
HAL Id: hal-00725015
https://hal.univ-brest.fr/hal-00725015

Submitted on 31 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hardware Time Manager Implementation for the
Xenomai Real-Time Kernel of Embedded Linux

Pierre Olivier, Jalil Boukhobza

To cite this version:
Pierre Olivier, Jalil Boukhobza. A Hardware Time Manager Implementation for the Xenomai Real-
Time Kernel of Embedded Linux. ACM SIGBED Review, 2012, 9 (2), pp.38-42. �hal-00725015�

https://hal.univ-brest.fr/hal-00725015
https://hal.archives-ouvertes.fr

A Hardware Time Manager Implementation for the Xenomai
Real-Time Kernel of Embedded Linux

Pierre Olivier
Université Européenne de Bretagne, France

Université de Brest; CNRS, UMR 3192
Lab-STICC,

20 avenue Le Gorgeu, 29285 Brest, France
pierre.olivier@univ-brest.fr

Jalil Boukhobza
Université Européenne de Bretagne, France

Université de Brest; CNRS, UMR 3192
Lab-STICC,

20 avenue Le Gorgeu, 29285 Brest, France
boukhobza@univ-brest.fr

ABSTRACT
Nowadays, the use of embedded operating systems in differ-
ent embedded projects is subject to a tremendous growth.
Embedded Linux is becoming one of those most popular
EOSs due to its modularity, efficiency, reliability, and cost.
One way to make it hard real-time is to include a real-time
kernel like Xenomai. One of the key characteristics of a
Real-Time Operating System (RTOS) is its ability to meet
execution time deadlines deterministically. So, the more pre-
cise and flexible the time management can be, the better it
can handle efficiently the determinism for different embed-
ded applications. RTOS time precision is characterized by
a specific periodic interrupt service controlled by a software
time manager. The smaller the period of the interrupt, the
better the precision of the RTOS, the more it overloads the
CPU, and though reduces the overall efficiency of the RTOS.
In this paper, we propose to drastically reduce these over-
heads by migrating the time management service of Xenomai
into a configurable hardware component to relieve the CPU.
The hardware component is implemented in a Field Pro-
grammable Gate Array coupled to the CPU. This work was
achieved in a Master degree project where students could
apprehend many fields of embedded systems: RTOS pro-
gramming, hardware design, performance evaluation, etc.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performances; C.3 [Special
Purpose and Application-based Systems]: Real-time
and Embedded Systems; B.6.1 [Logic Design]: Design Style—
logic arrays; K.3.2 [Computers and Education]: Com-
puter and Information Science Education

Keywords
Real-Time Operating Systems, Embedded Linux, Reconfig-
urable Architectures, FPGA, Embedded Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Nowadays Real-Time Operating Systems (RTOS) are in-

tegrated into many embedded devices. Using an RTOS pro-
vides many benefits. First, by abstracting the hardware
layer, the OS facilitates the programmers work, and the
standardization of the software layer. Using an RTOS also
brings an executive software platform, providing some im-
portant services : 1) Task scheduling ; 2) Time manage-
ment : giving the RTOS the notion of time ; 3) Inter-task
communication and synchronization mechanisms (IPC), etc.
Even though RTOSs provide many advantages, the time
they spend managing their own structures can be consid-
ered as overhead that RTOS designers should minimize.

RTOS are generally executed in a constrained environ-
ment. First, the RTOS must deal with traditional embedded
constraints : limited hardware resources, especially in terms
of memory footprint, generally limited computing power, en-
ergy consumption constraints, high reliability, and also fast
Time To Market. Moreover, RTOS are subject to specific
constraints, which are the predictability of their behavior,
and the determinism of the tasks execution time.

RTOSs lie upon a hardware timer periodically generating
an interrupt notifying the CPU of a generated clock tick.
The corresponding handler is executed and calls the tick
management function of the RTOS. Depending on the RTOS
this function performs various tasks, but one can identify
the following main jobs : 1) maintaining a system time
variable, counting the number of elapsed clock ticks since the
boot of the system ; and 2) notifying different timers that
a clock tick has occurred, and performing particular actions
for expired timers. Some of those timers are dedicated to
manage periodic tasks.

A high resolution timer allows the system to be more pre-
cise and responsive. Nevertheless, it also means a tick man-
agement function executed more frequently, though a higher
CPU load. Depending on the load, a weak CPU with a high
resolution timer can generate indeterminism in time man-
agement and so missed deadlines [7]. A compromise is then
to be made between performance and time precision.

