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Standard Kramers theory of chemical reactions involve a coupling
with a Langevin thermal bath which intrinsically forbids the pos-
sible existence of Discrete Breathers (i.e. local modes). However,
it is now known that in complex systems, that energy may focus
for long time as Discrete Breathers (local mode). In very special
systems, Targeted Energy Transfer may occur subsequently to an-
other selected site and induce an ultraselective chemical reaction
operating at low temperature. The dynamics of the reaction is non
brownian but highly coherent along a specific path in the phase
space where the system is nearly integrable (chemical expressway).
A simple toy model illustrating this idea is reduced to a rotor
weakly coupled to a Morse oscillator (supposed to represent two
specific local modes in a complex system) which are appropriately
tuned for Targeted Energy Transfer. When the nonlinearities of
the two oscillators are appropriately tuned one with each other,
and when the rotor is initially rotating with a frequency resonant
with those of the Morse oscillator at rest, the energy of the rotor is
almost completely transferred to the Morse oscillator and induces
chemical dissociation. The periodic oscillations of the rotor and
Morse oscillator remain coherent and their frequencies simultane-
ously vary, but always remain resonant.
This process is analytically described within an integrable approxi-
mation. Numerical investigations of this model confirm that in the
appropriate conditions, the particle in the Morse oscillator is in-
deed promptly ejected at infinity with a finite velocity (chemical
dissociation) despite some chaotic transient manifesting imperfect
integrability.
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1 Introduction

In his famous pioneering work [1,2] published in 1940, Hendrik Kramers un-
derstood ordinary chemical reactions, as the climbing of an energy barrier
between two energy wells in a large configuration space where the first well
represents the state of the reactant molecules and the second well those of the
product molecules. In standard theories, chemical reactions are still essentially
governed by a thermal (Brownian) motion in a potential. This space is defined
by the reaction coordinates which describe the microscopic configuration of
the reacting system. Many detailed investigations have been performed during
the last decades for specific chemical reactions where energy landscape, basin
and saddle point in energy (transition states) were accurately calculated.

For ordinary chemical reactions which are assisted by a thermal Brownian
force, the system remains trapped over long times in basins around deep lo-
cal minima of the potential energy surface and there are rare but essential
events where the system succeeds to reach and to pass saddle points (transi-
tion states) between two different basins of the potential energy surface. When
the energy landscape becomes complex, the chemical reaction follows a ran-
dom pathway which connects different basins. These chemical reactions are
non selective and their products are determined according to statistical rules.

However, it is well-known that many chemical reactions in biosystems are in-
duced by enzymes which do not obey Arrhenius laws ( as it should be as a
consequence of Kramers theory). Many open problems concern DNA transcrip-
tion through bubble opening, protein folding and biological machines which
involve bond breaking/formation with a high degree of selectivity and speci-
ficity in conformational changes. Biosystems easily operate through specific
enzymes, specific chemical reactions at room temperature and pressure condi-
tion which otherwise would not be feasible elseway or be feasible only under ex-
treme temperature and pressure conditions. Let mention as an example among
many others, the well-studied nitrogenase enzyme ([3]) which synthetises am-
monia from atmospheric nitrogen in certain microorganisms while industrial
ammonia synthesis is still a quite expansive process.

Many biochemical reactions are fueled by the hydrolysis of ATP which requires
this prerequisite reaction energy be not waisted in the thermal bath but kept in
a coherent form for boosting selectively subsequent reactions. Despite an abun-
dant literature mostly experimental, theoretical explanations for the physical
mechanism used by these enzymes based on conventional schemes but are not
really convincing. Enzymes should be viewed as complex dynamical systems,
especially built by living cells in which nonrandom but coherent processes play
an essential role at some crucial steps for selecting specific chemical reactions.
It is thus challenging to suggest new possible non-Kramers mechanisms for
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chemical reactions based on specific properties of special dynamical systems.

A flaw of the standard Kramers theory is that it assumes instantaneous dissi-
pation that is the frequency spectrum of the Brownian force generated by the
Langevin thermal bath is uniform (white) without any gaps and cut-off. As
a result, the reaction energies which are released at the intermediate stages
of the reaction process, should be quickly dissipate into heat in the thermal
bath. The evolution of the system is Markovian, with independent probability
rates at each reaction step. Although these assumptions turn out to be suf-
ficient (and convenient) for describing most ordinary chemical reactions, the
possibility for the system to exhibit coherent processes requiring long term
memory is systematically killed out in Kramers theory.

It has been recognized as a ubiquitous phenomena that in many nonlinear
systems, energy may remain focused and trapped for long times as excited
local modes (Discrete Breathers or DBs) which are coherent time periodic
oscillations. These conditions specifically require that the thermal bath is not
uniform in frequency and thus cannot be an ideal Langevin thermal bath as
considered in the Kramers theory. Frequency gaps (resp. discreteness) in the
phonon spectrum are required for the existence DBs (or Intraband DBs (IDBs)
see later). Phenomena of energy focusing may trigger subsequently selected
chemical reactions (occurring within the life time of these Discrete Breathers)
which would be highly unprobable within the original Kramers theory.

The purpose of the present paper is to show from the theoretical point of
view that such coherent mechanisms could exist. Such processes could oper-
ate at low temperature , non-Kramers ultraselective chemical reaction along
special pathways in te phase space we call chemical expressways (see fig.1).
These chemical expressways are viewed as thin regions in the complete phase
space (described with both the configuration coordinates and their associate
momenta) where the dynamics of the system remains locally highly coherent
that is nearly integrable. Although their existence requires exceptional well-
tuned conditions, we believe that they could precisely be chosen by biosystems
because of their high selectivity and efficiency.

