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Algebraic method for blind recovery of punctured
convolutional encoders from an erroneous bitstrean

Mélanie Marazit* Roland Gautier® Gilles Burel?
'Universié Euroenne de Bretagne, France.
2Universié de Brest; CNRS, UMR 3192 Lab-STICC, ISSTB, 6 avenue Victor Le Gorgeu, CS 93837, 29238 Brest cedex 3, France

Abstract—To enhance the quality of transmissions, all digital cognitive radio device has the ability to dynamically select
communication systems use error-correcting codes. By introduc- their configuration parameters, on the transmitter side. Thus,
ing some redundancy in the informative binary data stream, they a cognitive transmitter is able to adapt the encoder to the

allow one to better withstand channel impairments. The design of ¢ . h | t of d H th
new coding schemes leads to a perpetual evolution of the digital ransmission channel, among a set of encoders. nere, the

communication systems and, thus, cognitive radio receivers have Problem of a self-reconfigurable cognitive receiver is treated.
to be designed. Such receivers will be able to blind estimate Such receivers will be able to blindly estimate the transmitter
the transmitter parameters. In this study, an algebraic method parameters simply from the knowledge of the received data.
dedicated to the blind identification of punctured convolutional In this paper, the blind identification problem of error-

encoders is presented. The blind identification of such encoders is i d . idered f it di .
of great interest, because convolutional encoders are embedded inCorrecting codes Is considered for cognitive radio recever

most digital transmission systems where the puncturing principle design. Here, among the error-correcting codes, the blind
is used to increase the code rate in order to reduce the loss of therecovery of convolutional encoders is dealt with. In a noisy
information data rate due to the redundancy introduced by the environment, the first approach to identify the parameters of

encoder. After a brief recall of the principle of puncturing codes 5 qqe js related in [2]. At the same time, methods to recover
and the construction of the equivalent punctured code, a new

method dedicated to the blind identification of both the mother @ block code are developed in [3], [4] whereas [5] deals
code and the puncturing pattern is developed when the received With to the blind identification of linear scramble. In [6], an

bits are erroneous. Finally, case-studies are presented to illustrate iterative algorithm dedicated to the blind identification of a rate

the performances of our blind identification method. (n —1)/n convolutional encoder is presented. In [7], [8], the
authors are interested in the identification of the interleaver of
|. INTRODUCTION a turbo-code. An algorithm to decide if the sequence is coded

Y a linear code is presented in [9].

él'he redundancy introduced by a convolutional encoder pro-

are used for enhancement of the communication quality. The ) ) < ; X
codes introduced some redundancy in the informative bina‘iis ces a decrease in the transmission rate. A simple technique,
lled puncturing, allows an increase in the code rate. It

data stream to better withstand channel impairments. In t ) ¢ deleti bols f ded d. Thi
paper the problem of the blind identification of error correctin on3|§ts ot de eting some Symbols from an encoded word. This
chnique is usually used in digital communication systems. In

codes is treated. This problem has for a long time be . ) i hen th ved bit
reserved for military applications such as passive listening. fyotsy environmen .("e when the received bits are erroneous),
paper deals with the blind identification of the punc-

such a context, the adversary has only access to the interce ll]é% . :
noise bits stream with no knowledge of the parameters of t ed convolutional encoder. The first approaches developed

code. Therefore, these parameters must be blindly estimatg"€cover the punctured code in a noiseless context were

Such methods are also used in cryptanalysis systems. In H posed in [1.0.]’ [11]. The new method presenteq in [12]_deals
th the specific case of a rate/n mother code in a noisy

context, the objective is to recover the original message. BN . . : :

many methods are based on the hypothesis that they h ngqnment. He'rt.e, this paper describes a new |terat|ve; method

access to a decoded message. So, to obtain this decodé lind re_cognmon of a ra_tdc/ " p“?‘?t“r.e d convolutional

message it is necessary to know the encoder. Moreover, in [1f, €. In this context, the _b“n.d |de_n_t|f|c_at|on of a punctured

the author proposed a library which allows a good securi de corresponc_is to the blind identification of the mother code

level for peer to peer data transmission using convolution r|1d t.he punctgrmg patFern. i

codes punctured (or not) with controlled additive noise. 1 NiS paper is organized as follows. In Sect. I, the prin-
Currently, with the aim of enhancing the quality of transmisSiPlé Of punctured convolutional encoders is explained. The

sion, new coding schemes are constantly being developed.dﬁ‘FC”pt'on_Of the blind r.ecognmon of this punctured codg is

such a context, it is more and more difficult for users to follog€veloped in Sect. ll. Finally, the performances of the blind

all the changes to stay up-to-date and also to have an electrdfigntification method are @scussed in Sect. IV. Conclusions

communication device which is always compatible with eve@d Prospects are drawn in Sect. V.

