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Abstract—For enhancement of the quality of digital trans-
missions, standards are in continual evolution, which generates
compatibility problems. Cognitive radio systems permit one to
solve this problem through the design of intelligent receivers.
However, such receivers must be able to adapt themselves to
a specific transmission context. This requires the development
of new methods in order to blindly estimate error-correcting
codes. Coding schemes like turbocode, composed of convolutional
codes, belong to a family of error-correcting codes in use in many
standards. In most of the methods designed to identify convolu-
tional encoders the algebraic properties are used implicitly. But
usually, these dedicated properties are neither explicated, nor
detailed, nor demonstrated. The study reported here investigates
the algebraic properties of convolutional encoders, useful for
blind recognition methods in the cognitive radio context and more
specially the algebraic relationships between different forms of
a convolutional code and its corresponding dual code. Moreover,
some simulation results are presented to show the relevance of
these properties for the blind identification of the convolutional
encoder.

I. I NTRODUCTION

In order to meet the expectations and transmission con-
straints about data rate or readability generated by new
applications, digital communication systems are in constant
evolution. With the fast development of new communication
standards, the design of intelligent receivers has become a
must. Indeed, such receivers can adapt to a specific trans-
mission context through a blind estimate of the transmitter
parameters. This requires the development of new methods
to blindly estimate error-correcting codes known to enhance
the quality of communications by enabling the binary data
stream to better withstand channel impairments such as a noisy
transmission channel, interferences or channel fading. For this
purpose, they introduce some redundancy in the informative
binary data stream.

A literature review shows that most of the methods dedi-
cated to the blind identification of convolutional encoder use
both some algebraic properties of convolutional encoders and
those of their dual codes. These considerations led us to
study certain algebraic properties of convolutional encoders
used in blind recovery methods. The paper is organized as
follows: section II introduces some properties of convolutional
encoders as well as the notion of equivalent encoder. Then,
section III investigates the relationship between the dual
code and the code. Finally, section IV shows the interest of
these algebraic properties on the blind recognition methods of
convolutional encoders. Our conclusion is drawn in section V.
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II. CONVOLUTIONAL ENCODER

A convolutional encoder is defined by a set of three pa-
rameters, respectively denoted byn, k andK, wheren is the
number of outputs,k is the number of inputs andK is the
constraint length, plus a(k × n) generator matrix [denoted as
G(D)] such that

G(D) =







g1,1(D) · · · g1,n(D)
... . . . ...

gk,1(D) · · · gk,n(D)






(1)

wheregi,j(D) are generator polynomials or generator rational
functions.

Let us denote bym(D) and c(D) the input and output
sequences, respectively. So, the relation between them is
expressed as

c(D) = m(D).G(D). (2)

A. Equivalent encoder

One of the most important properties in the error correction
theory is the notion of equivalent encoder. Indeed, a given con-
volutional code can be encoded by several different encoders.
Moreover, it has both systematic rational generator matrices
(where the entries are rational functions) and polynomial
generator matrices (where all the entries are polynomials).
The systematic rational generator matrices give encoders with
’feedback‘. Let us denote the encoders with feedback by
RSC (Recursive and Systematic Code) and those with no
feedback by NRNSC (Non-Recursive and Non-Systematic
Code). Properties of equivalent encoders were given in earlier
papers [1], [2].

Definition 1: Two convolutional generator matricesG(D)
and G′(D) are equivalent if they encode the same code,C.
Two convolutional encoders are equivalent if their generator
matrices are equivalent.

Theorem1: Two rate r = k/n code generator matrices
G(D) and G′(D) are equivalent if, and only if there is a
k × k nonsingular matrixT (D) such that

G(D) = T (D).G′(D). (3)

Theorem2: Every convolutional generator matrix is
equivalent to a systematic rational encoding matrix.
For a convolutional encoder, the choice of generator matrix is
essential. Indeed, the various generator matrices give differ-
ent complexities both in encoding and decoding procedures.
Among the generator matrices, the class corresponding to
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those termed as catastrophic ones must be avoided. Indeed,
with such a catastrophic matrix, a small number of channel
errors may generate an unlimited number of errors after
decoding. Furthermore, within a class of generator matrices
for a code, the most used encoder is the one with the
most desirable structural properties. These generator matrices,
which describe optimal convolutional encoders, have good
algebraic properties ( [1], [3] ) that can be judiciously exploited
for blind identification.