We already proposed a model for Ultrafast Electron Transfer where a quantum
electron is coupled to a classical thermal bath [4] and which exhibits such a
chemical expressway. This theory uses variations of the same basic concept
of Targeted Energy Transfer as we shall use here but modified for Targeted
Electron Transfer considering the quantum wavepacket of the electron instead
of a classical local mode. In that paper, we return in the context of the Kramers
model which was originally classical. This approach is valid when the quantum
electronic state always remain in adiabatic equilibrium with respect to the
atomic configuration and then determine the potential energy of this atomic
configuration without being explicitly involved in the atomic dynamics.
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Fig. 1. Scheme of a chemical expressway. A prerequisite Kramers reaction has re-
leased some energy which spontaneously focus as a local mode (DB). In well-built
systems, this focused energy may be transferred selectively to another selected local
mode (targeted energy transfer) where it triggers a subsequent reaction to a selected
product. chemical expressway.

This paper presents a simple mechanical toy model which exhibits a chemical

expressway. It simply consists of a rotor and a Morse oscillator which are
weakly coupled. For a specific choice of the rotor inertia momentum and of
its initial energy, the rotor energy is spontaneously and coherently transferred
to the chemical bond and induces at zero temperature a very fast chemical
reaction (dissociation) requiring in principle the focusing of a large energy.

It is thus useful in this context to make first a preliminary review on the most
recent developments on energy localization and DBs in complex systems which
justifies that nonlinear oscillators as involved in our theory could represent
local modes in complex systems. Thus, the next section 2 is devoted to a brief
review of the recent achievements on energy focusing as local modes. Section
3, discusses possible mechanisms for the selective transport of focused energy
through a complex system (targeted energy transfer). Section 4 describes the
general theory of Targeted Energy Transfer between two nonlinear oscillators
(without damping). Section 5 applies this new concept to the simple Rotor-
Morse oscillator system. Section 6 describes the numerical observation of the
ultrafast chemical dissociation at zero temperature and thus yields an example
of chemical expressways. Section 7 discusses the effect of thermal and quantum
fluctuations not included in the model and its relevance for real system and
section 8 summarizes the paper.
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2 Energy Localization in Complex Systems: Discrete Breathers (
Local Modes)

Actually, numerous studies show that finite polyatomic molecules seen as a set
of non-linear coupled oscillators is not an ergodic system, but instead, they
form a mixed phase space with regular and chaotic regions [5,6]. A particu-
larly important and ubiquitous phenomena in large complex systems, is the
occurrence of spontaneous energy localization which can be associated with
the excitation of local modes. Transitions from normal modes (extended mo-
tions) to local modes were observed spectroscopically in molecules but their
existence was already claimed in chemistry in the twenties [7] although ignored
during several decades as mentioned in [8].

These local modes exist in finite size nonlinear systems as well as in infinite
discrete and nonlinear lattices which is even more striking. Beside the usual
chemist terminology local mode, they were independently called Intrinsic Lo-

calized Mode (ILM ) or Discrete Breathers (DB) in physics. There existence
was claimed first on the basis of numerical simulations [9] and confirmed sub-
sequently in many kinds of large discrete nonlinear systems. The numerical
experiment is very simple. If a big packet of energy is injected locally that is
on a single site or on few neighboring sites (for example as kinetic energy) in
a nonlinear discrete model at zero (or low) temperature which may sustain
such solutions, it is found that only a small part of this energy spread out
by phonon radiation and after a relatively short chaotic transient that most
the energy remains localized. The initial wave packet spontaneously relax as a
time periodic local mode (Discrete Breather or DB) [10–12]. If the amplitude
of this localized oscillations is well above the thermal noise, it could persist
out of thermal equilibrium over quite long time before complete relaxation.

They were considered as approximate solutions till they have been rigorously
proven to be exact solutions in various kinds of nonlinear models [13–17].
Their existence proof requires both the discreteness and the nonlinearity of the
system but does not require necessarily its spatial periodicity. It was initially
required that the frequency of these DBs and its harmonics should belong to
gaps of the linear phonon spectrum because otherwise it would radiate away
energy by the phonons so that the DB would rapidly decay. However, this
argument holds only for systems with a continuous linear spectrum where the
phonons are extended.

This is not the case in infinite non periodic systems with discrete phonon spec-
trum where there is Anderson localization for the linear phonons. However, it
is still often believed that because of the resonances are dense, any local mode
with a frequency in the phonon spectrum, should decay very fast. Neverthe-
less, we have conjectured on the basis of detailed numerical analysis of DB

5



bifurcations on finite systems with increasing size that families of Intraband
Discrete Breathers (IDB) at a given spatial location may persist when their
frequencies belong to a fat Cantor set imbedded inside the discrete phonon
spectrum [18,19].