In this context, several studies have proposed to migrate
some RTOS services from a software toward a hardware im-
plementation. This is performed for two main reasons: 1)
A performance improvement, by benefiting from spatial and
temporal (pipeline) parallelisms provided by such a hard-
ware implementation. 2) To release the CPU from the cor-
responding service execution, thus reducing the generated
overhead. Such improvements would allow systems design-

ers to use less efficient but less expensive, and power con-
suming components.

One of the RTOS services one can need to optimize and/or
configure according to the application needs is the time man-
ager. We propose to enhance this service in the Xenomai
real-time Linux framework. We present a configurable hard-
ware architecture for a simple time manager implemented on
an FPGA circuit, connected to a CPU executing the Xeno-
mai framework in an embedded Linux.

The tick-less mode of some OS allows them not to be in-
terrupted at each timer tick, but only when needed. This is
done by carefully loading one-shot timers and responding to
various hardware interrupts. The work presented in this pa-
per is done to enhance performance of non-tick-less RTOSs,
which is the case of most EOS. As Xenomai provides both
tick-less and non-tick-less mode, we used the non-tick-less
mode.

This project was proposed in a second year Master (Soft-
ware for Embedded Systems at the Université of Brest -
France) course on embedded operating systems. The objec-
tive of the project was to cover many domains of embedded
systems throughout one project: hardware architecting and
programming (FPGA, Hardware Design Languages), real-
time systems, embedded operating systems development,
device driver and kernel programming and integration, per-
formance evaluation and validation procedures, etc.

In this paper, we first introduce some state-of-the-art stud-
ies about hardware implementations of RTOS services. Next,
we present the Xenomai real-time framework for embedded
Linux. In the third section, we describe the architecture of
the hardware time manager, and its integration in the sys-
tem. We finally give some performance evaluation results
before concluding.

2. STATE OF THE ART
A real-time operating system must be able to respond

within a deterministic time. The latency generated by the
use of the RTOS (overhead) must not interfere with the
reactivity of the system. Some studies focus on migrating
software services to hardware components in order to unload
the CPU, thus reducing the RTOS related overhead thereby
enhancing the applicative performance.

We can find many hardware implementations of the sched-
uler in the literature. In [6], the authors present a con-
figurable hardware scheduler, supporting various schedul-
ing policies : Priority-based, Rate Monotonic, and Earliest
Deadline First. The Spring Scheduling Co-Processor (SS-
CoP) [2] is also a hardware implementation of the sched-
uler. This system shows an improvement factor of 6.5 as
compared to the software version.

Real-time Task Manager (RTM) [5] is a component han-
dling scheduling functions, but also time and event manage-
ment. The authors show that OS (µC/OS-II, NOS) latency
and system response time are considerably enhanced with
RTM.

Finally, Fastchart [8] is a complete hardware real-time ker-
nel. To obtain a fully deterministic EOS, the authors remove
features such as CPU pipelines and cache, and DMA. As a
software operating system running on such hardware is dras-
tically slower, Fastchart is fully implemented in hardware.

To the best of our knowledge, no study has been realized
on the migration of the time manager service of the Xenomai
kernel on reconfigurable hardware (FPGA). This allows to

have a configurable time manager that can be tuned and di-
mensioned according to application needs, should the hard-
ware platform contain an FPGA circuit. One of the latest in-
novation of Intel is precisely the integration of an FPGA and
an Atom processor into the same chip (Intel atom E6x5C se-
ries).

3. THE XENOMAI REAL-TIME FRAME-
WORK FOR LINUX

In this section we briefly present the Xenomai real-time
framework for Linux, and the Adaptive Domain Environ-
ment for Operating System (Adeos) layer, which allows Xeno-
mai and Linux to run on the same hardware platform.

3.1 Adeos layer
Adeos [9] is a resource virtualization layer, allowing mul-

tiple entities called domains, that can be seen as complete
operating systems, to run simultaneously on the same hard-
ware platform [3].

Adeos domains can compete with each other for receiv-
ing system generated events. Those events can be incoming
external (or virtually generated) interruptions, Linux sys-
tem calls invocations, or various kernel-code-related events
like context switches. Adeos introduces the event pipeline,
which can be seen as a chain of domains of decreasing prior-
ity. The events are consequently propagated throughout the
pipeline, distributed firstly to the utmost priority domain,
then distributed to lower priority domains.