B. Relation between the NRNSC and the RSC encoders

Evidence of the relationship between the generator matrix
of an NRNSC encoder and that of its RSC equivalent encoder
was given in an earlier paper [4]. It is briefly recalled hereafter
prior to the study of the relationship between the dual code and
the code. For this, let us denote byGNRNSC(D) a generator
matrix of an NRNSC encoder and byGRSC(D) a generator
matrix of its RSC encoder. Then, the matrixGNRNSC(D) is
defined by

GNRNSC(D) =







g1,1(D) · · · g1,n(D)
... . . . ...

gk,1(D) · · · gk,n(D)






. (4)

On condition to denote byL(D) a (k × k) sub-matrix of
GNRNSC(D), such that

L(D) =







g1,1(D) · · · g1,k(D)
... . . . ...

gk,1(D) · · · gk,k(D)






(5)

the RSC equivalent matrix is

GRSC(D) =
1

detL(D)
.adj L(D).GNRNSC(D) (6)

wheredetL(D) is the determinant ofL(D), and adjL(D)
is the adjoint matrix ofL(D). The matrix,GRSC(D), is a
(k × n) matrix such that

GRSC(D) =









1
f1,k+1(D)
f1,1(D) · · ·

f1,n(D)
f1,1(D)

. ..
... . . . ...

1
fk,k+1(D)
f1,1(D) · · ·

fk,n(D)
f1,1(D)









(7)

where fi,j(D) and f1,1(D) are termed, respectively, as the
generator polynomials ofGRSC(D), ∀i = 1, · · · , k and∀j =
k + 1, · · · , n, and the feedback polynomial.

According to (6), thefi,j(D) polynomials are obtained by
multiplying the ith row of adjL(D) with the jth column of
GNRNSC(D). An adjoint matrix is defined by

adj L(D) =







Cof1,1(D) · · · Cofk,1(D)
... . . . ...

Cof1,k(D) · · · Cofk,k(D)






(8)

whereCofp,i(D) is a determinant of a sub-matrix ofL(D)
obtained by deleting thepth row and theith column ofL(D).
Each generator polynomialfi,j(D) is such that

fi,j(D) =
k

∑

p=1

gp,j(D).Cofp,i(D). (9)

Thus,fi,j(D) corresponds to the determinant of a sub-matrix
of L(D) obtained by deleting theith row and theith col-
umn. These generator polynomials are ak-order minor of
GNRNSC(D) matrix.

Most methods of blind identification allow one to find the
NRNSC equivalent form of the really used encoder. Thus, the
relation between a generator matrix of an NRNSC encoder
and its RSC equivalent encoder expressed in (6) is paramount
in blind recovery. Indeed, if the encoder is in the RSC form,
this relation permits one to get the true generator matrix.

III. R ELATIONSHIP BETWEEN THE DUAL CODE AND THE

RSCENCODER

In this section, focus is on the relation between the generator
matrix of a dual code and the generator matrix of the RSC
encoder.

A. Dual code

A convolutional encoder can also be described by a dual
code generator matrix termed parity check matrix, whose
properties ( [2], [5] ) are known as excellent in the blind
identification of convolutional encoders.

Property1: Let G(D) be a generator matrix ofC. If an
((n− k)× n) polynomial matrix,H(D), is a parity check
matrix ofC, then

G(D).HT (D) = 0. (10)

Corollary 1: LetH(D) be a parity check matrix ofC. The
output sequencec(D) is a codeword sequence ofC if and only
if

c(D).HT (D) = 0. (11)

The methods dedicated to the blind estimation of convolu-
tional encoders are based on the algebraic properties of convo-
lutional codes ( [6], [7] ). In such blind recovery methods, the
first step is the identification of the code parameters (k, n and
K). It is followed by the identification of the code parity check
matrix. At last, a generator matrix of its NRNSC encoder can
be deduced from this parity check matrix. But, as observed for
convolutional encoders, the dual code is described by many
matrices. In blind recovery, getting a parity check matrix with
good algebraic properties is essential to deduce a generator
matrix of its NRNSC encoder. This requirement drove us to
gain more insight into the parity check matrix,H(D), used to
identify a convolutional encoder.