We give some arguments here. A family of IDBs is the family of nonlinear
modes associated with a given linear Anderson (normal) mode when its ampli-
tude becomes finite. When the frequency of the IDB becomes almost resonant
with another normal mode, this IDB is destroyed (through a bifurcation) as an
exact localized solution in a certain interval of frequency around its frequency
1 . Since the normal modes frequencies are supposed to be dense, the frequency
intervals where a given IDB disappears are dense. However, the width of the
gap associated with each resonance decays exponentially as a function of the
spatial distance between this resonant normal mode and the IDB. The conse-
quence is that the total sum of the gap widths where the IDB disappears is
convergent and finite and moreover it is smaller than the measure of the whole
phonon spectrum. As a result the IDB of the considered family persists in the
complementary set of this dense set of gaps which is a fat (i.e. nonvanishing
measure) Cantor set of frequencies. Moreover, the measure density on this
Cantor set tends to full measure at the small amplitude limit where the IDB
tends to be the linear Anderson mode at the corresponding location 2 . As a
result, there is a Cantor set domain of frequency for each IDB family attached
to each Anderson mode. This Cantor set depends on the spatial location of
the IDB family which changes its relative distance to the resonances. Unlike
standard extraband DBs which form continuous families as a function of their
amplitude (or frequency), each IDBs family is defined on a discontinuous set
with many frequency gaps although most of them are negligible.

This general conjecture is supported by a rigorous proof done early by Al-
banèse and Fröhlich [20] on a particular nonlinear and random model. They
proved that each Anderson mode is the zero amplitude limit of a family of
localized time periodic solutions (IDB) with nonvanishing amplitude and a
frequency belonging to a fat Cantor set. However, they did not prove the
destruction the IDBs in the frequency gaps associated with each resonance.

Moreover, in a paper in preparation [22] coauthored by one of us, we shall
analyze the existence of IDBs in models of anharmonic oscillators coupled to

1 Extended time periodic solutions also appear [18] but with an infinite (extensive)
energy and thus have to be discarded in the present context.
2 There is a strong similarity of structure between this fat Cantor set and the
frequency domain of existence of KAM tori for example in the standard map. In the
later case, the resonance gaps are determined by the dense set of rational numbers
instead of an a priori arbitrary dense set of normal modes frequencies. Close to
integrability, the fat Cantor set domain of existence of KAM tori also goes to full
measure.
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a harmonic phonon bath with dense spectrum. It will be proven rigorously that
when the frequency spectrum of this bath is continuous, there are no exact IDB
solutions with frequencies in the phonon spectrum. Thus, if the continuous
spectrum ranges uniformly from frequency zero to infinity IDBs cannot exist
at any frequency. This result confirms that IDBs intrinsically cannot exist
in models coupled with a Langevin thermal bath (which have a continuous,
gapless and unbounded spectrum). On contrary, when the spectrum of the
phonon bath is discrete, IDBs may exist with a frequency inside the phonon
spectrum provided it belongs to a fat Cantor set imbedded in the dense phonon

spectrum with the structure described above. It will be also conjectured on
the base of strong arguments that these IDBs are linearly stable but in a fat
sub-Cantor set only which proves their physical relevance for applications.

In summary, despite direct experimental evidence are still lacking, we already
obtained quite strong theoretical arguments that local modes (DBs or IDBs)
may persist as classical exact solutions in complex realistic models. It also
demonstrates that the standard modeling of a complex environment by a dis-
sipative Langevin phonon bath may become physically incorrect in complex
random systems if the phonon spectrum is discrete. DBs and IDBs should
manifest in the dynamical properties of the system providing the temperature
is not too high or equivalently when they sustain locally amounts of energy
which are much larger than the expected average thermal energy.

Many of these exact DBs solutions (local modes) are linearly stable which
mean they do not interact with the small fluctuations treated as linear. How-
ever, they do interact at higher order. The consequence is that at finite tem-
perature, DBs exchange energy with the thermal fluctuations and decay but
provided the temperature is not too large, the life-time of this local modes
may remain unexpectedly long. Although the explicit analytic calculation of
these life-time remains an open problem, many numerical evidences show that
very generally infinite or large complex systems (spatially periodic or not) may
spontaneously localize large amount of energy (substantially larger than the
thermal energy) as time periodic coherent states (DB, IDB or local mode).
These excited states persist over long time much longer than those expected
from standard phonon relaxation.

It is now essential to note that chemical reactions ( or photoexcitations....)
release their energy locally (for example from the hydrolysis of ATP)[21]. Since
this energy is generally substantially larger than the ambient thermal energy,
these conditions seem to be quite favorable for exciting long living and large
amplitude local modes (provided they exist). as mentioned above. It would be
quite inefficient for the biosystems that this energy be immediately spread out
and thermalized in the environment but better to keep a substantial part of
this energy focused for triggering specific chemical reactions. Otherwise they
would be quite unprobable at the average ambient temperature. Local modes
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(IDB) are surely an efficient way for coherent energy trapping and focusing as
vibrational energy.

It should be noted that the idea that energy focusing is necessary for un-
derstanding chemical reactions in living systems, is not new although it now
gained strong support because of the recent developments confirming the ubiq-
uity of this phenomena. Long ago Davydov already proposed in the 70’s a very
interesting model for energy localization and transportation in α helix of pro-
tein which anticipates on some respects, the new theory of local modes [23,24].
The Davydov model also assumes that energy could be stored as an amide
I quantum vibrational exciton coupled to low frequency phonons (Davydov
soliton). Indeed, experimental evidence of these excitations has been recently
obtained in crystalline acetanilide [25,26] and later in α-helix [27]. Energy
transportation is obtained in the Davydov model by assuming these solitons
are moving freely along the α helix . However, local modes or DB are gen-
erally not mobile except in very peculiar conditions. It requires the Davydov
soliton to be rather spatially extended which is not confirmed by experiments.
It also requires the α helix is very regular with spatial periodicity which are
conditions difficult to find in biosystems. Moreover, Davydov soliton mobility
is reversible and not selective.

