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Abstract: Discrete-time Laguerre series are a well-known effidient tool in system identification and
modeling. This paper presents a simple solutionstable and accurate order reduction of systems

described by a Laguerre model.
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Highlights:

Discrete Laguerre series are useful tools to apmabe signals or systems.
A fast “compression” of the Laguerre model to a lander rational fraction.
A very simple algorithm based on least squaregropdition.

The reduced models are provably stable.
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1. Introduction

Discrete Laguerre filters are simple and usefulsttioat have been successfully used in variouddief
science. Several authors developed Laguerre-bas#tbds for the identification and approximation of
signals or systems [1-4], adaptive filtering [SeB]filter design [9-11]. Specific applications inde echo
cancellation systems [12], delta demodulator ciscyil3-14], equalizers [15], broadband signal
generators [16], etc. Furthermore, in the fielchoflinear system identification, Laguerre basicfioms
can be used in the expansion of Wiener and Voltezraels [17-18] with applications in physiological
modeling [19], automatic control [20-21], nonlinedrcuit modeling [22], etc.

Laguerre-based networks are classically seen asnaromise between FIR and [IR models [7,23-24].
On one hand they can model long impulse resporsterag more efficiently than FIR structures and, on
the other hand, they offer a more straightforwaegdigh methodology with respect to a general 1IR
approach. Laguerre functions and filters only delpen a free parameter (a multiple-order single Jpole
that predefines the denominator of the resultinipmal model. The choice of this parameter, whiek h
been largely discussed in literature [25-32], iggdat importance in a view to reduce the ordethef
Laguerre filters. Nevertheless, even when optimedcedures are used, Laguerre models can
unfortunately fail to provide a desired accuracyargiven compactness and therefore classical oe mo
general IR filters must be used. In this paperpn@pose a method that allows deriving such low orde
rational fractions for systems described by Lagueseries. The technique is independent of the
algorithm used to compute the Laguerre model andbeaseen as a fast “compression” of the lattee. Th
method boils down to a very simple algorithm basadeast squares optimization leading to provably

stable IIR filters.



The paper is organized as follows. Section Il rafwithe definition of the discrete-time Laguerre
functions and some of the properties that may leel s efficiently compute the expansion coefficgent
Section Il directly addresses z-domain model onastuction and contains the core of this paper’s

theoretical contribution. lllustrative examples previded in Section IV.

2. Laguerre-based modeling

The discrete-time Laguerre functioaﬁ[k] are usually defined by their z-transform [1-2]

® (2)2v1-42 2 (1_/”) . n=012..., (1)
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where A is a real pole satisfyinbﬂ <1. They form an orthonormal basis o (D+). Consequently, any

function f DEZ(D +) can be represented as a Laguerre series

H=3call. @

where the Laguerre coefficients, also referredsttha Laguerre spectrur{cn} are given by

n=0

Cn=<f,¢n>=§f[k]<on[ld- 3

In practice, the expansion is truncated at an dxder
N-1
fulk=>cald @
n=0

and the quadratic err(#rf - fy HZ is minimal when the coefficients, are given by (3).

Let F(z) denote the z-transform df[k]. Using (1) it can be written as

z- o z-

F(z):écndbn(z):m ” icn(l‘ﬁzj”. ©)

The bilinear transformatiomv=(z-A)/(1- Az) which maps the open unit disk zrdomain onto itself

can be used to derive the z-transform of the Lagugyectrum, i.e.

Gy(w)2 icnw"”:\/l—ﬁz W F(W+Aj. (6)
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It is worth noting that transformation (6) preserwener products that may be computed equivaléntly

time domain or in Laguerre spectral domain (w-datnay

<f,f>=<Go,GO>=ic§. (7)

n=0

Moreover if we setvvzexdi Hj ) relation (6), in its truncated form, can be likdrto a discrete Fourier

transform and a FFT algorithm could then be usembtopute the Laguerre coefficients from a frequency
response [33]. To calculate the Laguerre spectmam ftemporal data, the inner products (3) can be
evaluated by a time-reverse method (see [34] d).[Ze should note, however, that depending on the
available starting point (measured data in time @afranalytic impulse response, rational or irnzdilaz-
domain transfer function) several strategies maydsl. An extended discussion of the latter is béyo
the scope of the present paper which rather focusémw to obtain a “compressed” representatiore onc

a Laguerre model is available.

3. Model order reduction

The search for a rational approximation I?)(z) given by (5) or equivalently oGO (W) defined by (6),

that is optimal in the sense of minimizing the gadid error, is a nonlinear problem (with respectite
coefficients of the denominator). To circumventthie propose a pencil-of-functions type method. In
the search for accurate approximations a new qtiadearor criterion, linear with respect to these
parameters, is defined. One notes that the propostidod also has the advantage of preserving ttte fi
R coefficients of the Laguerre spectrum of the odjifunction wherdRk denotes the order of the reduced
model. The same results may be achieved in conigtime using the derivations available in [35].

