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On the Use of Equality Constraints in the

Identification of Volterra–Laguerre Models
C. Diouf, M. Telescu, Member, IEEE, P. Cloastre, Member, IEEE, and N. Tanguy, Member, IEEE

Abstract—This letter focuses on the a posteriori correction of
Volterra–Laguerre models in order to meet specific static or dy-

namic requirements. The authors set a general theoretical frame-

work and provide an illustrative example.

Index Terms—Lagrange multiplier, linear constraint, nonlinear
system, polynomial filter, Volterra–Laguerre model.

I. INTRODUCTION

V OLTERRA series are best described as a generalization

of the impulse response function and often serve as an el-

egant input-output representation for a large class of nonlinear

systems [1]. Applications of Volterra series include physiolog-

ical modeling [2], automatic control [3], nonlinear device mod-

eling [4], [5]. Volterra-based structures of polynomial filters

have also proven very efficient in signal processing applica-

tions [6]–[9]. This letter explores the possibility of identifying

nonlinear systems under equality constraints using discrete-time

Volterra–Laguerre expansions. The authors show that Lagrange

multipliers may be conveniently used to compute an a posteriori

correction of Volterra–Laguerre expansions strictly enforcing

specific static or dynamic properties on the models. In prac-

tice this may prove useful in various applications: an efficient

input-output model of a digital device, for example, besides ac-

counting for the nonlinearities of the original system also re-

quires to precisely match its static behavior; in non-linear filter

design, forcing a specific static gain function may be desirable;

when simulating radar systems onemay need to guarantee a spe-

cific behavior at precise frequencies, etc.

The letter is organized as follows: Section II provides a brief

overview of the Volterra series and of the projection of Volterra

kernels on Laguerre basis functions; Section III presents two

strategies for applying equality constraints by a posteriori cor-

rection of Volterra–Laguerre coefficients and, finally, Section IV

provides an illustrative example.
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II. VOLTERRA–LAGUERRE MODELS

The relation that binds input and output of a non-
linear -order ( ) Volterra system is given by

(1)
being the so-called Volterra kernels. Due to the

multidimensional nature of the kernels, Volterra series present a
high parametric complexity. It is therefore convenient to project
each kernel on an orthonormal basis. A clas-
sical choice is that of the Laguerre functions [10], [11]
which form a complete orthonormal set in and may be
conveniently defined by their -transform as follows

(2)

where . Each kernel may therefore be rewritten as

In practice a finite number of Laguerre functions, , is
used which leads to an approximation of the Volterra model.
In order to simplify subsequent notations, the Volterra–La-

guerre coefficients are reshaped as a vector i.e.,

with and

. Moreover, the products of the
functions are conveniently denoted:

Finally, let

the expression of the approximated system output, , may
thus be written as

(3)

The observation of the system response to a well-chosen iden-
tification signal allows the estimation of the coefficients’ spec-

trum using various techniques. In prac-

tice this operation is not always trivial, an in-depth discussion
of the identification algorithms is however beyond the scope of
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this letter (see [10] and its references for details). The key issue
we address here is not how to improve the overall quality of a
Volterra–Laguerre model with respect to a general error crite-
rion but rather how to operate minimal modifications of an al-
ready available model and strictly enforce specific properties.

III. APPLYING EQUALITY CONSTRAINTS

At this stage an -order Volterra–Laguerre model of a given

system is considered to be available, i.e., one disposes of the

truncated kernels

The question this section tackles is how to operate a min-

imal, a posteriori correction of the kernels

( ) in order to have a new model (defined by new

kernels) satisfying equality constraints.

Let all -dimension real functions and

belong to . The inner product is given by

and is the norm of .

Let define the quadratic error introduced by

conditioning the kernel ,

, the overall model quadratic error being

.

While it is obvious that constraint enforcement is achieved

by a perturbation of the Volterra–Laguerre spectrum, it is

interesting to note that two distinct strategies exist. One may

either operate individual kernel-wise corrections minimizing

or a global correction minimizing , the

practical difference between the two will be illustrated in the

example. Both are problems of optimization under constraints

and can be solved by means of Lagrange multipliers.

In the first approach for each kernel, we consider con-

straint equations and , the associ-

ated Lagrange multipliers.