DBs models were also considered some years ago by Peyrard and Bishop [28]
for understanding the DNA denaturation as a function of temperature. An-
other model was proposed later [29] for the problem of chemical dissociation
induced by DBs but none of them were considering coherent processes for DB
transfer as we propose here.

3 Selective and Coherent Transfer of Discrete Breathers

After discussing that spontaneous energy focusing should be ubiquitous in
complex nonlinear systems, let now assume that some prerequisite chemical
reaction ( or another type of excitation e.g. photoexcitation etc...) has focused
a substantial amount of vibrational energy into a specific local mode. If this
energy is not involved immediately in a fast coherent process for a next step
chemical reaction, this energy will relax after some time as thermal energy and
lost for assisting the subsequent steps of the chemical reaction (which means
in the scheme of fig.1 that the system relaxes to the lowest minimum).

However, specially well-built systems (biosystems?) may take advantage of this
focused energy for generating subsequently and selectively a fast coherent pro-
cess (chemical expressway) which brings the system into a state which would
be very unlikely reached within a brownian (Kramers) process. This specific
chemical reaction may be induced by a fast and selective energy transfer of
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the focused energy from the initial local mode to another specific location
(another local mode).

The only possible mechanism for a fast propagation of vibrational (or rota-
tional) energy which is efficient even at small coupling involves resonances.
The simplest and well-known example consists of two weakly coupled reso-
nant harmonic oscillators. Any amount of energy injected on one of them is
completely transferred to the other one after a certain time proportional to
the coupling (and because of time reversibility the energy subsequently oscil-
lates back and forth). However, in that case no extra feature which could be
interesting, occurs because the system is linear.

Actually this energy transfer generally breaks down for two weakly coupled
anharmonic oscillators (or two local modes). Indeed, for nonlinear oscillators,
the condition of initial resonance is not sufficient for complete transfer. The
reason is that because of the anharmonicity, the frequencies of these oscillators
change as a function of the transferred energy. Generally, they do not remain
equal which breaks the resonance and consequently stops the energy transfer.
However, if the varying frequencies of the two nonlinear oscillators remain
equal during the whole transfer, resonance persists and the energy transfer
is complete as in the linear case. This condition is fulfilled when beside the
condition of resonance at the initial time, another condition is required on the
nonlinear terms [30] which is described in the next.

Then, when a selected amount of energy is injected on the first one, this
energy is completely transferred to the second one after some time while the
frequencies of the two nonlinear oscillators both vary but persistently remain
equal. Note the important difference with the linear case where energy transfer
occurs for any amount.

Two anharmonic oscillators are said to be conjugated when they are appro-
priately tuned one with each other for complete transfer of a certain amount
of energy. We called this phenomena Targeted Energy Transfer (TET) [30].

Thus, conjugacy is an extension to nonlinear oscillators of the well-known con-
cept of linear resonance but it is quite more selective. It is more exceptional for
two nonlinear oscillators (or local modes) chosen at random to be conjugate at
a given energy than simply linearly resonant. This rare situation is neverthe-
less highly interesting because it is precisely the reason which could produce
a high selectivity in complex systems with many modes. Many other modes
could be possibly linearly resonant but only the conjugate one could capture
most the energy. It produces a dynamical lock-and-key phenomena where a
given local mode could recognize in a large environment a unique acceptor for
transferring most its vibrational energy.

Thus, finding a conjugate local mode in the environment of a given local mode
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would a priori a rare event in a purely random system but on contrary could be
frequent in biosystems (enzymes) because of its selectivity. Because of that,
many reactions in biochemistry should be understood very differently from
those of standard chemistry. Some billion years of evolution and mutations
have selected and improved the most efficient enzymes for specific reaction
pathways producing the specific biomolecules (among many possible others)
needed by the living cells.

However, let us note that as explained in the previous section, a given local
mode (IDB) in a complex system belongs to a family of exact solutions which
is generally discontinuous in frequency. If we assume that there are no normal
mode with frequency in the interval of variation of its frequency, this family
is continuous and this normal mode family can be represented by the family
of solutions of an effective single nonlinear oscillator.

There could also exist many normal modes which become linearly resonant in
the interval of frequency variation. But as we said, linear resonance is not suffi-
cient for substantial energy transfer considering that generally the local modes
families associated with these normal modes are not conjugate with the ex-
cited anharmonic local mode. Nevertheless, there are small energy losses when
passing such resonances. They could be viewed as a kind of frequency depen-

dent damping in the system dynamics . In any case, as soon the temperature
is nonvanishing, there are also higher order interactions of the local mode with
the normal modes which also damp this effective nonlinear oscillator.

At the present stage, we have written down the TET condition only in the
undamped case. An effective damping could be empirically included in the
effective nonlinear oscillators representing two local modes for taking into ac-
count the nonconjugate modes and the thermal fluctuations. Then, the conju-
gacy conditions between two damped nonlinear oscillators should be modified
for taking into account the energy losses during energy transfer, but we have
not yet analytically written down this correction. Nevertheless, we already
performed numerical tests [31] of TET between conjugate local modes in a
large random system without any correction and found that could TET per-
sist in the presence of a small damping (obtained by an extra coupling with
a resonant harmonic phonon band) providing it is not too large. Moreover,
TET could become irreversible for an appropriate tuning of the energy dissi-
pation during transfer. It is thus simpler and more pedagogical at this stage to
describe TET without damping before considering more complex situations.
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4 Analytic Conditions for Targeted Energy Transfer

For understanding the conditions for TET, we consider the ideal case without
any damping and thermal random force in a reduced model which consists of
two weakly coupled nonlinear oscillators called donor (D) and acceptor (A)
respectively, representing two specific local modes in a complex system. It is
convenient to describe the Hamiltonian H of our reduced system with their
standard action-angle variables (ID, θD) and (IA, θA) respectively

H = HD(ID) + HA(IA) + λW (ID, IA, θD, θA) (1)

HD(ID) (resp.HA(IA)) is the energy of the uncoupled local mode (D) (res.(A))
as a function of its action ID (resp.IA) 3 . The coupling potential λW (ID, IA, θD, θA)
is arbitrary but small and thus depends for convenience on the small parameter
λ.