standard in use all around the world. Consequently, it becomes

necessary to design cognitive receivers. In literature a lot of [I. PUNCTURED CONVOLUTIONAL CODE

works deal with the domain of cognitive radio. Generally, a

In most digital transmission systems, error-correcting codB

The concept of punctured convolutional code was intro-
Email: {melanie.marazin, roland.gautier, gilles.by@luniv-brest.fr duced by Cain [13] in 1979. Such a high-rate code is obtained



through a periodic elimination of specific code symbols at tiC. Equivalent punctured code

output of a low-rate encoder.. One should note that it dependsAS shown in [17], the equivalent punctured convolutional

23%2!2:;?53&%?12 ;P?r:elséur:;ﬂ?r:gcgsgb%rllsd _?_L:%tgttte%%coder can be described by a simple convolutional encoder,
: _ . KV thi val ) f.

of punctured symbols is called the puncturing pattern of ttéep(np’kp’ p); this equivalent punctured code is defined by

L : X ; generator matrix, (D), of size (k, x n,). This code is
puncturgd codeZ and it is described in matrix form called ﬂbequivalent to the mother code and the puncturing pattern,
puncturing matrix and denoted &%

C(n,k, K) and P respectively. A high-rate equivalent punc-

, i tured code can be built from an original rate convolutional

A. General notations of convolutional encoders code through the simple process detailed hereafter. Bat pri
The mathematical notions of convolutional encoders agg obtaining this equivalent punctured encodgy(n,,, k,, K,,)

briefly recalled. A convolutional encoder, denot€th, k, K), code, it is worth recalling some definitions necessary to

is described by three parametersis the number of outputs, understand the constructing of this punctured code; mereov

k is the number of inputs, and& is the constraint length. additional information is available in [15], [18].

The (k x n) polynomial generator matrix of the convolutional Definition 1: If a(D) = ag+ a1.D 4+ a.D* + --- is a
encoder, denoted (D), is defined by polynomial in the indeterminate D, then for any integefr >
g11(D) - gia(D) 1., the Mth polyphase decompo;ition of D) is the list of
G(D) = ) ) 1) (i, M )th polyphase componentsi(= 0, --- ,M — 1). Let us
a : : denote byg;(D) the (i, M)th polyphase component ef D)
ge1(D) -+ grn(D) such that
whereg, ;(D), Vi = 1,--- ,k, Vj = 1,--- ,n, are generator (D) = D™"Mapy  (DVM), (5)
polynomials andD represents the delay operator. The encod-
ing process can be described by where[i],, (with i and M are integers) is the congruence class
of i (moduloM), that is the set of integers of the fram- .M
(D) = m(D).G(D) @) fori=—oo,- - ,—1,0,1,--- ,+o0. Finally, leta;,, (D") be

where m(D) is the input sequence andD) is the output the polynomial issued from(D) by selecting only thei]a,

sequence. For more details of the convolutional encodéggree terms and then substitutiny for D.

see [14], [15], [16]. Example 2: For illustration, let us consider the generator
polynomial a(D)

B. Puncturing principle

The principle of a convolutional encoder is to produce
output bits fork input bits. On condition that both transmitFor A/ = 3, the congruence class ofimodulo M) is
M k-bits information words and receivi&/ n-bits codewords
at the output one would pass from¥n, k, K) code, called i l [i]3
the mother code, to thé/th blocking code ofC', denoted as 0(0,1,2 1] 0,3,6
CMI(M.n, M.k, K), which is equivalent ta”. The punctur- 1] 0,1 1,4
ing process consists of deleting a few bits from the codewvord 2| 0,1 2,5
through use of the puncturing matriR), whichis an(n x M) The polynomiala(D'/M) is defined by
binary matrix with a total ofN ones andn.M — N) zeros
where ones correspond to the transmitted bits and zerosat®/™) = ag+as(D?/?)+as(D3)+as(DY3)+as(D5/3)
the deleted ones. Application of this puncturing pattertht® (7
CMI(M.n, M.k, K) code leads to th€,(n,, k,, K,) code, and the polyphase componentfD) is
called theequivalent punctured codevheren, = N and o/ 1/3
k, = k.M. This is exemplified hereafter. 90(D) = D™ .ap), (D7)

Example 1: Let us consider the encoder for th&2, 1, K) = ag + as(D*®) + ag(D3) =1+ D + D?
convolutional encoder. The coding and puncturing processe a(D) = D_1/3_a[1]3(D1/3)
can be represented as follows

a(D) =1+ D*+ D? + D* + D° (6)

