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Dear Sir,  
 
There are various difficulties studying macromolecular systems. One on these is that the applicable 
theoretical and experimental methodologies often have significant limitations. A common solution 
is to use smaller “model” compounds; study them in detail; and extrapolate these results to the 
larger system. Although very useful, this raises the question, how accurate is the extrapolation? In 
the present Letter we want to give an example related to activation energies, which have large 
importance describing fragmentation processes. There are diverse methods determining activation 
energies in mass spectrometry; many values obtained this way can be found in the literature[1-3].  
However, most of these relate to small molecules. Available methods for studying compounds over 
ca. 200 Da size are less accurate; and there are few reliable values[4-11]. “Common wisdom” 
suggests that, for the same reaction type, increasing the molecular size should decrease the barrier 
height (i.e. the critical energy, but not the internal energy needed for fragmentation!): Increasing 
size typically stabilizes the product ion (and product radical, if any) with respect to the parent 
compound. With the advance of experimental techniques to study macromolecules, it may become 
useful to be able to estimate, how molecular size influences the activation energy.  
 
To understand the factors influencing the size dependence of fragmentation energetics, reliable 
information would be desirable. Theoretical methods achieved the level of accuracy that makes 
them an accepted source of reliable data. We intend to provide this kind of information using a 



well-defined model system. Poly(ethylene glycols) -PEG- oligomers have been selected to study 
the influence of molecular size on fragmentation energetics. Studying homopolymers (like PEGs) 
has the advantage that structural features do not change with increasing size. This simplifies 
studying size effects and makes results easier to interpret[12]. In the case of peptides, which are in 
the forefront of interest, the presence of various amino acid residues modifies chemical behaviour, 
which can mask the size effect completely[13].  
 
Quantum chemistry, in particular, density functional theory was used to determine the mechanism 
of fragmentation. Calculations have been carried out using two different functionals: the popular 
B3LYP[14-16] and the more recently developed M05-2X[17]. The former has been generally used 
in the study of reactions of polyatomic molecules. The latter generally gives a more accurate 
description of loose-type interactions (e.g. H-bonds), and in particular, barrier heights for reaction; 
in this respect, this functional generally provides barrier heights and fragmentation energies within 
0.2 eV with respect to the highest-level ab initio methods[18]. Optimization of the geometry of the 
structures were performed using the 6-31G(d) basis set, followed by single point energy calculation 
using the larger 6-311++G(2d,2p). The character of the stationary points was identified using 
normal mode frequency analysis. Each minimum is genuine (there are no imaginary frequencies), 
each potential barrier is a first-order saddle point (there is one imaginary-frequency mode).  
 
PEG oligomers are most often studied in mass spectrometry as even electron, positively charged 
lithium adducts ([M+Li]+).[19] Occasionally protonated, sodiated or other cationized species are 
also observed, although their fragmentation is not so characteristic. More precisely, in the case of 
protonated species (much weaker signal than with other adducts), mainly low mass daughter ions 
are observed limiting the structural information available[20]. On contrary, for sodiated, similarly 
for potassiated species, loss of the cation is almost the only fragment observed[19]. Concerning 
lithium cationized PEGs, the main fragmentation process is the loss of one or several monomer 
units (the latter may be formed either in a one step process or in sequential reactions)[19, 21, 22]. 
The lowest energy process of lithiated PEG is the loss of a monomer unit (C2H4O) from the end of 
the chain. We have studied the mechanism of this process in detail. There are several alternative 
reaction channels leading to C2H4O loss, the lowest energy channel among these leads to the loss 
of acetaldehyde, as shown for the trimer in Scheme 1. 
 
The reaction proceeds through a quite complex, concerted mechanism. The sequence of 
intramolecular events was followed by calculating the Intrinsic Reaction Coordinate (IRC) and 
viewing the geometry changes along the path. First, a strong hydrogen bond is formed between the 
terminal hydroxyl group and an ether oxygen. This is an intermediate structure (i.e. local 
minimum). Subsequently this hydrogen shifts to bind more strongly to the mid-chain ether oxygen, 
forming a new terminal OH group; while at the same time the terminal oxygen starts to form a 
carbonyl bond. This initiates (in a concerted fashion) a 1-2 hydrogen shift between two carbon 
atoms; and this leads to the highest-energy point along the path (transition state, TS, Scheme 1). 
The height of the barrier for the trimer is 2.54 eV at the B3LYP/6-311++G(2d,2p) level of theory. 
(Here and elsewhere in the text we quote values determined at this level; the Table shows results 
using M05-2X as well.) On the downhill side of the potential barrier, the newly formed bonds 
strengthen which leads to the formation of a loosely bound ion-molecule complex between a 
lithiated PEG dimer and acetaldehyde. This complex breaks with only a small energy requirement 
(and no energy barrier) into the products.  
 



 
Scheme 1: Mechanism of fragmentation of the PEG trimer, as calculated at the B3LYP/6-311++G(2d,2p)//B3LYP/6-
31G(d) level of theory. 
 
