a lot is approximated afistrete distribution, binned into
half-decile bins. Here; és the geometric midpoint of bin i. All concentraticiadling into bin i are approximated by. @heoretical ¢
are determined as in Schatzki 1999. The distributionafoy hypothetical lot of the mean aflatoxin concerdram is computed
thanks to the jpevaluated from the merged master distribution equatfop as function of ¢ For each simulated lot, m (mean
contamination level) is calculated:

m = LIp;*C;

Results of practical application:
Simulations of two different lot mean contaminatiomdls m are shown in Table 5.

Table5.Calculations in order to obtain two m levels from two\els.

ci k0 k0.5 20 205 pO p0.5
25 0.00001 0.00002  -0.03215495 -0.05870249 9.01673E-06 1.65565E-05
79 0.00001 000002  -0.03215496 -0.05870250 8.689244E-06 1.54751E-05
250 0.00001 000002  -0.03215497 -0.05870251 8.37326E-06 1.44632E-05
791 0.00001 000002  -0.03215498 -0.05870252 8.06881E-06 1.35176E-05
2500 0.00001 000002  -0.03215499 -0.05870253 7.7757E-06  1.26346E-05
7906 0.00001 0.00002  -0.03215500 -0.05870254 7.4931E-06  1.18089E-05
25000 0.00001 000002  -0.03215501 -0.05870255 7.22079E-06 1.10372E-05
79057 0.00001 000002  -0.03215502 -0.05870256 6.95836E-06 1.03159E-05
250000 0.00001 000002  -0.03215503 -0.05870257 6.70547E-06 9.64179E-06

m= 12495062557 3.642816682 |

Here ¢ (in ppb) are inputs, kis set at 0.00001 and, kis set at 0.00002 (per example). Then the corresporgimgd z s are
calculated thanks to the following equation: z = -883 In(k) [10.4731. The pis obtained, knowing thatyp= ky*ci*zo and psis
obtained too. Afterwards, thetpy are calculated for eachlevel, as well as the € pg s It follows that the concentration mean level
of the first lot can be computed as the sum ofrald * po and is equal to 2.495 ppb. The concentration measl bf the second lot
is 3.643 ppb. This process is repeated for a wideerahgn levels thanks to different k inputs in ortieachieve the next steps.

Calculations for the Distribution of Simulated Samples

A simulated sample is considered as a set of smalplsann order to enable a mathematical calculatiothefdistribution of this
simulated sample with the method. More preciselyrgelaimulated sample (per example 10 kg) can be thamigtst a set oV small
samples, each adequately small, which are groundraaigizad separately and from which the large sampléoaitaconcentration is
derived by arithmetically averaging the results. WhHilis tvould not be as efficient as blending the grousmddes before analysis,
the results would be the same. Yet each of the ssaatiples would not contain more than a single sianifly contaminated nut,
enabling the use of the calculations detailed above
In order to assure that the probability of obtainingnalssample with 2 contaminated nuts is less tharob%at of a single nut, but
that the chance of getting at least some contaimmat the range of concentration of interest is notimless than 10%:

n*pi max /0.1
For each m, the following statements are taken iotownt:
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n must be inferior or equal to: 0.1/« (with i naxthe probability of contamination s 25).
N (the number of small samples) is close to: ("*N)/(@.14)
In order to define n and N:
N is chosen as the smallest rounded integer of (N*N)K@lY enabling n inferior or equal to 0.1/«
n is calculated as: n=(n*N)/N

Per example, in order to simulate a sampling plan stingi of taking one 10kg sample of pistachios: n*NHU(J = the number of
nuts in 10kg.

Then Gand R for [the small samplesare calculated:
C= C,/ n
P: = (G*p)*n/c;

And the probability of a [$mall sample[Tbeing noncontaminated is Py = 1- (1 P;

m 249506256 |3.64281668
pi max 9.0167E-06 |1.6556E-05
n inferior or equal to- [11090 4891 |6039 93919
N close to 0.64379487 11.18213111
M round integer 1 2
n recalculated 7140 3570

cixpl5
0.00041391
0.00122254
0.0036158
0.01069243
003158657
0.09336133
0.27593066
0.81654706
241044638

ci
0.0070028

0.02212885
0.07002801
0.22156863
0.70028011
| 2.21456583
7.00280112
221448179
70.0280112

Pi

) 0.05910656
0.05524625
0.05163369
0.04825786
0.04510562
0.04215785

0.03442117

Sum of Pi 0.50195238 0.41215979
PO 0.49804766 058784021

Accept Probabilities

The sample distribution is established by Monte Calaomputer program is developed. This program computsg aumber of
iterations of samples for each lot. Each sample iteras$ calculated as the mean(gmall samplesresults. Small samples are drawn
at random, considering their calculated probabilititappearance. The accept probabilities are computdtegsate the fraction of
the sample distribution that fall below the threshaddcentration. The lot mean concentration m is retztted.
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Results of practical application:

Programming is achieved under the R software (8,000 itesjti®ior the mean concentration level m = 3.64 ppb, p@mple, given
the N, Gand Rcalculated before, the inputs are the following:

x<-c(0, 0.0070028, 0.02212885, 0.07002801, 0.22156860028011, 2.21456583, 7.00280112, 22.1448(7.9280112)
y<-c(0.58784021, 0.05910656, 0.05524625, 0.05163869825786, 0.04510562, 0.04215785, 0.039402868279, 0.03442117)
resamples<-lapply(1:8000,function(i)sample(x,size=2,eptd,prob=y))
r.mean<-sapply(resamples,mean)
sort(r.mean)
mean(r.mean)
With: - the variable x being the;Ghe variable y being the Rvithout forgetting the probability of noncontamiraat)
- in the lapply function, size=N
- the accept probabilities are calculated as the ptiopoof samples having concentrations under the tobidshrhe

concentrations in ascending order are given by thé) $oniction.
- mis recalculated thanks to mean(r.mean)

TESTS AND SELECTION OF THE BEST FIT SAMPLING PLAN

Operating Characteristics (OC) Curve Principle

Operating Characteristics (OC) curves enable to calculatepribieability of mistake in determining the average comitant
concentration level for various sampling schemes (Fijy. 1

They show the risk of:

accepting lots at a true concentration above theltiotd (consumer risk);

rejecting lots at a true concentration under the tloldsfproducer risk).

Fig.11. Operating Characteristics (OC) curves principle (Blan@agR0
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Contaminant content

A sampling plan must be selected considering the teahaind economic feasibility as well as the consunsr and producer risk
levels. It is therefore crucial to assess these two risksder to select a best fit sampling plan. An ideahgling plan would lead to

the acceptance of all the lots with contaminant aurtbelow the allowed limits and to the rejection tudge with contaminant content
higher than these limits, thus reducing the risk tosoomer and producer to zero. In reality however, these csksnot be totally

eliminated, but only reduced as much as possibkpikg in mind the feasibility. When this is achiey#ten a best fit sampling plan
is selected.

OC Curves Obtention for Phycotoxins and Selection of a Sampling Plan

For Whitakers method, the accept probabilities that have beerutakd, correspond to a sampling plan with a sieghaple taken
and compute the probability that this sample is infeoioequal to the threshold concentration, given thenkean concentration. In
order to obtain an OC curve, the accept probabilitieg beiplotted against the lot mean concentrations.
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Sampling Plans for One Sample of Various Size

The corresponding OC curves are plotted without furtheutztlons.

—— 1 shellfish

~ 10 shellfish

= 20 shellfish

— 30 shellfish

Multiple Samples Sampling Plans

When the sampling plan consists of taking a numbefr samples, and if the lot is accepted only ifreatthe q samples tests under
the threshold concentration, then:

Accept probability = (B"q

With P, the accept probability for a sample of a given nunafshellfish in a pool.

1 sample

2 samples

3 samples
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Best Fit for Phycotoxins: Two Samples Sampling Plan

Results of practical application for phycotoxins (Fig):1

OC curves for the analysis of 2 samples of a certain number of
shellfish each (each sample must test negative)

\
2\

10 shellfish
20 shellfish
=40 shellfish

Accept probability
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Fig.14. OC curves for sampling plans with two sampdesing plans

For 2 samples of 40 shellfish:
Accept probability = 95% for a concentration of 152jgg/k
Accept probability = 5% for a concentration of 163.%4gg/

Increasing the number shellfish per sample for 2 sanfplesamples must test at160 [g/kg for the lot to be accepted) decreases
consumer and producer risks.

The best fit sampling plan is a 2 samples sampdiag with a sample size of 30-40 individual mussels

OC curves Obtention for Mycotoxins and Selection of a Sampling Plan

For Schatzkils method, for a given sample size, the accept probabilitigthBt are calculated thanks to the computer program
correspond to a sampling plan involving that onelsisgmple is taken. The accept probabilities for @misampling plan, after the
requested calculations, must be plotted againdothmean concentrations.