_ n-1/3 1/3 4/3y) _ (8)
(4d9d:)-(4434 ) =D (@(DY?) +ay (D)) = D
G IC IC B & c ¢2(D) = D~*Pay, (D'/?)
. . . ©) —2/3 2/3 5/3

where ¢’ is the bit of the outputy, encoded at the time, =D (az(D ) +as(D )) =1
Using the puncturing pattern given in (4) -
p= G 1) (4)  Definiion 2. Let a(D) = ag + a1.D + az.D? +
0 be a polynomial in the indeterminateD and

leads to a new encoder of ratg = k,/n, wherek, = k.M = (qo(D),q:1(D),--- ,qu—1(D)) be the Mth polyphase de-
2 andn, = N = 3. composition ofa(D). The Mth polycyclic pseudocirculant
B matrix (or PCPC for short) associated with( D) is then the



(M x M) polynomial matrix,Q™!(D), such that

q0(D) q1(D) qu-1(D)
OMI(D) = D-‘]M:—I(D) QO(.D) (IM—.2(D)
D~Q1.(D) D~‘]2.(D) 9 (.D)
)

Example 3: With the previous example 2, the third PCPC

associated withu(D) is such that

1+D+ D? D 1
QP(D) = D 14+ D+ D? D
D? D 1+ D+ D?

to Definition 2, these matrices are written as follows

2 |[1+D 0 2 |1+D 1
L1~ [ 0 1+p] @ @:2=| p q4p
(15)
So, the generator matrix of th&[?! code (see Theorem 1) is
such that
G[Q](D)[1+D 1+D 0 1 }

0 D 1+D 14D (16)

]

Definition 3: On condition thatG(D) is a (k x n) polyno-
mial matrix and thatP is an (n x M) binary matrix, then the
n.M columns of the matrixG!*](D), are in natural one-to-
one correspondence with the)M entries ofP, and the matrix,
G,(D), is the matrix issued fror!M]( D) after deletion of the

Theorem1: If C'is an (n, k) convolutional code, then the columns corresponding t& entries. The code defined by the

Mth blocking code o, denoted byC™!, is an (n.M, k. M)
convolutional code. IfG(D) (1) is a (k x n) polynomial

generator matrix,GG,(D), is called theP-punctured version
of C.

generator matrix for the original cod€’, then a generator | gt 4 be a bijection such that

matrix for CIM!, say GIM](D), can be obtained fron@(D)

by substituting the correspondinyth PCPC for each entry
9i,;(D) from G(D), and then interleaving the columns andry 4ssociate theP(i, /)

lines at depth)/.

(1,4) = o(i,) =i+ n.(j 1) 7

coefficient with the¢(i, j) column
of GIMI(D) let us deleteG!"!(D) columns according td®

Example 4: To illustrate the principle of the interleaving cqefficients: it leads to the equivalent punctured convoa

process, let us consider the matrix

1,1
a1
as,1
Q4.1

a2
ag 2
ag 2
aq.2

1,3
@23
as,s
4.3

a1.4
ag 4
as.4
aq.4

(11)

code matrix,G, (D).
Example 6: Further to the calculation of the matrix,
G(D), in example 5, let us assume that

(1Y)

(18)

After interleaving the columns at depth 2, the matrix okedin The coefficient,P(2,2), is equal to zero and corresponds to

is such that

ai,1
@21
a3 1
Q4.1

a3
az 3
as,s
4.3

ai,2
2.2
as,2
Q4.2

Qi 4
ag.4
az 4
Qaq.4

(12)

and after interleaving the lines at depth 2, the matrix is

a1 ai3 ai12 air4
azi1 ass3 az2 as4
A= : : : (13)
a21 0a23 22 24
A41 Q4,3 Q42 0A4.4
|

From the previous definitions, one can build thé"! code,

the third column ofG?/(D). Deleting this column leads to
the generator matrix of the equivalent punctured code:

1+D 1+D 1
GP(D)_( 0 D 1—|—D)

The equivalent punctured code raterig = 2/3 and the
constraint length ig<, = 2.

19)

IIl. BLIND RECOVERY OF A PUNCTURED CONVOLUTIONAL
CODE

This part deals with the blind identification of the punctlire
code in a noisy environment. For that, the puncturing ppiteci
is summarized in Fig. 1.

which has the same properties as the mother code. Its generato

matrix, GIM(D), is composed of(k.M x n.M) generator
polynomials.

Example 5: As illustration, let us consider th€'(2,1, 3)
mother code. The generator matrix of this codeG§D) =
[1+ D? 14 D+ D?]. According to Definition 1, thel/th
polyphase components ¢f 1 (D) andg; 2(D) for M = 2 are

{ 91.1(D) => (qo(D),q1(D)) = (1+ D,0)
g12(D) => (qo(D),q1 (D)) = (1+ D, 1)

Let us denote b@[f]l, the 2nd PCPC associated with; (D)
and byQ', the2th PCPC associated with »(D). According

(14)

Mother code
C(n, k, K)

Puncturing pattern
P =

Equivalent punctured code
Cp(np, ky, Kp)

Fig. 1. Puncturing principle

In this paper, the method dedicated to the blind identificati
of punctured convolutional encoder consists of identiyin
both the mother code and the puncturing pattern from the only
knowledge of the equivalent punctured encoder.