 
Regarding the mechanism described, we would like to make a few further comments. (1) The 
critical energy of fragmentation of PEG trimer is 2.54 eV. Compared to most organics it is very 
high; about two times higher, than that observed for most peptides[6, 8, 9, 12]. This does explain, 
why do PEG oligomers require far larger collision energy for fragmentation than most other 
protonated compounds[12] of similar mass. (2) It is somewhat surprising that the TS is quite loose, 
the activation entropy is estimated to be only 7.9 J/mol/K based on frequency analysis and the 
rigid-rotor harmonic oscillator approximation. This corresponds to an Arrhenius type pre-
exponential factor of 2.3 1013 s-1. (3) The reaction is facilitated by the presence of the Li+ cation. In 
the absence of Li+ the barrier is 0.3 eV higher. This suggests a charge-induced process. (4) The 
type of cation does not have a significant effect on the reaction mechanism: In the case of a sodium 
adduct the barrier height is similar (higher by ~0.2 eV). (5) The early suggestion[19], that the 
reaction proceeds through the transfer of the alcoholic H only was also studied. This reaction 
channel leads to ethylene oxide and requires 0.6 eV higher critical energy (this difference is well 
beyond the “error bar” of the method), so it can not compete efficiently with the low energy 
process leading to acetaldehyde.  
 
Probably the most significant finding in the present communication is the size dependence of the 
critical energy. First of all, it has been established, that the reaction proceeds through the same low 
energy channel for other oligomers as well (from the dimer to the hexamer). Increasing the size of 
the PEG does not change the main characteristics of the process. Independently of molecular size, 
monomer loss remains the lowest energy channel (both experimentally[23] and according to the 
calculations: other channels were found to require more energy). The activation energies for 
various PEG oligomers are shown in Table 1. This shows that the critical energies decrease 



somewhat with molecular size, but the change is relatively minor (7-16% depending on the level of 
calculations, see Table 1 for details).  
 
 

B3LYP (in eV) M05-2X (in eV) 

No. of 
monomers 

Barrier 
height 

Li
+
 binding 

energy 
Barrier 
height 

Li
+
 binding 

energy 

2 2.70 3.35 2.98 3.71 

3 2.54 3.90 2.90 4.12 

4 2.42 4.15 2.80 4.28 

5 2.25 4.53 2.78 4.68 

6 2.28 4.69 2.77 4.89 

 
Table 1. Critical energies of fragmentation and Li+ binding energy in eV as a function of the number of monomers and 
at two different levels of theory: B3LYP/6-311++G(2d,2p)//B3LYP/6-31G(d) (abbreviated as B3LYP) and M05-2X/6-
311++G(2d,2p)//M05-2X/6-31G(d) (abbreviated as M05-2X) where A//B means an energy calculation at level A at the 
geometry optimized at level B. 
 
 
To increase confidence in the results, we have repeated the calculations using a different dft 
functional, M05-2X as well, which has been found to describe loose bonds (like hydrogen bonds) 
better and yield more reliable barrier heights than the more conventional B3LYP method. The 
results are given in Table 1. These show qualitatively the same trend; although the activation 
energies are a little higher (by ca. 0.35 eV); and the change with molecular size is smaller. Results 
using both functionals show that the limiting value for the critical energy is reached around the 
tetramer or pentamer.  
 
Activation energies can be compared to the binding energy of the lithium cation (lithium affinities) 
(Table 1; while values for the 10-, 14- and 18-mer are 5.68, 5.65 and 5.70 eV, respectively using 
the M05-2X functional). It can be seen that the lithium affinity increases very strongly with 
oligomer size, and the limiting value is reached only around the 10- or 12-mer. This is a far larger 
change than that of the activation energy. Note that lithium affinity is larger (or much larger) than 
the critical energy of fragmentation (monomer loss). This explains why, in contrast to Na+ or Cs+, 
the Li+ cation is not “lost” in a fragmentation; resulting in a structurally useful MS/MS 
fragmentation. As Na+ or Cs+ affinities are significantly smaller; in these cases loss of Na+ or Cs+ 
instead of a monomer EG unit may become dominant, resulting in MS/MS spectra that, for 
structure elucidation, are nearly useless.  
 
Results presented in this communication indicate that PEGs (and likely other polyethers) require 
high (ca. 2.5-3 eV) critical energy for fragmentation. This explains the experimental observation 
that their MS/MS fragmentation requires far larger collision energies than needed for peptides and 
most other organics of similar size. In general, larger oligomers require somewhat lower activation 
energies for fragmentation. However, this is only a minor effect; critical energies among various 
oligomers decrease by only about 10%. We believe this is the first systematic study to determine 



how much the activation energy for decomposition depends on molecular size in even-electron 
ions. As we lack data for other systems it is difficult to generalize; but seems most likely that the 
size dependence of critical energies has a minor influence on mass spectrometric fragmentation 
behaviour.  
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