Let us note that the problem of energy transfer between two anharmonic
oscillators was investigated earlier but in the general regime without and where
λ is not small [32,33]. The system was chaotic and the process of energy
transfer was found stochastic. We consider here the nearly integrable situation
where λ is small.

At λ = 0, this Hamiltonian (1) with 2+2 degree of freedom is integrable since
both ID and IA are time invariant. As soon as λ �= 0, the system becomes
generally non integrable and exhibits chaotic trajectories. However, at small
λ, the chaotic manifestations are negligible over relatively long time scale
compared to the time for TET (if any). The ideal TET condition which will
be given in the following, means that at the uncoupled limit λ = 0, there is
a particular energy ET such when ET = HD(ID) + HA(IA), the frequencies
of the Donor and the Acceptor oscillator H ′

D(ID) = H ′
A(IA) remains equal,

which means that we have a continuum of degenerate tori.

In that region of the phase space, Hamiltonian (1) can be accurately approx-
imate by another integrable nonlinear system but where the two nonlinear
oscillators remain coupled.

Considering λ small, ID and IA are slow variables since their time derivatives
are proportional to λ. If in addition, we consider the region in the phase space
where the system is close to resonance, that is ωD = H ′

D(ID) ≈ ωA = H ′
A(IA),

the angle difference θD −θA becomes also a slow variable. It is then convenient

3 In the case this family of local modes (IDBs) would be discontinuous as mentioned
in the second section, we should consider HD(ID) as the envelope of the energy
interpolating the gaps considering that damping terms should be also introduced in
the dynamics as also suggested above.
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to perform a canonical change of variables where the new pairs of conjugate
variables are (θ = θD−θA, I = (ID−IA)/2, and (θ0 = θD+θA, I0 = (ID+IA)/2).

The only fast variable in the Hamiltonian (1) is θ0 while the three other
variables I0, I, θ are slow. In that regime, the adiabatic approximation is valid.
The dynamics of the system can be well described by the Hamiltonian Ha

obtained by averaging the initial Hamiltonian H over the fast variable θ0 while
the slow variables I0, I, θ are supposed to be fixed. This averaged Hamiltonian
is

Ha = HD(I0 + I) + HA(I0 − I) + λC(I0, I, θ) (2)

where C(I0, I, θ) = 〈W (I0 + I, I0 − I, (θ0 + θ)/2, (θ0 − θ)/2)〉θ0
is the average

on θ0.

This Hamiltonian Ha with 2 + 2 degrees of freedom is independent of θ0.
Consequently, the total action 2I0 = ID + IA is a time invariant (in addition
to the total energy Ha) and Hamiltonian Ha is integrable.

Since the total action is conserved, the energy of the system during the transfer
is HD(I0 + I) + HA(I0 − I) where I is the difference of action between donor
and acceptor. Since the coupling energy is small, it should be almost constant.
Let us assume first that for a certain value of I0, the detuning function

ǫ(I0, I) = HD(2I0) − HD(I0 + I) − HA(I0 − I) (3)

is zero for all I. This condition implies that H ′
D(I0 + I) = H ′

A(I0 − I). It is
equivalent to say the frequencies of the donor and acceptor oscillators, remains
equal at constant action ( or at constant energy). In that situation, the dy-
namics of the system is driven only by the perturbative term which is coupling
function

İ =−λ
∂C(I0, I, θ)

∂θ
(4)

θ̇ =λ
∂C(I0, I, θ)

∂I
(5)

It has been shown [30] that when C(I0, I, θ), as a function of θ, is well-behaved,
that is sinelike (i.e. with one maximum and one minimum only per period),
the solution I(t) with initial condition I(0) = I0 (all the energy on the donor)
varies periodically between I0 and −I0 (all the energy on the acceptor).

Actually, the phase space restricted to (I, θ) has the topology of a sphere
where I = sin α determines the latitude α and θ is the longitude of a point of
the sphere. θ is undefined at the two poles at I = I0 and I = −I0. A trajectory
which connects the two poles is a TET solution.

When the energies on the donor and on the acceptor at constant action are
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equal HD(2I0) = HA(2I0), complete energy transfer is still possible when
ǫ(I0, I) is not strictly zero but small. The trajectory which connects the two
poles is obtained by writing the energy conservation HD(I0 + I) − HA(I0 −
I) + λC(I0, I, θ) = HD(2I0). If it is connected in one piece, the TET solution
exists. The necessary and sufficient condition for that is

min
θ

λC(I0, I, θ) < ǫ(I0, I) < max
θ

λC(I0, I, θ) (6)

This condition is fulfilled when the coupling |λ| is larger than a small nonzero
value. When, it is not fulfilled, the line becomes disconnected which means
that an intermediate energy barrier appears and blocks the complete energy
transfer. This transition is first order.