Sampling Plans for Various Sample Size and Number of Samples Taken

When the sampling plan consists of taking a numbefr spmples, and if the lot is accepted only if eatthe g samples tests under
the threshold concentration, then:

Accept probability = (B"q
Results of practical application:

For the sampling plans tested, each of the samplestest under 8 ppb for the lot to be accepted (Fig. 15)
The first sampling plan involves taking one 10 kg pEmwhereas the second sampling plan consisekofg one 30 kg sample. Fg
the first sampling plan, the producer risk is low, tig consumer risk is really high. It can be observedwinan the sample weigh
is higher, the accept probabilities are lower for fasing a lot mean concentration under 8 ppb (goodl #&stsvell as for lots having
a lot mean concentration above 8 ppb (bad lots). ®mqritdducer risk is higher, but the consumer risk is towe
The third sampling plan consists of taking three g0s&amples and the fourth sampling plan, consistireet30 kg samples. Fg

these two sampling plans, the producer risk is h&fh.even if the consumer risk is low, such a sampbliag strategy can not b
validated, as too many lots of good quality wouddrejected.

—- =

D =
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OC curves
Accept probability
1 .

0.9

3,273: === 1 x 10 kg sample
0.6 1 == 1 x 30 kg samples
g'i: 3 x 10 kg sample
031 == 3 x 30 kg samples
02

0.1

0 ‘ ‘ : —

0 5 10 15 20
mean lot concentration (ppb)

Fig.15. OC curves for sampling plans with 10 kg sampie3dg samples and involving taking either one cedtsamples

All these results show either a too high accept proitabidr bad lots or a too low accept probability favagl lots. And yet, the
objective is to define a sampling plan that woudddna high accept probability for good lots and adaeept probability for bad lots|

Sequential Sampling Plans

A sequential sampling plan consists of taking a fisshple and testing it:

- If the concentration of the sample is under a low eatration, then the lot is accepted immediately;

- If the sample concentration is above a high conceotrahe lot is rejected without further testing;

- In the other cases, it says when the sample condentiatbetween the low and the high concentratidgtesl @bove, then a second
sample is required.

So, a second sample is tested only if necessarysatme kind of criteria of acceptance and rejectionedisas the criteria for further

testing can be used for the second sample. And prEsation can be repeated for a third and even a fourtpleadepending on the

maximum number of samples that it has been decidestan each specific sequential sampling plan.

Results of practical application:

A sequential sampling plan with one up to three dasfested is compared to the sampling plan deschibfmte and which consists
of taking three 10 kg samples and accepting thi é&ztch of the three samples tests under 8 ppb (Bjg. 1
The sequential sampling plan tested is the following
A first sample is taken and:
- If the 10 kg sample tests2ppb, the lot is accepted,
- Otherwise, if the 10 kg sample test§ppb and > 2 ppb, the analysis of another 10 kg sampésjisested,
- If the 10 kg sample > 6 ppb the lot is refused.
The same criteria are applied for the second sample.
If the third sample tests2ppb, the lot is accepted, otherwise, it is rejected.

Operating Characteristics curves

Accept Probability
1

08 S
) \

06 - = Sequential sampling plan

3 x10 ki
04 \\ g
0,2

0 T T T T
0 5 10 15 20 25

Lot mean concentration (ppb)

Fig.16. OC curves for a sampling plan with three 10 kgmesnand a sequential sampling plan

It can be observed, when comparing the two OC curvesnebtén Fig. 13 that, even though the limits (2 gpidl 6 ppb) for the
sequential sampling plan are set below the reguldiioit (8 ppb), this sampling plan does not give gaedults. Indeed, th
consumer risk is too high. However, the producer risavigr, than for the other 3 x 10 kg sampling plan.

132
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Finally, the fact that the lot might have been atee after the analysis of only one sample (sequesaiapling plan) triggers a hig
consumer risk due to the low incidence of contamometi

Best Fit for Retail Pistachios: Non Sequential Sampling Plan but with Varying Thresholds

Results of practical application:

This best fit type of sampling plan involves testearh of the samples in all cases in order to enalue @onsumer risk. However,
in order to reduce the producer risk, the thresholds aiable. Various strategies are tested, and the ongitfext the lowers botl
producer and consumer risks is reported in Figurir the name: [Special sampling plan(]

This sampling plan that gives the most valuable regbkst fit special sampling plan) consists of testirmamples of 10 kg each and
accepting the lot if:

Each of the 4 samples test2 ppb

OR 3 of the samples test ppb and 2 ppb < 1 sample [134 ppb

OR 2 samples!0.1 ppb and 0.1ppb < 1 sample [12 ppb and 1 sample > 2 ppb.