In literature, few methods deal with the identification of
punctured convolutional encoders and most of them [19],
[20] allow the identification of the equivalent punctureddeo



Cp(nyp, kp, Kp) and not both the mother code and the punctult follows that the (4, j)th generator polynomialg; ;(D), is
ing pattern. But the decoding of the received sequence girolexpressed by

use of this equivalent punctured code is not optimal. Indeed v

the cost of the Viterbi decoding algorithm is proportional t . B(m,)—M M 1

the code rate. The objective is now to identify both the mlotheg”(D) N g_:l b Bigin (D7) V=100, M
code and the puncturing pattern simply from the knowledge a (23)

of the equivalent punctured encoder. Example 7: Let us consider again the example of the

A first approach to recover a mother code and puncturir@(2, 1, 3) code forM = 2. The Mth PCPC was given in (15).
pattern was reported in [10], [11]. In these papers, amoite matrix,3, for M = 2 is such that
the numerous hypotheses made, the authors assumed that the
. 2 3
mother code rate was only equal t@2, and the puncturing B = < > (24)
pattern was such that 1 2

According to (23), forl = 1 and! = 2, the (4, j)th generator
P = <1 e 1 1) (20) polynomial is given by

o --- 0 1

_ , 9i;(D) = DPOD=2., 5 (D?) + DPED=2.¢g, 5 (D?)
The approach reported in [12] dealt with th(_a case of argfe 9i5(D) = Dﬁ(1>2>*2.qi,j(1,2) (D?) + Dﬁ(2,2)72‘qi_’j(2yz) (D?)
mother code. The method proposed here is aimed at identify- (25)
ing both the mother code and the puncturing pattern in aMperefore, the generator polynomigl (D), for [ = 1 and
case on the one condition that the equivalent punctured con= 2 is
volutional codeCy(ny, ky, K)p), is known. As this equivalent | ; _ ;.
encoder can be described by a simple convolutional encoder,
it can be estimated by the methods dedicated to the blind 91,1(D) = D°.(1+ D?) + D71.(0) = 1 + D? (26)
identification of a convolutional encoder. Thereafter, wid w Vo
assume that the equivalent encoder has been identifiedeIn th” * —
literature, some methods are available for blind identifica g11(D)=D"(0)+D°.(1+D?* =1+D* (27)
in a noisy environment. For example, in the case of a rate )
1/2 convolutional encoder, a method was proposed in [21]. Apdg12(D) is:
nearly the same time, an algorithm was developed in [22] toe | = 1:
iden_tify a ratel /n Convoluti(_)nal encoder. In [6], we prop(_)sed 12(D)=D°.(1+D?) + DL (D) =1+ D+ D* (28)
an iterative method of blind recovery for a convolutional =
encoder of ratédn — 1)/n. o [ =2

g12(D) =D".(D*)+D°.(1+ D*) =1+ D+ D* (29)

A. Blind identification of punctured convolutional codeirpr ]

ciple Thus, from (23) one can identify the generator polynomial

Assuming that the equivalent punctured convolutional e;\r_om a single column of its\/th PCPC.

coder is identified, the aim is now to get the mother code and
the puncturing matrix from the knowledge of the equivalerd, Blind identification of a punctured convolutional code:
punctured convolutional encoder matri¥,, (D), alone. procedure

It was shown in [17], how to get the generator matrix from

. . In this part, the procedure to estimate the mother code and
the generator of an equivalent punctured encoder. Let us wr, .
i the puncturing pattern from the knowledge of the punctured
the matrix, 3, so that

code alone is explained. For that, a brief recall of the link

M M41 - M+ (M-1) between the generator matrix of the mother céde) and

M-1 M - M+ (M-2 its equivalent punctured cod&,(D) is presented.
B= _ _ _ _ (21) Let us denote byw’(D) a matrix obtained fronG(D) by

: : r : replacing each entry; ;(D) from G(D) with the correspond-
1 2 M ing Mth PCPC so that

From (9) let us rewrite theMth PCPC of the(i,)th QM) QM) - QM(D)

generator polynomial so that G'(D) = : : : (30)
[M] [(M] . oM

Giso (D) Gijun(D) o i (D) Qi (D) Qo (D) ko (D)

M= : : The matrix of theMth blocking code ofC, GIM(D), is
Gigery (D) Gijoun (D) 0 i (D) obtained fromG’(D) by interleaving the columns and rows