We note that for fulfilling the TET condition (6), a smaller coupling requires
a smaller detuning function. This condition is more compelling for the an-
harmonicity of the nonlinear oscillators but the selectivity in initial energy or
action becomes sharper as the coupling becomes smaller.

The obtained trajectory which yields TET is generally time periodic for the
averaged Hamiltonian (2) at fixed I0. It rotates around the sphere along the
line connecting the two poles of the reduced spherical phase space (I, θ) with
the frequency ωTET proportional to the coupling parameter λ.

The corresponding trajectory for the initial Hamiltonian (1) also depends on
the variable θ0 which oscillates at the fast frequency ω0 = ∂Ha/∂I0. This fre-
quency depends on I0, I, θ and thus varies periodically at the slow frequency
ωTET . In any case, the corresponding trajectory in the original phase space
(ID, θD, IA, θA) is generally quasiperiodic on a smooth torus (unless acciden-
tally it closes on a single loop). If the difference between Hamiltonian (1) and
its approximation (2) is small, in this region of the phase space, many ap-
proximate torus of the TET trajectory may persist as a KAM torus for the
original nonintegrable Hamiltonian . In that case, the adiabatic approximation
remains qualitatively correct even at long time.

In case, the corresponding KAM torus is broken up because of frequency
resonance, it mixes with a thin stochastic layer where the real TET trajectory
integrated with Hamiltonian (1) are chaotic at long time scale.

5 Targeted Energy Transfer in the Rotor-Morse Oscillator System

We consider now an example of system where TET may occur. The simple
Morse oscillator [34] describing chemical bonds for diatomic covalent molecules
could also model the local mode associated with bond vibrations. The Morse
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potential as a function of the bond length R, has the form [35]

V (R) = De(1 − e−a(R−Re))2 ≈ 1

2
meω

2
e(R − Re)

2 + . . . (7)

where De is the dissociation energy, Re the equilibrium distance of the bond
and a =

√

me

2De
ωe where me is the reduced mass of the bounded atoms, and ωe,

the harmonic frequency of the bond vibration at small amplitude.

Rotor are also quite common in biomolecules. They correspond to torsional
modes. Rotor and Morse oscillator turn out to be perfectly conjugate oscilla-
tors at the dissociation energy of the Morse oscillator when the inertia mo-
mentum of the rotor has a well defined value. According to the above theory
of TET, we have to represent first these oscillators in action-angle variables.

The Hamiltonian of a Morse oscillator can be written

HM =
p2

2
+

1

2
(e−u − 1)2 (8)

where we choose as units of mass me, of distance 1/a and of energy 2De ( then
ωe = 1 in order to get a Hamiltonian without parameters)

This classical oscillator (8) has explicit bounded time periodic solutions which
are

u(t) = ln
1 − sin β cos ωM t

cos2 β
(9)

where 0 ≤ β < π/2 is a arbitrary parameter. The energy (8) of this solution
is HM = 1

2
sin2 β and its frequency ωM = cos β. Since ωM = dHM/dIM =√

1 − 2HM , it readily comes out that this Hamiltonian becomes

HM = IM − 1

2
I2
M (10)

in action-angle variables IM , θM where 0 ≤ IM = 1 − cos β < 1

It is also straightforward to obtain explicitly u(IM , θM) as a function of the
action angle variables from eq.9.

u(IM , θM) = ln
1 − sin β(IM) cos θM

cos2 β(IM)
= ln

1 −
√

IM(2 − IM) cos θM

(1 − IM)2
(11)

It is useful for application to recall that eq.10 becomes in the original units

HM = ωeIM − ω2
e

4De
I2
M (12)

where 0 ≤ IM ≤ 2De

ωe
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A simple conjugate Hamiltonian for the Morse Hamiltonian is a rotor 4 . θR

mod 2π is the angle variable which describes the position of the rotor with
inertia momentum JR with the units me/a

2 defined for the above Morse os-
cillator. Its Hamiltonian is in action-angle variable

HR(IR) =
I2
R

2JR
(13)

where pR = JRθ̇R = IR, the variable conjugated to the angle θR mod 2π of the
rotor is also its action.

Considering the rotor R as the donor D and the acceptor A as the Morse
oscillator M , it is now straightforward to check from eq.10 and eq.13 that the
detuning function (3)

ǫ(I0, I)= HR(2I0) − HR(I0 + I) − HM(I0 − I)

=
1

2
(I0 − I)

(

3
I0

JR
+ I0 − 2 + I(

1

JR
− 1)

)

(14)

is identically zero for JR = 1 and I0 = 1/2. In arbitrary units, this condition
becomes

JR =
me

a2
=

2De

ω2
e

(15)

TET is expected to occur for a coupled rotor-Morse oscillator system when
J = 1 at any small coupling (which does not average to zero over the fast
variable).