Let us defineG; (w) for j=041,...,R as follows

00
_ n_ 1 -2
Gj(W)_ZOCnﬂW ¢ HC W e W (8)
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Note that, forj = Q one can recognize equation (6). Consider novidif@mving quantity

R
Ew)=)a,G;(w), withaz=1, (9)
j=0



whose energy we will seek to minimize. Clearlystamounts to determine an approximatiorG(g{(w)

using the other function§; (w), j=01...,R-1. The optimal coefficients;, j=0L..,R-1, in the

sense of minimizing the quadratic erﬂﬁﬂz are then obtained by solving a classical lineablgm
Wa=-b (10)

where é:[ao al...aR_l]T, Y is a RxR Gram matrix constituted of the inner products

l//i’j =<Gi ,Gj> fori,j=01---,R-1, andb 2 kﬂowalR---wR_er (" denotes the transpose).

Note that the inner produc'z;ﬁari,j :<Gi ,Gj> only depend on the Laguerre spectrumfc{k] and are

given by

| :ch+icn+j . (11
n=0

Moreover, the following relation can be used tacgfhtly construct the Gram matrix
‘/’i,j =t,1/i_Lj_l—ci_lcj_l fori,j=12---,R. (12)

Now, taking advantage of the following relationdiimg G, (w) to G (w)

-1
G, (W)=GO(W)Wj - JZ_;‘)cnwj_” : (13)

and substituting (13) in (9) one can derive théofeing relation forG,(w)

R j1
Zaj D c,wi™ + E(w)
Go(w) == (14)

Notice that E(w) is the quantity defined in (9), and; (j=0L..,R-1), solutions of (10), are the

coefficients resulting from the minimization HE”Z ThereforeG, (w) defined by

R i1
Zaj chwl "
Gy(w) = == (15)



can be chosen as an approximation @y(w). It's interesting to note that the approximati6g(w)

given in (15) leads to the conservation of the fRéaguerre coefficients o6, (W) i.e.

G,(w) =¢ ~(R-1) 4 Cow R +C w R 4

-1
+CW T+ +Co W Ri1

0
An approximationF (z) for F(z) is derived from (15) by the inverse transfoms (w+ A)/(1+ Aw) as

follows

E(z)=v1-12 2 GO(Z_") (16)

z-A 1- Az
The algorithm for a reduced-order rational appration of F(z) defined by its Laguerre spectrum is

then very simple: first solve the linear system)(aod construcéo(w) using (15), secondly apply the

inverse transform (16) to obtaiR(z).

Note that the expansion df[k] on the Laguerre basis is, in practice, truncateih §4). One may use an
energy criterion to choose the truncation orblerAbove a certain order, the contribution of furthe
coefficients in terms of energy usually becomedigiyde. SelectingR, the order of the reduced model,
is a more delicate issue and a recurring one itesysheory. In the case of the proposed method the
presence of a gap between the large and smalllaingalues of the Gram matrix is an indication of
manifest overfitting. More generally, the user ns®y a threshold on the singular values and chBose
equal to the number of singular values above treshtold. A good practice is to keép<< N . As with

all model order reduction methods the problem resaélated to the application and boils down to an

accuracy-versus-simplicity choice.
Remark: F(z) is asymptotically stable.

Proof: The Gram matriXV is a real positive definite matrix. In the stapase representation, consider

aT
the Lyapunov equatiot - AT WA=C where A2 [(I)

—é} represents the companion form associated

with the denominator oéo(w). Taking into account thad satisfies (10) and using (12), the solution of
0

the Lyapunov equation is given bg =G’ +M where ¢ i[co cl...cR_l]T and M i(? QJ with
o'l e




£ :||E||2. As the quadratic erras is always non-negative; matrix is positive semi-definite. Therefore

Go(w) cannot have any pole outside the unit circle &g tE(z) cannot have any pole outside the unit

disk. Furthermore, provided th{aA, 6} is observable, the reduced model is asymptoficatible [36]m

4. Examples
To illustrate the method two examples are preseftiest, we have considered the seventh-orderfeans

function of a supersonic jet engine inlet [37-38]

F(2)=2 2.04342% - 4.9825° + 657z% - 5.818%°3 + 3.63622 — 1.4105 + 0.2997 17
77 - 2467 +3.4335 - 3.33%% + 254603 - 1.58472 + 0.747& - 0.2520