(22) at depth M. Finally, the matrix,G,(D) is obtained from



GM1(D) by deleting the columns that correspond to P entriesa|gorithm 1: Blind identification ofG(D) and P
This matrix is such that

Input: The generator matrixs, (D) and M

Ipay (D) Gp,, (D) Output: The generator matri/(D) and P
Gp(D) = (31) C::p(D) = Gp(D);
(D) - (D P=[]GD)=[]j=0
Ip(hy, )( ) gp(k,,,np)( ) while ép(D) £ o do
where g, (D) is the (i, j)th generator polynomial of P =[]
Gp(D),Vi=1,--- ky andV¥j =1,--- ,n,. =1,
This method is proposed for a rat¢n mother code at first, while [ < M + 1 do
and then for a raté/n mother code. ¢ (D) = 2%:1 Dﬂ(m,l)fM,gp(mJ)(DM);
1) Case of a ratd /n mother code:In the case of a rate/n if ¢'(D) is a polynomial generatothen
mother code, the high-rate codefks/n, with k, = k.M = Build the Ath PCPC associated of
M. q'(D) => Q™(D);
Let us, now, assume that the parameters of the equivalent for i=1to M do
punctured code(,(n,, k,, K,), and the generator matrix, if theith column of
G,(D), were all identified. Under this condition the matrix QM(D) € Gy(D) then
given in (30) is such that: P =[P 1];
This column is deleted from
¢ =[eMD) QM) - QM) 2 GolD)
' else
According to (31), each column @, (D) is associated with | Pr=[P" (]
only one column of aMth PCPC. According to (23), we end
showed that the generator polynomial can be identified from end
only one column of its PCPC. I=M+1;
Our method of blind identification of a punctured code is else; 4
summed up in Algo. 1. A e‘nd =0
In this algorithm, let us denote bg,(D) the 'generator end
matrix of the equivalent punctured code so thay;(D) = =it
Gp(D). Then let us take a first column @F,(D) in order A_(D') _ ,’(D)'
to build its generator polynomial (23), denoted §yD) and %_ [P~ I(__I,,]_ '
such that end o
M TAE = j;
¢(D)=">_ DImO=M g (DM), Vi=1,---,m, G(D) ={9;(D)}yj1,.. a0
m=1

(33)
where! lies within 1 andM. Let us, at first, apply (33) for
I =1 and see whether the result gives a generator polynomighg the puncturing pattern fael = 3 is such that
If it is not the case, the value of (VI = 1,---, M) is
incremented to use (33) again. Once one generator polyhomia 1 0 1
¢'(D), has been identified, itd/th PCPC,Q'™1(D) is built. P=10 1 0
Then, fori between 1 and/, theith column of Q'™ (D) is 01 0
compared with(,(D) columns. Therefore, if théth column _ . o .
of Q'™](D) corresponds to a column @t,(D), this column According to the previous definitions, the generator matfix
is deleted, and the puncturing pattern is built by assawatithe C;(4,3,3) equivalent punctured code is
a 1 bit. In the reverse case, a 0 bit is associated to build the

(39)

puncturing pattern. This algorithm given in Algo. 1 is ited 760 4
till there is no column inG, (D). Gp=12 5 7 4 (36)
Let us respectively denote by (D) (Vj = 1,--- ,n,) the 2237

generator polynomials, bé}(D) the generator matrix of the

h q d b the identified i h The aim is now to identify the mother code and the puncturing
”:Ot ?LCO ean hf)t e identifie plIJnctur!nlg pa?ttirn. Atth erpattern with this equivalent punctured code through useuof o
algorithm output, the generator polynomials of the motheryqihm (Algo. 1). ForM = 3, the matrix,3, is such that
code and the puncturing pattedn, of size(n x M) composed

of n, ones are identified. 3
[z 1) @
1

Example 8: As illustration of this blind recognition, let us
G= (171 165 133), (34) Let us setG,(D) = G,(D) and take into account the first

[\CRNOURNTEN
L = Ut

consider theC'(3,1,7) mother code. The generator matrix of
this code is



column opr(D). Application of (33) fori = 1 leads to Thus, the second generator polynomial and the puncturing
pattern are such that

M
q/(D) = ZDﬁ(m’l)iM'gP(m,n(DM)a Vi e {17"' 7M} QQ(D) = 1—|—D+D2+D4—|—D6
m=1 A
(38) 92 = 165 (49)
. - 1 0 1
o First step: P = <0 1 0)
By using the first column otflp(D) (36) and (38), one gets
fori=1 o Third step:
¢(D)=D"(1+D*+ D% + D '.(D? + D 2.(D?) Using the newd,(D) expressed in (48) together with (38)
—1+D+ D%+ D3+ Db leads, forl =1, to
(39 ¢ (D)=D°.(0)+ D '.(1+ D*+ D% + D2.(D? + DY)