H =
p2

2
+

1

2
(1 − e−u)2 +

p2
R

2
+ λf(u, p, θR, pR) (16)

The TET solutions can be analytically calculated for special choice of the
coupling energy f(u, p, θR, pR) in Hamiltonian (1) which depends only on the
displacement u and the rotor angle θR. It is physically reasonable that the
coupling energy becomes independent of u at large u that is when the chemical
bond is dissociated and to keep only the first harmonics of the θR dependence.
A convenient choice is

f(u, p, θR, pR) = (λe−u + b) cos θR (17)

As we shall see in the following, it is essential for chemical dissociation that
the pinning potential persists for large positive u and for that purpose we
introduce the small constant b �= 0 as a perturbation. Then, the rotor becomes

4 Note that there are other oscillators conjugate to the Morse oscillator. Their
Hamiltonian should nevertheless be identical in action-angle variables in the range
of energy transfer. For example, a particle oscillating in a square potential could be
conjugate to the Morse oscillator as well.
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a pendulum where the coefficient b + λe−u of the cosine potential depends on
the displacement u of the Morse oscillator and on b. The dynamics of the
system is described by

ü + (1 − e−u)e−u − λe−u cos θR = 0 (18)

θ̈R − (λe−u + b) sin θR = 0 (19)

It is more convenient to express u in action-angle variable using Eq.11

λe−u + b = b +
λ cos2 β

1 − sin β cos θM
=

∑

n≥0

an(IM) cos nθM (20)

where

an(IM)= 2λ cosβ tann β

2
= 2λ(1 − IM)

(

IM

2 − IM

)n/2

for n > 0 (21)

and a0 = b + λ cos β = b + λ(1 − IM) (22)

Then Hamiltonian (16) becomes

H =
1

2
I2
R + IM − 1

2
I2
M +

∑

n≥0

an(IM) cos nθM cos θR (23)

Defining θ0 = θR + θM as the fast angle variable and θ = θR − θM the slow
angle variable and their corresponding conjugate variables I0 = (IR + IM)/2
and I = (IR − IM)/2, (17) can be averaged with respect to the fast variable
θ0 which yields the effective coupling

λC(I0, I, θ) =< (b+λe−u) cos θR >θ0
=

a1(IM)

2
cos θ = λ(1−IM)

√

IM

2 − IM

cos θ

(24)
where IM = I0 − I.

Then the average Hamiltonian (2) close to TET where I0 = 1/2 reduces to

Ha = I0 + (2I0 − 1)I + λ(1 − I0 + I)

√

I0 − I

2 − I0 + I
cos θ (25)

When I0 = 1/2, the Hamilton equations are

İ =λF (I) sin θ (26)

θ̇ =λF ′(I) cos θ (27)
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where F (I) = (I + 1/2)
√

1 − 2I/
√

3 + 2I. Since the energy of the system
is conserved, its energy is the initial energy of the rotor. At TET Ha =
HR(1/2) = 1/2 implies the coupling energy remains zero which yields θ = π/2
mod π. We choose θ = −π/2 (the other solution θ = π/2 is obtained by time
reversal). Then I obeys the simple ODE

İ = −λF (I) = −λ(
1

2
+ I)

√

1 − 2I

3 + 2I
(28)

This equation has two trivial time independent solutions which correspond
to the zeros I = ±1/2 of F (I). However, it can be checked on the original
eqs. 18 and 19 that I(t) ≡ 1/2 or θ̇R(t) ≡ 1 and u(t) ≡ 0 does not corre-
spond to an exact solution of the system. The other solution I(t) ≡ −1/2
corresponds to an exact solution of the initial system where the particle of
the Morse oscillator u(t) ≡ +∞ is immobile at infinity. Actually, since F (I)
has a constant positive sign, the solution I(t) of Eq. 28 which is not time
constant is monotone decreasing and varies from I = 1/2 to I = −1/2. This
solution can be obtained with the change of variable v =

√
1 − 2I/

√
3 + 2I,

or I = 2/(1 + v2) − 3/2. Then, Eq. 28 yields

( 1

1 + v2
+

1

1 − v2

)

v̇ =
λ

2
(29)

If we define the function Υ(x) by the implicit equation

1

2
(arctan Υ(x) + atanhΥ(x)) = x (30)

We have Υ(x) = −Υ(−x). For x small we have Υ(x) ≈ x. This function is
monotone increasing with an asymptote Υ(+∞) = 1. More precisely, we have
for x → +∞, Υ(x) ≈ tanh(2x − π

4
) ≈ 1 − 2e−4x+π/2 + . . ..

Then, v(t) = Υ(λ
4
(t − t0)) and

I(t) =
2

1 + Υ2(λ
4
(t − t0))

− 3

2
(31)

t0 is an arbitrary time we take equal to zero for simplicity. Finally, we get the
time evolution of the action IM and the energy HM when initially the Morse
oscillator is at rest (HM = 0 and the rotor has initially the energy HR = 1

2
)

IM(t) = 2
Υ2(λ

4
t)

1 + Υ2(λ
4
t)

(32)

HM(t) = IM − 1

2
I2
M = 2

Υ2(λ
4
t)

(1 + Υ2(λ
4
t))2

(33)
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Fig. 2. Energy HM (full line) of the Morse Oscillator and Rotor-Oscillator frequency
ωM = ωR = 1− IM (dotted line) versus time at the integrable limit (λ and b small)
as given by eq.33 and eq.32.

This TET solution corresponds to a marginal solution of an oscillator which is
not time periodic. In all the examples of TET we studied before [30,31,36], the
energy was oscillating periodically back and forth between the donor and the
acceptor oscillator. In the present case, the energy transfer to the Morse oscil-
lator is asymptotically complete at infinite time. The consequence is that this
approximate solution is not quasiperiodic and cannot correspond to a KAM
torus for the initial Hamiltonian (16). As a consequence, this TET solution
integrated with with the non approximate Hamiltonian should belong to a
chaotic layer of the phase space and should manifest some chaotic behavior.

Our approximate Hamiltonian yields marginal chemical dissociation precisely
at TET where the particle is slowly ejected at zero velocity. Fig.2 shows the
energy (33) and the frequency ωM = 1−IM of the Morse oscillator as a function
of time calculated with the approximate integrable Hamiltonian (25).