This parity check matrix is an((n− k)× n) matrix such
that

H(D) =







h1,1(D) ··· h1,k(D) h0(D)

... . . . ...
...

hn−k,1(D) ··· hn−k,k(D) h0(D)







(12)
where h0(D) and hi,j(D), ∀i = 1, · · · , n − k and ∀j =
1, · · · , k, are the generator polynomials ofH(D).
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B. Relation betweenH(D) andGRSC(D)

Let us consider the previousH(D) matrix (12) in the case
where it is composed of the generator polynomials of an RSC
encoder so that

H(D) =







f1,k+1(D) ··· fk,k+1(D) f1,1(D)

... . . . ...
...

f1,n(D) ··· fk,n(D) f1,1(D)






.

(13)
To show that this matrix (13) is a parity check matrix of
the NRNSC encoder equivalent to the previous RSC encoder,
let us denote byG(D) an NRNSC generator matrix and
by fi,j(D) the generator polynomials of its RSC equivalent
encoder.

Let us denote byR(D) a (k × (n− k)) matrix defined by

R(D) = G(D).HT (D)

=







r1,1(D) · · · r1,n−k(D)
... . . . ...

rk,1(D) · · · rk,n−k(D)







(14)

where the polynomials,ri,m(D), ∀i = 1, · · · , k and ∀m =
1, · · · , n− k, are such that

ri,m(D) =

k
∑

j=1

gi,j(D).fj,k+m(D) + gi,k+m(D).f1,1(D).

(15)
According to (9), the polynomialsri,m(D) are

ri,m(D) =
k

∑

j=1

k
∑

p=1

gi,j(D).gp,k+m(D).Cofp,j(D)

+
k

∑

p=1

gi,k+m(D).gp,1(D).Cofp,1(D)

. (16)

Thus, splittingri,m(D) into two polynomials leads to

r1i,m(D) =
k

∑

j=1

k
∑

p=1

gi,j(D).gp,k+m(D).Cofp,j(D) (17)

and

r2i,m(D) =

k
∑

p=1

gi,k+m(D).gp,1(D).Cofp,1(D) (18)

• Study of the polynomialr1i,m(D)

r1i,m(D) =

k
∑

p=1

k
∑

j=1

gi,j(D).Cofp,j(D).gp,k+m(D). (19)

For a fixed value ofp, the part
∑k

j=1 gi,j(D).Cofp,j(D)
corresponds to the determinant

det

























g1,1(D) · · · g1,k(D)
... . . . ...

gp−1,1(D) · · · gp−1,k(D)
gp+1,1(D) · · · gp+1,k(D)

... . . . ...
gk,1(D) · · · gk,k(D)
gi,1(D) · · · gi,k(D)

























. (20)

This determinant has two different values
• If p 6= i

k
∑

j=1

gi,j(D).Cofp,j(D) = 0 (21)

• If p = i

k
∑

j=1

gi,j(D).Cofp,j(D) = detL(D) (22)

By resuming (21) and (22), the polynomialr1i,m(D), (17), is
such that

r1i,m(D) =
k

∑

j=1

k
∑

p=1

gi,j(D).gp,k+m(D).Cofp,j(D)

= detL(D).gi,k+m(D)

. (23)

• Study of the polynomialr2i,m(D)

r2i,m(D) =

k
∑

p=1

gi,k+m(D).gp,1(D).Cofp,1(D)

= detL(D).gi,k+m(D)

. (24)

According to (23) and (24), the polynomialri,m(D), (16), is
such that

ri,m(D) = 0 ∀i,m (25)

Thus, the matrixR(D) is composed of zero polynomials.
Consequently, the matrix defined in (12),H(D), is a parity
check matrix of the encoder. In practice, it is usual to only
employ optimal convolutional encoders because their error
correction capabilities are the highest. In the blind recovery
context, the algebraic properties of these optimal convolutional
encoders can be judiciously exploited. In fact, this generates
strong properties on a generator matrix of an NRNSC or RSC
encoder. In this section, we proved that the generator polyno-
mials of the encoder RSC correspond to the polynomials of the
parity check matrix of its equivalent NRNSC encoder. Thus,
the parity check matrix, H(D), used to deduce the generator
matrix of an NRNSC encoder has also excellent properties for
blind identification methods.