OC curves
1
209 N
= 08
s 07 =10 kg sample
0,6
[ =3 x 30 kg samples
o 04 Special sampling pl
w= 0 ecial sampling plan
8 o3 p pling p
Q 02
& o1
0 " " " :
0 5 10 15 20
mean lot concentration (ppb)

Fig.17. OC curves for a sampling plan with three 30 kgmes and another sampling plan with one 10 kg sarmpinpared to &
special best fit sampling plan

The best fit sampling plans protects both the comswand the producer. It is a well balanced sampliag. p

CONCLUSIONS

We can conclude that an optimal sampling plan for dgeneously distributed contaminants is obtainedkhém OC curves plotting
accept probabilities calculated with Whitaker(s method. These accept probabilities are obtained thanks to the contaminant(s
distribution and thanks to an equation of the tatatiance as function of the concentration. For heemeously distributed
contaminants, Whitaker(s method does not appear as best adapted, contrarily to Schatzkils method. This method computes accept
probabilities for a sample considered as a set of [small samples[J(containing at most one contaminated individual). The contamination
probabilities for [$mall samples[Jare computed from Poisson distributions of individuals. Two best fit sampling plans are proposed:
one for phycotoxins in shellfish and another for mgeats in pistachios.
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APPENDIXES

Annex 1
As an example, the calculation of the parametersmdusagma of the Lognormal distribution thanks to thethnd of moments is the
following:

=
8= -,

p=In( x)—03 —— +1
ard
2 05
= el ]
“mik

with & the variance and x the mean on the sample results

Annex 2
For the lognormal distribution, the ordinates can bepmgded thanks to the following Excel formula:
LOGNORMDIST (%; [J; 0)

Annex 3
Kolmogorov-Smirnov test:
The critical value found in a table (per example,gaificritical values on: www.apprendre-en-ligne.net/ranti{8.pdf) must be
compared to the variable tested nameg.Drhe calculations of . under Excel are shown in the following, as well as th
calculation of the p-value. However, the R softwarg b used as well, if one is more used to it.

Using Excel:
There are 2n differences calculated, n being the nuofteamples in the lot tested. So, for each contantinoncentration recorded,
there are two difference values calculated:

dl = Ftheoritical (Xr) gFl observe((xr)
d2 = FZ observegxr) = Ftheoritical (Xr)

X;: value of the contaminant concentration in the rank
Fl observe((xr): P(X < X)

F2 observe(lxr): P(X 0 Xr)
With x being the contaminant concentration value.

The variable that is tested {fQ) is the biggest value among the 2n differences catied!
The p-value formula is:

pe[n(1-Dcalc)]
p-value = 2 . Ry O [Chy. (1 TDeac - f/n Y. (Deact f/n)YY
=0

f: counter taking integer values from 0 to pe[D.,d
pe[ ]: integer part of n(1ID,9). Consists of suppressing the decimals
C'; combination of n objects from a set of f objectsrtf Millot, 2009)
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This formula is only valid if there are no identizalues among the observed values.
Using the R software:
In practice, when using R software for the adjustmeantlmmnormal distribution, the R function is the daling:
>ks.test(x [plnorm[] meanlog = [] sdlog = [7)
When using this function, [and [ must be replaced by their numerical values gnuust correspond to the variable in a data frame
created with an appropriate formula under R. The softgiaes Q. and the p-value as an output.

Annex 4
Anderson-Darling test:
The critical values at the risk level of 5% can be found in the book from D[Agostino and Stephens, 1986.

Theory:
The test statistic is:

2 0 [ F20bserveo(xr) 0 Ftheoritical (Xr)]2
A%=n.0] d RneoriticalXr)
-U Ftheoritica(xr) (1 U Ftheoritica(xr))

For the normal and lognormal distributions, the testisttc, A, is calculated from:

Azn =-n- (1/n) -?zl(zr Dl) . [ln(etheoritica((xr' m)/s) + |n(l'Gneoritica((Xn—r+lDm)/s))]

where n is the number of samples, and G is the stdmdamal cumulative distribution function with m thean and s the standard
deviation.
This formula needs to be modified for a small nundfezramples (n < 30):

AZgai= A% (1+(0.75/n)+(2.25/H)

Using the R software:

The R function to be used undee R software for this test, after loading the TADGofTest[ Ipackage, for the goodness of fit to the
lognormal distribution, is the following:

>ad.test (x plnorm, meanlog =] sdlog = [?)

This formula must be applied in the same way aKtiimmogorov-Smirnov test formula.

Annex 5
The publications which data are used are the follgp@odheet al. (2002); Svenssoex al. (2004); Wranget al. (2008); Sidariet al.

(1998); Lindegartler al. (2009); Klépperet al. (2003); Carmodyt al. (1996); Duinkeret al. (2007); Maket al. (2005); Kacenet al.
(2009); Reizopoulout al. (2008); Edebe: al. (1988).

Annex 6

To obtain {n):

Pi(n) =0...x), X2, . % P(N; ., X X, %) |
Cr<C<(Cr

This expression is the expression of ti{@)An terms of n and {pc}. This sample probability, while laborious to computéll only
depend on the set of rgnd the bin limits. The approach is then exactlysti@e as for the single-level contamination case. One
estimates {n)} from the fraction of samples in each bipn Bext one computes {pc} as described below, which, in turn, allows
the computation of the {f)} at any other n.
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