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Dear Sir, 

 

When performing structural investigation of macromolecular systems using tandem mass 

spectrometry, an important matter is the choice of the cation and how that does affect the tandem mass 

spectra. Moreover, when studying mechanistic aspects, the role of the adduct ions in the mechanism of 

the fragmentation processes is often discussed: Is the process charge-induced (more accurately described 

as charge-catalyzed) or charge-remote (more accurately described as charge-independent). In a previous 

study[1], we shed light on the catalytic effect of lithium in the case of cationized poly(ethylene glycols) 

(PEGs). The activation energy of the main fragmentation process for the trimer was shown, by means of 

Density Functional Theory calculations, to decrease by as much as 0.3 eV in the presence of lithium.  

To further sketch our picture of the role of cation adducts on the fragmentation of even electron ions, 

we present in this communication the results obtained on the fragmentation of poly (n-butyl acrylate), 
PBA, with different alkali ions and various degrees of polymerization. Thus, we present a method to 

clarify the role of the charge on the fragmentation processes.  

The experiments were performed on a Bruker Esquire 3000plus ion trap mass spectrometer with PBA 

from 4 up to 12 monomeric units (polymerization degree varies with different cations). The 

experimental setting is identical to the one described in the previous study[2] and the structure of PBA 

selected can be found in the supporting information. PBA oligomers with positively charged alkali ion 
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adducts including Li
+
, Na

+
, K

+
 or Cs

+
 were studied in the system. The main fragmentation processes 

observed are the loss of 56 Da and 130 Da in the cases of lithium and sodium adducts. Using high 

resolution and high accuracy mass spectrometry, the elemental compositions of these losses were 

identified to be C4H8 and C8H16O. Backbone cleavage was not observed for PBA; all neutral losses 
originate from side chain cleavages. The PBA used here (i.e. with a butylmethyl carboxylate and a 

hydrogen end group) was specifically selected for this work in order to avoid any end group 

fragmentation.  

When potassium and caesium were used for adduct formation, no significant fragmentation was 

observed. This is most probably due to cation detachment, which was shown, e.g. in the case of 

cationized PEGs, to become preferential as the size of the cation increases[3]. This observation supports 

previous studies claiming the value of low mass cations for structural investigation of oligomers using 

tandem MS: stable complexes are formed with Li
+
 and Na

+
 cations that enable the macromolecule to 

dissociate into various fragments carrying specific structural information. 

To study the energetics of polymer fragmentation, the survival yield (SY)[2, 4-7] is a convenient 

quantitative measure. It is defined according to Eq.1:  

M

M F

I
SY

I I
=

+�
     (Eq.1) 

in which IM is the intensity of the cationized molecule and ΣIF is the sum of all product ion intensities. 

The survival yield curve is typically of the sigmoid-type (continuously decreasing from 1, at low energy, 

to 0 at high energy). Similarly the intensity of the individual product ions can be used as numerator in 

Eq1 and the corresponding curves can then be plotted. This way, a breakdown diagram is obtained. 

These diagrams were plotted in the case of lithium and sodium cationized PBA with 10 monomeric 

units and are shown in Figure 1. Only two of the most intense fragmentation processes (i.e. neutral loss 

of 56 and loss of 130 Da) are shown here for the sake of clarity and as they represent altogether between 

80-90% of the product ions observed. An example of the spectra underlying the data presented in Figure 

1 is shown in the supporting information. In the case of the lithium adduct, the two curves of the product 

ions are running closer and more parallel to each other, while they are much more separated in the case 

of the sodium adduct. Hence, the relative importance of the respective fragmentation pathways (loss of 

56 and 130Da) changes significantly with the adduct cations[8].  
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Figure 1. Breakdown diagrams of (a) lithium and (b) sodium cationized poly (n-butyl acrylate) with 10  monomeric units. 
 

 

To further investigate this effect, the relative intensities of the two reaction channels were compared 

as a function of polymer size. For a given oligomer the ratio changes significantly with collision energy, 

as shown in Figure. 1. At high energy the abundance ratio of the two fragmentation process becomes 

fairly constant; so this was measured corresponding to ca. 95% fragmentation (SY=0.05). The 
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abundance ratio measured for the two processes, -56/-130, was measured as a function of molecular size, 

and this is shown in Figure. 2; both for lithium and sodium cationized polymers. The figure shows that 

the relative intensities of the two main fragmentation processes are approximately independent of the 

degree of polymerization; especially for hexamers and above. The asymptotic values calculated are 
1.27±0.11 for PBA oligomers with Li+ adduct and 1.99±0.12 with Na+ adduct. (The method of error 

estimation is presented in supporting information).  
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Figure 2. Ratios of signal intensities for the two main fragmentation processes (losses of 56 Da / 130 Da) observed at 95-

100% fragmentation of the precursor ion, plotted versus m/z for lithium and sodium cationized PBAs. Full lines are 
asymptotic values obtained after averaging the last 8 values for Li

+
 and the last 6 values for Na

+
.  