IV. SIMULATION RESULTS

In [7], an iterative process dedicated to the blind identifi-
cation of a rate(n − 1)/n convolutional encoder in a noisy
environment is explained. The principle of this method is to
first identify the number of outputsn. Then, a basis of the
dual code can be estimated. And finally, the knowledge of
these parameters allows to identify a generator matrix. Letus
recall the principle of this algorithm.

The first step is to reshape columnwise the received data bit
stream under matrix form of size(M × l), denotedRl. This
matrix is computed for different values ofl (∀l = 1, · · · ,M/2)
and for each matrix the Gauss Jordan Elimination Trough
Pivoting is applied to obtain a lower triangular matrix noted
Gl

Al.Rl.Bl = Gl (26)

In (26),Al is an(M×M) rows permutation matrix andBl an
(l × l) matrix describing the columns combination. To detect
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the value ofn, the principle is to find matricesRl which
exhibit a degenerated rank. So, the gap between two matrices
Rl which have a dependent columns detected corresponds to
n. Then a dual code basis can be built from the matrixBl and
finally with (10) a linear system can be solved to estimate
a generator matrix. But, to obtain the generator matrix of
the encoder used at the transmitter, it is important to have
beforehand identified the parity check matrix in the same form
of (13).

Here, the relevance of the algebraic properties of convolu-
tional codes and dual codes in the blind identification methods
is studied. An example of aC(2, 1, 7) convolutional code
is taken. This encoder is used in many standards and it is
described by the generator matrix and the parity check matrix
such that

G = (133 171) andH = (171 133) (27)

where polynomials are represented in octal.
To analyse the impact of the true identification of parity

check matrix upon the global performances of the blind iden-
tification method, two probabilities were defined as follows:

• probability of identifying the true encoder (parameters
and generator matrix) denotedPdet− > encoder;

• probability of identifying the true parity check matrix
denotedPdet− > H.

Moreover, to evaluate the relevance of the probability of iden-
tifying the true encoder obtained, the different probabilities
of detection are compared to the code correction capability.
For that, let us denote byBERr the theoretical residual bit
error rate obtained after decoding of the corrupted data stream
with a hard decision, [2]. In [7], theBERr is considered as
acceptable if it is close to10−5, since after this limit, the
decoded data stream is not clean enough to meet requirements
of standard applications.

For theC(2, 1, 7) code, Fig. 1 shows the different proba-
bilities compared with the channel error probability, denoted
Pe, and the limit of the10−5 acceptableBERr. One should
note that our blind identification approach based on the dual
code properties of convolutional encoders is pertinent and
very impressive regarding to the probability of identifying
the true parity check matrix which is greater than0.95 for
a BERr < 10−5 corresponding toPe < 2.10−2, after only
one iteration of the iterative process. We can also note that,
even if the true parity check matrix is identified, the true
encoder can be misidentified, which is clearly visible in Fig. 1
where (Pdet− > encoder) is always lower than(Pdet− > H)
for a BERr > 10−5. Indeed, it is important to identify the
true parity check matrix in order to have the possibility to
estimate the true encoder. Moreover, an interesting aspectof
our approach is the robustness against misestimation ofn on
the dual code identification and therefore of the true parity
check matrix taking into account the properties of convolu-
tional codes. In this example, after having estimatedn and
H, admisiblek andK are tested regarding the properties of
convolutional codes and their dual codes. Ifn is misidentified
this can leads to a misidentification of the code, even if
the true parity check matrix has been well identified. But

this problem can be corrected during the iterative process to
improve the probability of identifying the true encoder. Indeed,
it is important to noted that the probabilities can be improved
by the iterative process of the blind identification method.For
example, after five iterations, (Pdet− > encoder) = 0.97.
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Figure 1. Probabilities of detection compared withPe

V. CONCLUSION

This study described some algebraic properties of con-
volutional encoders and those of their dual codes. It also
presented the relation between the NRNSC encoder and the
RSC equivalent encoder, and explained the relation between
these two generator matrices (RSC and NRNSC) and their
parity check matrix. Finally, an analysis of the impact of
these algebraic properties upon blind identification methods
of convolutional encoders is proposed. This study shows that
these algebraic properties are essential for the implementation
of blind identification methods.
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