The PCPC associated (D) is such that =D '4+14+D+D*+D*+D°

1+ D+ D? 1 1 (50)

QPl(D) = D 1+ D+ D? 1 ) Once againg’(D) is not a polynomial generator.
D D 1+D+D 40) By taking ! = 2, one gets
As columns 1 and 3 of)’Bl(D) correspond to columns 1 and ¢ (D) = D*.(0) + D°.(1+ D* + D°®) + D~ .(D? + DY)
4 of G,,(D), the pun_cturing pattern and the néwy (D) matrix — 14+ D2+ D¥+ D5+ DS
obtained after deletion of columns 1 and 4 are, thus, sudh tha (51)
!
P= (1 0 1) (41) which is a polynomial generator. The PCPC associated to

) 1+D 0 ¢'(D) is such that
G,(D) = |1+ D? 1+D+£)2 (42) 14D+ D? 0 14D
D D+ D QB D)=| D+D? 1+D+D? 0
It follows that the first generator polynomial and the punctu 0 D + D? 1+ D+ D?
ing pattern are such that " (52
As column 2 ofQ"13/(D) corresponds to column 1 &f, (D),
o _ 2 3 6 N P
?1<D) —1+ D+ D"+ D+ D the resulting puncturing pattern an@d,(D) matrix are as
g1 =171 “3) follows
P=(1 0 1
( ) P'=(0 1 0) (53)
« Second step:
For [ = 1, using the new(, (D) matrix expressed in (42) G,(D) =@ (54)

together with (38) leads to
¢(D)=D".(1+D* +D .1+ D% + D 2(D?
=D '+14+D+D*+D°

The third generator polynomial and the puncturing patteen a
(44) therefore, such that

G3(D) =1+ D?+ D3+ D5+ DS

In this caseg’(D) is not a polynomial generator. g3 = 133
So, on condition that = 2 is taken, one gets 1 01 (55)
(D) = D'.(1+ D% + D°.(1+ D% + D~1.(D? p={0 10
¢(D)= DL+ D%+ D1+ DY) + DTLDY) o

=1+ D+ D?>+ D*+ D

which is a polynomial generator. The PCPC associated t
¢'(D) is such that

0At the end of the three steps, one obtains

n =3, (56)
1+D? 1+D 1 R
QPN(D) = D 1+D?> 14D (46) G= (171 165 133) (57)
D+D* D 1+D?
and
Column 2 of Q'®/(D) corresponds to column 1 af, (D). A 101
Thus, the puncturing pattern and the néiq;(D) matrix are P=10 1 0 (58)
such that 010
/
P= (0 1 0) (47) It is worth noting that the estimated parameters correspond
0 to the parameters of the mother code (34) and puncturing
Gp(D)= |1+ D + D? (48) pattern (35).
D + D? u




2) Case of a ratek/n mother code:In the case of arate o k=1andM =4

k/n mother COde, the first Step of theAbhnd igentiﬁcation iﬂunning the a|gorithm given in A|go 1 gives the f0||owing
the f|nd|ng of both the number of inputB, and M value. As C’(37 1’ 6) mother code for the generator matrix

kp = k.M (59) G=(72 62 53) (65)

k, is known. All possible(k, M) pairs have, thus, to be testedgq the puncturing pattern is
But ask and M are integers, the number of possible pairs

is small. Moreover, the number of inputs of a convolutional R
encoder is very small, in practide< 5. Thus, it is possible to P =
limit the number of possible pairs by fixing a maximum value

of k (€.9.kmas = 5). Then, the algorithm given in Algo. 1iS g\t according to the properties of an optimal convolutional

applied to eactik, M) pair. encoder [14], the convolutional encoder described by the
In the case of a raté/n mother code, each column of .gtimated generator matrix is not optimal.

Gp(l?) was associated with only one generator poly_nomlal. Let us now consider the case where:

But, in the general case, each column®f(D) is associated i —9and Al — 2

with k& generator polynomials and, thus, the line at depth, * M - o

of G,(D) matrix has to be deinterleaved. Let us denote Nd denote by, the matrix issued frontz, (63) once the
G' (D) the matrix issued froni,,(D) by interleaving the rows ows at depth 2 have been deinterleaved

O O =
== O
o O O

0
1 (66)
1

at M depth 321 00
Ipy (D)o g;’umm (D) G, = é g g (2) ; (67)

Gl (D) = : : (60) 1013 3
gémpm (D) - gf/”(kpmm (D) According to (61), the two matrice&;, andG?, are as follows

and by G7(D), k sub-matrices of siz§ M xn,) (Vj = 329 1.0 0

1,---,k) such that G = 100 2 1
G s D) (D) G2 - 03 30 2 (68)

Gé(D) _ 1 01 3 3
9;/7(_7»_1\4,1)(D) gz/)u_M,np)(D) Running the algorithm given in Algo. 1 foG; leads to 3

(61) polynomial generators, denoted By ; (Vj = 1,---,3) and

Application of our algorithm given in Algo. 1 t6:4(D) leads to the following puncturing pattern
to n generator polynomials, for each sub-matrix, and to an

M x 7)) puncturing pattern. Once thek x n) generator
polynomials are obtained, one needs to check that the iden- 1
tified % puncturing patterns are identical. At the algorithm P=11
output, one gets both the mother code generator matrix and 1
the puncturing pattern.