For the second strategy a number of constraints equa-

tions and the respective Lagrange multipliers

are considered. The mathematical derivations are

essentially the same for both approaches and only the first will

be explicitly given below.

The Lagrange function to minimize is

. Differentiating with

respect to and equating to 0 yields

(4)

for .

Owing to ,

(4) is equivalent to

(5)

Merging all equations given in relation (5) for

, the problem to solve becomes

(6)

where

and .

Owing to the Laguerre functions being orthogonal, (6)

becomes

(7)

Consider the particular case of constraints

given by a linear system of equations . It

has been shown in [12] and [13] that the coefficients

defining the constrained system are given by the following

equation with minimal quadratic error

(8)

where is the pseudo-inverse of .

In the case of global linear constraints with the

contribution of each kernel is corrected according to

(9)

where

. Thus,

a counterpart of (8) can be written as

(10)

where .

The theoretical difference between the two approaches is best

seen when comparing (7) and (9). It is obvious that in the first

case one attempts to solve a local problem related to a specific

kernel. In the second case the problem is global, but one may

split it along the different kernels and subsequently correct the

contribution of each kernel. The practical difference between
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Fig. 1. Input validation signal.

the two strategies will be discussed in Section IV and illustrated

by an example.

IV. APPLICATION

The following application is a classical case of black-box

system identification and it is used to illustrate how the tech-

niques in Section III can be used to improve the static quality

of the model. Consider a two-kernel Volterra class nonlinear

system proposed in [10]. The first kernel defined is by

its -transform

The second kernel is defined in time domain by

where is given by its

-transform

A Volterra–Laguerre model of the system is subsequently com-

puted using a white noise as an identification signal. The well

chosen Laguerre parameters ( ; ) of [10]

are used with Laguerre functions for the first order and

for the second order. An a posteriori correction of this

model is performed in order to force a better agreement between

its static characteristic and that of the original system.

A. Kernel-Wise Constraints

A Volterra–Laguerre system has a polynomial static charac-

teristic. In the particular case of the selected example for a con-

stant input and output the following relation holds

where each coefficient depends on kernel (in our ex-

ample ,2). It follows that tuning via kernel-wise con-

straints allows us an optimal static behavior. In practice, this

optimal polynomial (defined by its coefficients ) is obtained

by fitting the original static characteristic, an exploration phase

is thus necessary.

The constraints equations are given by equation

amounting to

where and with

. The correction is then performed by

applying (8).

B. Global Constraints

Point-wise global constraints can also be set. For a given

static input the model is constrained to exactly match the

system’s original static output . In the given example

we have chosen . The global constraints equation

amounts to

where with

for and

for . Equation (10) is

used to compute the constrained model.

C. Results and Discussion

A stair-case like validation signal (Fig. 1) is used to contrast

the response of the unconstrained model and those of the two

constrained models described above. The original system re-

sponse is provided as a reference (Fig. 2) and deviation plots

are provided to emphasize the effect of the correction (Fig. 3).

It should be noted that the improvement in terms of static

quality is visible while the dynamic behavior of the system suf-

fers no significant damage. Obviously, when using point-wise

global constraints more points could be added to the constraints

equation to better anchor the static characteristic of the model.

Generally however, fitting the static characteristic of the orig-

inal system with a polynomial and subsequently constraining

the individual kernels of the Volterra–Laguerre model accord-

ingly seems a better approach since a small number of con-
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Fig. 2. Responses of the original system (solid line), identified model (dashed lines) and constrained modes (circles and squares).

Fig. 3. Deviation with respect to the original system response.

straints equations lead to a significant overall improvement of

the model. It should be noted that in practice the whole static

characteristic may not be of interest, in which case the fit and

subsequent correction should only concentrate on the specific

working zone.

V. CONCLUSION

In this letter the issue of constraints in Volterra–Laguerre

models has been addressed. Two approaches have been pre-

sented: kernel-wise constraints and global model constraints,

both successfully illustrated by an example of static correction.

This kind of approach may prove useful in signal processing ap-

plications using nonlinear filters, in the behavioral modeling of

electronic devices, and, generally, in any identification applica-

tion where specific system properties need to be enforced.
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