Using N =20 Laguerre functions defined for the paramefer 024 have obtained a very good

representation of the system (17) with a relativadyatic error of only.83x 104,
The valueA = 024for the Laguerre parameter has been obtained tisegnguboptimal method described
in [27,30]. However this Laguerre model is of aatiely high order and a more compact model is

desirable. Thus, using the presented method thenfiolg fifth-order reduced model has been derivad f
F(2)

~ \_ 2043*-3057z% + 219522 - 1.545z+ 0.8617
F(z2)=z : (18)
z° -1.5182% +1.270z° -1.032z% + 0.753% - 0.3156

The impulse responses of the original transfertfanc of the Laguerre model and of the reduced+orde

model are shown in Fig.1. The relative quadraﬁor#tf - i‘uuz/"f”2 of this fifth-order reduced model

is 1.06x102. Table 1 compares the quality of the impulse raspmf the proposed model (LG5) with
those of models derived through Balanced RealimatBR5, see [39]), Weighted Impulse Response
Gramian (WIRGS5 see [36]) and Least-Squares withlil8egLSS5, see [37]), Generalized Impulse
Response Gramian (GIRG5 see [38]) and Laguerre-@AYD5 see [40]). The latter was implemented
using the same Laguerre parameter as L&5 (  )024d shares the property of matching the fRst
Laguerre coefficients of the original system. Tablkhows the good quality of the proposed modediord
reduction procedure. It should be noted that théhatkdoes not necessarily preserve the static afain

F(z) and model (19) presents an 8.95% error on it. Hewea correction of the supplied numerator is

always possible to preserve DC gain without draca#l§i deteriorating the overall model.



The results in Table 1 confirm the generally acegpmtonclusion that gramian-based methods (as BRS5,
WIRG5, GIRG5) are accurate. The price to pay fas #ccuracy is usually related to computational
resources required to evaluate gramians. For timigue presented in this paper, relation (12)iglbrt
compensates this disadvantage. Projection basegpacs Krylov methods (as LSVDS5) are known to be
fast, however they may lead to comparatively largeadratic errors. Most of these methods vyields
reduced order model preserving specific propertieghe original system: time moments, Markov
parameters or Laguerre coefficients. A method psogpthe conservation of a mix of time moments,

Markov parameter and power moments was proposgd.id2].

——0Qriginal
- Laguerre model
~ bth-order reduced model

time

Fig. 1: Impulse responses of the original system andsdfaguerre model and of its 5th-order reduced

model
Models Impulse Error
LG5 1.0€x102
GIRGS 1.27x10°2
BRS 1.1¢x102
WIRGS 1.1:x1C2
LSS5 2.36x102
LSVD5 7.45x 1c-2

Table 1: Quality comparison of different methods



The second example deals with the compact ratiomaleling of an infinite-dimensional system. The

considered system is an underwater cable, whasemal transfer function is [43-44]
f(s)=eVKS (with K =1). (19)

The impulse response of this system is given inEig

0.9- | .
/\ ——Qriginal
0.8 | \ Laguerre model -
< Bth-order reduced model

ort] | |

o] | |
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Fig. 2: Impulse responses of the original system, of2th-®rder Laguerre model and of its 6th-order
reduced model
Four different discrete-time Laguerre approximagiar this system, with orders ranging from 8 to 32
have been computed using a sampling period of T85s0 The Laguerre spectra have been computed
using the FFT-based algorithm described in [33f ThoiceAd = 088 for the Laguerre parameter has
been obtained using the method described in [27,B®se four Laguerre models have subsequently
been used to compute four sixth-order rational n®o{eG6) according to the technique described in
Section 3. The relative quadratic errors computeer ahe first 1000 samples of the model impulse
responses are reported in Table 2. This table shbatsthe quality of the reduced model is very
dependant on the quality of the Laguerre model éseds construction. Moreover, Table 2 shows that

important order reduction can be achieved using téaihnique. Indeed, the last model almost peyfectl



mimics the response of the Laguerre network it eexssed from while achieving a complexity reduction
from order 32 down to order 6. The impulse respsmrgehese last models are compared in Fig. 2. This

example also shows that the method is useful inetimgl applications dealing with irrational transfer

functions.
Laguerre Laguerre LG6 model
model order| model error error
8 1.43x102 | 1.43x102
16 412x10° | 469%x10°3
24 602x10% | 650x10™
32 239x10% | 243x10*

Table 2: Relative quadratic error computed over the intedvas

5. Conclusion

A simple algorithm has been proposed to provideiced-order rational models of systems described by
discrete Laguerre functions. The method is basetheminimization of a quadratic error that regsire
inverting a matrix of sizeRx R whereR is the order of the desired compact model. Mopedsided by

this method are provably stable and conserveRHest Laguerre coefficients of the original systefm

example illustrates the good results provided leyptesented technique.
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