Example 9: For illustration, let us consider the(3,2,3) and for G} to the 3 polynomial generatorsp ; (Vj =

(G11,01,2,91,3) = (7,4,1)

(69)

=)

mother code. Puncturing at depif = 2 so that 1,---,3), and to the puncturing pattern
10 (92,1, 92,2, 92,3) = (2,5,7)
P=[1 1 (62)
11 . 10 (70)
. . P=11 1
leads to the following equivalent punctured code 11
32100 . . . .
03 3 0 2 It is worth noting that the estimated puncturing patterres ar
Gy = (63) a like. The generator matrix of th€(3,2,3) mother code is
1 0 0 2 1 . . o .
1 01 3 3 built through use of the identified generator polynomials
. A 7T 4 1
Its rate isr, = 4/5. G = (2 5 7) (71)

As the first step of our blind identification technique is the
estimation of every possible pafk, M), let us consider the According to the properties of a convolutional encoders thi
case wheré;, = 4. It leads to generator matrix describes an optimal convolutional eacod
(l% ) Moreover, the identified parameters correspond to the param
(i

ZVA = (1,4) (64) eters of the mother code and puncturing pattern.
M) = (2,2) m



IV. ANALYSIS AND PERFORMANCES PUNCTURED CODE  whereP,. (i) is the probability of detecting the true encoder at

On condition that the equivalent punctured convolution&f€th iteration. The probability of detecting the true encoder
code is known, the method proposed in this paper is dedicated: i called probability of detection.
to the blind identification of both the mother code and the Figs. 2 and 3 depicty.; againstr, for 1, 10, 40 and 50
puncturing pattern for any case (ratg/n,). In this section, iterations forC;(5,4,2) andCy(3,2,4) equivalent punctured
in order to analyse our blind identification method (whicl§onvolutional encoders, respectively. With both equivgle
includes the identification of the equivalent puncturedesodPunctured encoders, 40 iterations permitted us to idettiéy
the mother code and the puncturing pattern), the rate e mother code and the puncturing pattern. Table Il shows
the equivalent punctured code is assumed to be equalﬂﬂ@t the gain between the 40th and the 50th iterations isynearl
(np,—1)/n,. Since, the blind identification of the convolutionanull- It is worth noting that, to identify the true mother @d
encoder of rate K/n) is still under study. However, it is @hd puncturing pattern, the punctured convolutional eerd
very important to note that the method dedicated to tgquire more iterations than the convolutional encoder (40
blind identification of the punctured code works in any cadierations against 10).
(rate k,/n,) on condition that the equivalent code has been

identified. Therefore, the iterative method proposed incgi} 1 N T
be used to identify the equivalent punctured code of rate 5 N N
(n, — 1)/n,. This analysis of the performances is proposed 3 08y
for two punctured convolutional encoders given in Table I. kol 06 : S\
o 06 ey
TABLE | =
PUNCTURED CONVOLUTIONAL ENCODERS E 0.4}
S — — - lteration 1 o
Mother code Punctured code o + = = lteration 10 \ N
Ck,K) | M P | Cyplug.bp, Kp) & 0.21) = = = lteration 40 SN
Iteration 50 '
Cc(2,1,7) || 2 G é) Cp(3,2,4) 0 : : : DT~
1 0 0 0.002 0.004 0.006 0.008 0.01
C(3,2,3) 2 (1 1) Cyp(5,4,2) Channel error probability
11

Fig. 2. Cp(5,4,2) probability of detection againg®.
The method of blind identification of a punctured encoder

is divided into two parts:

1. Identification of the equivalent punctured co@égorithm ! RS
presented in [6] for a ratén, — 1)/n, of convolutional S o8l . ‘o
encoder; I Y
2. ldentification of the mother code and puncturing pattern: 3 06 o \
algorithm presented in Algo. 1. E
For more details of the simulation parameters see [6]. = 04 .
Moreover, this paper [6] shows that 20 000 received bits are ‘.g T :E:g:g: io §
a relevant and sufficient number to achieve a high probwgbilit T 02} m = mitorationd0| SN
of detecting the true encoder. lteration 50 |* '~ "
For each simulation, 1000 Monte Carlos were run. To 0 = = ]

0 0.005 0.01 0.015 0.02 0.025 0.0c

analyze the performances of the method dedicated to the blin "
Channel error probability

identification of punctured codes, here, focus is on: i) the
impact of the number of iterations upon the probability ofjg. 3.
detection and ii) the global performances in terms of prdbab

ity of detection. One should note that, here, the probgbilft
detection includes the complete identification of the pured
encoders, that is, the mother codes and the puncturingpatte

Cp(3,2,4) probability of detection againgt.