In the case of a Xenomai RTOS running with a Linux ker-
nel, the Adeos pipeline and the organization of the domains
is depicted in Figure 1. In the pipeline, we can see that
Xenomai has the highest priority, so it can handle and man-
age first the events before passing them to the Linux kernel.
The events can also be blocked by the interrupt shield, pre-
serving the real-time framework from latencies due to event
management by the Linux kernel. Throughout this mecha-
nism, Xenomai framework can provide real-time guarantees.

Figure 1: Adeos Event pipeline when running the
Xenomai with Linux kernel (adapted from [3]).

3.2 Xenomai
Xenomai [4] provides a kernel-based Application Program-

ming Interface (API) for real-time applications. A user-land
API is also available, at the cost of longer latencies. Xeno-
mai introduces the concept of skins. Skins are source codes
emulating proprietary APIs used for porting real-time ap-
plications from various RTOSs such as VxWorks, pSOS, etc.
to Xenomai. When designing a Xenomai application from
scratch, the native Xenomai skin can be used.

All Xenomai skins rely on the nucleus, the core of the
RTOS, implementing all algorithms for real-time functional-

ities. Xenomai provides all standard services one can expect
to find in a RTOS1 : task management, multiple scheduling
algorithms, IPCs, etc.

3.3 Time management in Xenomai
We focused in this project on periodic real-time tasks that

make extensive use of timers. A commonly used skeleton for
those tasks in Xenomai as follows :

void myRealTimeTask(void *arg) {

SetPeriodic(myself, period);

while(1) {

/* Do something */

wait_period();

}

}

The SetPeriodic() function creates and starts a timer
related to the calling task, with a period (in clock ticks)
equals to the specified parameter. The global tick man-
agement function notifies the timer each time a clock tick
occurs. When reaching wake up time, the timer executes a
handler placing the task in the ready state.

4. ARCHITECTURE AND INTEGRATION
OF THE HARDWARE TIME MANAGER

In this section we present the architecture of the proposed
hardware time manager component, and the way it is inte-
grated into the Xenomai framework.

From the RTOS point of view, the hardware time man-
ager should provide the following basic time management
operations :

• GetTime and SetTime: read/modify the value of
the system time ;

• TaskDelay: load a counter of a delayed task for a
given amount of clock ticks ;

• GetTasksToWake: obtain the identifiers of tasks that
need to be awaken (if any) ;

• ClearTask: acknowledge from the CPU indicating the
awakening of a task.

4.1 Hardware architecture and integration
The designed hardware time manager is composed of two

main modules, which represent the two main functions we
want to support : 1) maintaining the global system time
and 2) allowing tasks to suspend their execution for a specific
amount of time. Thus, the two main modules composing the
hardware time manager are the system time module and the
waiting tasks array as seen in Figure 2.

The system time module is a simple counter which value
is initialized to zero when the system starts (i.e. when the
bitstream is loaded on the FPGA). This counter is then
incremented each FPGA clock cycle.

The array of waiting task module is an array of counters.
The number of counters it contains is equal to the number of
tasks that can potentially be put in a waiting state (there is
space for optimization for this module). When a task needs

1For more information about Xenomai, one can browse the
Xenomai website : http://www.xenomai.org

Figure 2: Block view of the hardware time manager
and its integration in a Linux-based system.

to be put in a waiting state, the corresponding counter is
loaded with the appropriate number of ticks. This counter
is then decremented at each clock cycle.

All counters in the component are 64 bit width which cor-
responds to a very high frequency/precision counter. Counter
size can be reduced according to the needed precision.

The architecture was realized in an incremental approach.
Students were first provided with some simple hardware
component to test, then a very simple counter, and finally
the whole module was introduced.

4.2 Communication between CPU and IP
Communication between the CPU (executing the operat-

ing system) and the hardware time manager is performed
through a register-based interface.

On our evaluation board, the FPGA chip is directly con-
nected to the CPU through a dedicated bus. We defined
some control registers (i.e. FPGA registers) in the hard-
ware part that were mapped to the device driver’s process
address space. A kernel driver was written in C, as well as
a user-space one. The memory mapping is performed using
the mmap() system call in user-land, and ioremap() in ker-
nel space. One function is provided for each basic operations
supported by the hardware component.

When the counter corresponding to a waiting task reaches
zero, the related task needs to be awakened at the OS level.
The component then triggers an (hardware) output signal
at a high level and waits for an acknowledgment from the
CPU meaning that the task is actually awake. This specific
signal is plugged on the interrupt output of the CPU.

Here again, students interfaced the hardware component
with the RTOS part in an incremental approach. They first
insured a communication in user-land before exploring the
kernel code and integrating the driver.