 

 

Figure 1 shows that the breakdown curve changes when the cation is changed from Li
+
 to Na

+
. This 

clearly suggests that at least one of the two (major) fragmentation processes is charge-catalyzed. There 

are two possibilities; only one of the processes is charge-catalyzed (and the other is charge independent) 

or both processes are charge-catalyzed. As mentioned above, both fragmentation channels involve side 

chain losses. If the process is charge-catalyzed, there is only one possible reaction channel in the 

cationized molecule (i.e. that close to the charged site). If the process is independent of the charge; the 

number of possible reaction channels will increase with the degree of polymerization (possibly linearly 

with polymerization degree). As a consequence, the abundance of charge independent processes should 

increase with molecular size. The abundance of a charge-catalyzed process, however, will not be 

affected by varying the molecular size. Therefore, under conditions of similar degrees of fragmentation, 

a combination of a charge-catalyzed and a charge-independent process will lead to a change in the 

intensity ratio of product ions when the mass of the precursor ions is changed. If both processes are 

charge-catalyzed the intensity ratio will not be affected on change of the precursor ion’s mass. Figure 2 

clearly demonstrates that the ratio of the two processes reaches a constant value at n=6. Therefore, both 

of the fragmentation processes, viz. the loss of 56 Da and the loss of 130 Da, are charge-catalyzed. 

The flow chart shown in Scheme 1 can be used to formalise the above reasoning in a procedure for 
determining whether processes are charge-catalyzed or charge-independent. The validity of this 

procedure is, at this stage, limited to polymers with a periodic structural pattern that show two (main) 
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fragmentation products. There are two critical steps in the procedure: The first one is drawing 

breakdown diagrams with different cations, which reveals whether there is at least one charge-catalyzed 

fragmentation process. The second one is performing a size-dependence analysis, which provides 

information about the similarity of the nature of the fragmentation processes.   
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Scheme 1. Determination of the cation influence on two fragmentation processes (charge-catalyzed/independent). 

 

 

This paper demonstrated that changing the size of the adduct ions can be used to increase the degree 

of fragmentation of polymers in tandem mass spectrometry. In fact similar to the case of PEG oligomers, 

tandem MS spectra of PBA oligomers ionised with Li
+
 and Na

+
 provide more structural information 

than those of PBA oligomers ionised with larger cations[3]. Although the cation doesn’t qualitatively 

change the fragmentation pattern (the same product ions are observed), the nature of the cation changes 
the relative abundance of the respective fragmentation processes. This illustrates well the catalytic effect 

the cation can exert on the fragmentation processes observed[9]. Moreover, we have also shown that 

performing a simple size-dependence analysis using breakdown diagrams with at least two different 

cations, the catalytic influence of the cation on the fragmentation processes observed can be clearly 

demonstrated. We have also delineated a simple procedure for determination on the presence of an 

effect of the cation on the fragmentation (charge-catalyzed or charge-independent). This is important 

information for investigations by means of quantum chemical modelling. Although the MS/MS spectra 

obtained for PBA on ion trap instrument are rather simple (only two product ion peaks are observed), 

this procedure should also be generally applicable to homopolymers (or alternating copolymers). The 

limitation is however that there should be more than one product ion. The applicability of the method to 

tandem MS experiments that produce more than two different product ions should be investigated. A 

particularly interesting subject of research would be fragmentations in which the backbone of the 

polymer is cleaved in two ways, producing a multitude of product ions that can be grouped as two types.  
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Supporting Information 

 
The PBA sample was obtained from AkzoNobel Car Refinishes, Sassenheim, The Netherlands. It was 

prepared by radical polymerization using tert-butyl peroxy-3,5,5-trimethylhexanoate as initiator at 140 
o
C in xylene. The number average molecular weight is 2,800 and the weight average molecular weight is 

5,510. These values were measured by gel permeation chromatography (GPC) calibrated with 

polystyrene standards.  The structure selected for this study is shown in Scheme S1. 

 

 
S1. The PBA selected for the present study. 
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Two examples of tandem MS/MS spectra underlying the data presented in Figure 1 are shown in S2 and 

S3. 

M-130 (m/z 1273) M-56 (m/z 1347)
0.00.51.01.52.02.53.05x10Intensity

1300 1340 1380 1420 m/zM: PBA10+Li+(m/z 1403)
 

S2. MS/MS spectrum of m/z 1403 (PBA10+Li
+
) at excitation voltage of 0.64 V 

 

 

M-130(m/z 1289)
M-56 (m/z 1363)

M: PBA10+Na+(m/z 1419)02
46
85x10Intensity

1300 1340 1380 1420 m/z  
S3. MS/MS spectrum of m/z 1419 (PBA10+Na

+
) at excitation voltage of 0.64 V 

 

 

The error bar value s presented in Figure 2 is the standard deviation of the ratio of the -56 and -130 

product ion peaks. It is calculated according to SEq.1. 
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where )( xI −  is the mean value of the intensities of the product ion peak (-x), 
( )I xs
−

 corresponds to the 

standard deviation of the ion peak (-x) intensities. 
 

 