TABLE I
Cp(5,4,2) AND Cp(3,2,4) DETECTION GAIN

, ) ) . P. 0.004 [ 0.007 | 0.009

A. Detection gain produced by the iterative process Cp(5,4,2): Ai10 | 30% | 280% | 365%
. . . . 0, 0, 0,

In [6], an iterative process was proposed to increase the CP(5’4’;)' AL—50 zoo/; ;ggfs 90082/"
detectlorj performances in the case of a r(afe— 1)/n OB A N i | 49% | 324% | 548%

convolutional encoder. Here, to evaluate the impact of the Cp(3,2,4) M50 | 49% | 436% | 1394%

same iterative process in the case of the punctured code, let

us denote by, the gain (expressed in percent) between the performances obtained for the punctured codes are

the zth iteration and theth such that similar to those obtained for thie.—1)/n convolutional codes

\ _ Paet(y) — Paet() presented in [6]. Indeed, it is clear that the algorithm per-
Y Pyt () formances are enhanced by iterations. Moreover, the number

(72)



of iterations needed to obtain the best performance is code- I
dependent: indeed, a punctured code requires more itasatio osls 1
than a convolutional code. In fact, the steps in the algorith V!  BER>10°
of identification of punctured codes are also more numerous. & og}&1---:- ...
An equivalent punctured code is identified first, prior to the % D
identification of the mother code and puncturing pattern. S 04 Paet
o e Pfa
- . 0.2} p
B. Probability of detection - —='m _
Three probabilities were defined in order to analyze the oH —I — - AcceptableBERl o T . . -

algorithm performances 0 0002 0004 0006 0008 001
1. The probability of identifying the true encoder denoted Channel error probability
Py (Probability of detection).
2. The probability of identifying an optimal encoder but nofig- 4. C»(5,4,2): Probabilities
the true one denoteft;, (Probability of false-alarm).

3. The probability of identifying no optimal encoder de- !
noted P,,, (Probability of miss). 0sl?

In such a context, the true encoder represents the true mothe
code and the true puncturing pattern. £ 056

To evaluate the result of the blind identification method, a 9
comparison between the detection probabilities and the cod S 0.4
correction capability was proposed in [6]. Let us denote by &
BER, the theoretical residual bit error rate obtained after 0.2 e
decoding of the corrupted data stream with a hard deci- — — - Acceptable BER
sion, [14]. Here, theBE R, is considered as acceptable if it is 0 —1

0 0.005 0.01 0.015 0.02 0.025 0.0¢

close t010~°. Indeed, after this limit ofBER,., the decoded Channel error probability

message is not correctly corrected for a civil application.

practice, this encoder will not be used for a channel errefy. 5. ¢, (3,2,4): Probabilities

probability corresponding to this post-decoding bit emate.

Consequently, it is not necessary to identify the encodesnwh

BER, > 1075. good. Moreover, the probability to detect the true mother
Figs. 4 and 5 present the different probabilities agaiist code and true puncturing pattern proved to be close to 1

after 40 iterations, as well as the limit of thé—> acceptable for a channel error probability that generates a post-dagod

BER, for C,(5,4,2) and C,(3,2,4) equivalent punctured BER, less thanl0~°. In a cooperative context, the residual

convolutional encoders, respectively. As previouslyhia tase bit error rate obtained after decoding can be considered as

of convolutional encoders, the probability of identifyiige acceptable if it is close ta0~°.

true encoder is close to 1 for an§. with a post-decoding Our future work will be to extend the method described

BER, value less thari0—°. With both punctured encoders,in [6], dedicated to the blind identification of convolutein

the algorithm also gives excellent resulf3;,; close to 1 with encoders of rat¢n — 1)/n, to the case of raté/n. Thus, it

a P, corresponding toBER, < 6 x 107* (P. < 0.008) will be possible to raise the hypothesis made in the analysis

for C,(5,4,2) punctured convolutional encoder aR? R, < of the detection performances (see Sect. IV). In this cdee, t

1x10~* (P, < 0.015) for the C,(3,2,4) one. Moreover, for a analysis of the global performances of our blind identifarat

punctured code the probability of detecting an optimal eieco Of & punctured code method will be proposed for any case rate

but not the true one is very small. Indeed, f6f,(5,4,2) Of equivalent punctured codes.

punctured convolutional encoder, this probabiliy,, is zero.
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