4.2.1 Integration into the Xenomai Nucleus
All the code modifications and the integration of the hard-

ware time manager calls were performed at the Nucleus
level. Doing so, we ensured the compatibility of the per-
formed modifications with 1) all Xenomai skins and 2) ker-
nel and user-land based Xenomai real-time applications. We
included our driver into the Nucleus code, and modified
the wait_period() primitive, which now calls the hardware
time manager. This allows to launch a timer with an initial
value corresponding to the task period, and then suspends
the calling task.

When the delay is elapsed, the hardware component pro-
duces an interrupt signal. Thus, we implemented a handler
executed each time the interrupt is received. This function
retrieves the identifier of the task(s) needing to be woke up.
Then, it places it (them) in the ready state after sending an
acknowledgment to the component indicating that the task

is actually awaken.

5. PERFORMANCE EVALUATION
In this section, after introducing the evaluation platform,

we give some results describing the benefits gained from re-
placing the software time manager service by the hardware
version. We implemented the hardware time manager on
a development board and measured the time manager la-
tencies. From these results we computed the corresponding
CPU load for a given set of tasks. We also present the cost
of the hardware component, in terms of FPGA resources. In
the following section we refer to the software default Xeno-
mai time manager as the software mode, as opposed to the
hardware mode.

5.1 Evaluation platform
Our evaluations were achieved on the Armadeus Systems

APF27 development board [1]. It is equipped with a Freescale
i.MX27 microprocessor clocked at a frequency of 400 Mhz.
This processor is coupled to a Xilinx Spartan 3A FPGA chip
on which we synthesized a small version of the hardware time
manager. This component is able to manage up to 12 real-
time tasks. The hardware time manager was clocked at a
frequency of 102 MHz, giving one tick every 9.8 ns. For the
software part we used the native Xenomai skin, in a non-
tickless mode, with a base period of 10 ms. We used the
user-land mode for the defined Xenomai real-time tasks.

5.2 Performance evaluation results
In this part, we investigate the performance of the pro-

posed design throughout the reactivity, saved CPU load,
and the FPGA resource cost.

5.2.1 Reactivity and execution time

Time measurement methodology.
In the next sections, we present results based on various

time measurements. Those measurements were made, using
the GetTime operation implemented by the hardware time
manager as follows :

/* 1. Measure the calibration time */

c1 = GetTime(); c2 = GetTime();

calibration_value = c2 - c1;

/* 2. Measure the execution time */

t1 = GetTime();

call_to_measured_operations();

t2 = GetTime();

result = (t2 - t1) - calibration_value;

By subtracting the calibration value from the measured
time, we took off the overhead due to the GetTime function
itself (measured by two consecutive GetTime operations).
Each time measure were performed 10 times and we consid-
ered the average value. The measures were always performed
just after the system boot, thus insuring the same initial con-
ditions.The hardware time manager bitstream were loaded
at boot time (U-Boot) before the kernel starts up.

System reactivity.
We investigate the system reactivity by quantifying the

imprecision between the moment a task needs to be woke
up (i.e. the occurrence of the tick corresponding to the end

Figure 3: System reactivity, wake-up latency per
task.

of its delay period) and the moment this task is really woke
up. To do so, we measured the execution times of the tick
management function in software mode, and compared them
to the execution time of the task wake up interrupt handler
in hardware mode. Results for different number of tasks are
shown in Figure 3.

We can see that in software mode, the task wake-up la-
tency is highly related to the number of tasks in the system.
Indeed, at each clock cycle the master timer handler must
inform all the delayed tasks timers that a clock cycle oc-
curred. In the hardware mode, this latency is much less
dependent on the number of tasks (see the estimated slope
equation), thus making it more stable. The inferred wake
up latencies are highlighted in Figure 3.

Offloading the CPU.
Based on previously measured values (see Figure 3), we

can estimate the CPU overhead for delayed tasks manage-
ment in both software and hardware modes for a duration
of one second. We assumed a master timer base period of 10
ms in the software mode. In order to simplify the figure, we
also assumed that all tasks have the same period (no impact
on the results).

In software mode, we computed the CPU time dedicated
to the delayed tasks management using the estimation equa-
tion in Figure 3 and multiplying the result by the number
of clock ticks in one seconds : 100 (1 sec divided by 10 ms)
in our case. In hardware mode, this time value corresponds
to the number of task awakenings in a 1 second period mul-
tiplied by the time measured of the task wake up interrupt
handler (in Figure 3). In Figure 4, we present the improve-
ment factor (speedup) given by using the hardware mode.
This speedup is obtained by dividing the time for task delay
management in software mode by the time taken in hard-
ware mode.

We can observe that the speedup is very high when the
number of task wake-ups is low (i.e. the task period is long),
because in hardware mode we spend CPU time only when
needed (interrupt driven) in order to wake up tasks. Con-
versely, in software (polling) mode, we have to iterate over
the delayed tasks timer list at each timer tick. One must
keep in mind that for the hardware timer the precision is 3

Figure 4: Improvement factor for the CPU over-
head due to delayed tasks management. Improve-
ment factor = (CPU overhead in software) / (CPU
overhead in hardware)

Figure 5: FPGA resources cost for various versions
of the hardware timer according to the number of
managed tasks

orders of magnitude better than the software version for all
the performed measures.

5.2.2 FPGA hardware resource cost
The FPGA resource cost is given in terms of FPGA 4

input LUTs, and flip-flop slices used by the hardware time
manager on the Spartan3A chip. To obtain these values,
we lied upon the outputs of the Xilinx ISE design suite.
We synthesized various versions of the component, each one
able to manage a given number of tasks and we studied
the variation of resource utilization. Even though the given
implementation, students worked on, is very naive and can
be substantially optimized, we found it interesting to show
the results.

Results about FPGA resource costs are presented in Fig-
ure 5. A maximum of 12 tasks managed on the Spartan3
may seem low, indeed we presented the timer with the higher
granularity (64 bit counters). The cost in terms of hardware
resources for the component can be optimized by reducing
the granularity of the timer or optimizing the architecture.

6. CONCLUSION AND FUTURE WORKS
In this study we presented a simple architecture model

for a flexible/configurable hardware time manager compo-
nent, designed to replace the software version of the Xeno-
mai kernel of embedded Linux. As our performance eval-
uation shows, this implementation drastically enhances the
reactivity of the system by more than a factor 10, and allows
to have a flexible and extremely precise timer for real-time
tasks. Furthermore, we also considerably reduced the CPU
overhead due to the delayed tasks management.This is not
without a quantified FPGA hardware cost, but the flexibility
and precision offered by such a component can be worth it.
This work can be extended by testing the reconfigurability
feature of some FPGAs (not the Spartan3A) to dynamically
reconfigure the timer in terms of precision and number of
managed tasks according to the application evolution. We
plan to reduce the cost of the hardware component in terms
of FPGA resources, in order to be able to manage a more
important number of tasks

This project was given to Master degree students to in-
troduce them to embedded systems research. It was well
received by students and considered as challenging as it al-
lowed them to apprehend many domains of embedded sys-
tems such as: 1) embedded Linux tools handling, 2) Xeno-
mai real time kernel installation and use, 3) device driver
development and integration, 4) kernel code exploration and
programming, 5) hardware programming and interfacing,
and 6) performance evaluation and validation.

All the hardware VHDL and component driver sources
together with a Xenomai patch will be available on-line.

7. REFERENCES
[1] Armadeus Systems. Apf27 board datasheet, 2012.

http://www.armadeus.com/_downloads/apf27/

documentation/datasheet_apf27.pdf.

[2] W. Burleson, J. Ko, D. Niehaus, K. Ramamritham,
J. A. Stankovic, G. Wallace, and C. Weems. The spring
scheduling co-processor: A scheduling accelerator. In
IEEE Transactions on VLSI, 1993.

[3] P. Gerum. Life with adeos. 2005.

[4] J. Kiszka. The real-time driver model and first
applications. In 7th Real-Time Linux Workshop, Lille,
France, 2005.

[5] P. Kohout, B. Ganesh, and B. Jacob. Hardware support
for real-time operating systems. In Proceedings of the
1st IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis,
CODES+ISSS ’03, pages 45–51, New York, NY, USA,
2003. ACM.

[6] P. Kuacharoen, M. Shalan, and V. M. A configurable
hardware scheduler for real-time systems. In in
Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms,
pages 96–101. CSREA Press, 2003.

[7] J. Labrosse. MicroC/OS-II: the real-time kernel.
Newnes, 2002.

[8] L. Lindh. Fastchart-a fast time deterministic cpu and
hardware based real-time-kernel. In Real Time Systems,
1991. Proceedings., Euromicro ’91 Workshop on, pages
36 –40, jun 1991.

[9] K. Yaghmour. Adaptive domain environment for
operating systems. Opersys inc, 2001.