Actually, the assumption that the frequency θ̇0 (which is twice the equal fre-
quency of the rotor and the Morse oscillator) is fast becomes inconsistent with
our result at long time. Fig.2 shows that it goes to zero which implies that the
adiabatic approximation is not valid only at the end of the transfer.

When condition (15) is fulfilled but the initial action or energy of the rotor is
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not ET = 1/2, complete energy transfer does not occur. The maximum Im of
IM can be obtained as a function of I0 from energy conservation. The total
action is conserved IR(t) + IM(t) = IR(0) as well as the total energy

Ha =
1

2
I2
R + IM − 1

2
I2
M + λ(1 − IM)

√

IM

2 − IM
cos θ =

1

2
I2
R(0) (34)

which yields the equation of the trajectory on the spherical phase space

cos θ = − 1 − IR(0)

λ
.

√

IM(2 − IM)

1 − IM
(35)

The maximum value Im of IM is obtained for cos θ = −1 which yields

Im = 1 − |1 − IR(0)|
√

λ2 + (1 − IR(0))2
(36)

or a Lorentzian for the maximum transferred energy to the Morse oscillator

Em =
1

2

λ2

λ2 + (1 − IR(0))2
(37)

6 Numerical Observations

We now study numerically the real dynamics of the original non integrable
Hamiltonian (16) and compare it with those predicted from the approxi-
mate integrable Hamiltonian (25). We use a standard Runge-Kutta method
at fourth order for integrating eqs.18 and 19.

6.1 Chemical Dissociation

It was already noted in section 5 that since the considered TET solution of
the approximate but integrable Hamiltonian (25) is marginal, it cannot be
represented as a KAM torus and some chaotic behavior should manifest in
the real dynamics of this solution integrated with the original Hamiltonian
(16).

An example of energy transfer is shown fig.3 and its magnification fig.4 in
the ideal situation for TET where λ is small, JR = 1/2, I0 = 1/2 and the
Morse oscillator is initially at rest. We observe within a time of the order of
the expected time for transfer tc ≈ 2/λ (see fig.2) that most the energy of the
rotor is indeed transferred to the Morse oscillator (see fig.4). Moreover, the fit
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with the expected theoretical result (33) is excellent discarding the expected
small amplitude oscillations due to the fast variable θ0.

However, we do not observe (immediately), the expected marginal chemical
dissociation predicted by formula (33) at large time. Instead of, the energy of
the Morse oscillator partially returns to the rotor and next oscillates between
the rotor and the Morse oscillator with irregular amplitudes. Small perturba-
tions of the initial conditions change the amplitudes and the number of these
oscillations which thus can be considered as chaotic.
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Fig. 3. Rotor energy HR = θ̇2
R/2 (dotted-dashed line) and Morse oscillator energy

(8) HM(p, u) (full line) versus time obtained from the dynamical eqs.18 and 19
at b = λ = 2.10−2 and the initial conditions for TET (θ̇R(0) = 1, θR(0) = π/2,
u(0) = u̇(0) = 0).

However, this chaotic manifestation is only transient. After a certain num-
ber of oscillations (which is not well determined because it depends on small
perturbation of the initial conditions), the particle of the Morse oscillator is
ejected at infinity with a finite velocity which also is not well determined.
Fig.5 shows the rotor angle versus time in the last stage before ejection where
u(t) → +∞. The angle variation slows down but instead of stopping to an
asymptotic value, the rotor angle continue to oscillate periodically in time in
some angle interval [(0 mod π)− δ, (0 mod π)+ δ] where 0 < δ < π/2. Indeed,
when u(t) goes to infinity, the coupling energy goes to b cos θR which implies
that the rotor is still submitted to a small angular dependent potential and
thus is a pendulum.

If the rotor goes at rest (θR = π when b < 0 or 0 when b > 0) when the particle
of the Morse potential is at +∞, the coupling energy becomes negative and
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Fig. 4. Magnification of fig.3 at short time (full line and dotted-dashed line) and fit
with eq.33 (dashed line).

equal to −|b|. Since the potential energy of the particle in the Morse potential
is just 1/2 the initial energy of the rotor, energy conservation requires that
the kinetic energy of the particle of the Morse potential is u̇2/2 = |b| and
constant. As a result, the particle of the Morse potential is ejected at infinity
with a finite velocity. The same result holds if the rotor stays dangling in its
pinning potential b cos θR with a negative energy that is with an angle which
oscillates in an interval with half width δ < π/2. Actually, the kinetic energy
of the ejected particle or the pinning energy of the rotor appears numerically
as random variables. It is also worthwhile to note that when b = 0 and the
initial energy is 1/2, we numerically checked that there is no dissociation at
all and that the chaotic behavior is not transient but persists forever.

We observe for moderately large value of the coupling parameter λ, that there
is a nonvanishing interval for the initial energy of the rotor around the ideal
value for TET, where the atom in the Morse potential is finally ejected at
infinity with some nonzero kinetic energy. This energy is borrowed to the
pinning energy of the rotor in the residual potential due to the coupling.
Then, at the final stage of the dynamical evolution of the system, the rotor
oscillates periodically around its equilibrium position while the particle in the
Morse potential escape at infinity with a constant velocity.

6.2 Interpretation

These features can be easily interpreted because they are commonly observed
in perturbed integrable systems such as 2d nonintegrable discrete maps. It
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Fig. 5. Rotor angle θR(t) versus time in the vicinity of chemical dissociation shown
fig.3.

is well-known that many quasiperiodic trajectories persist as KAM tori but
not those which are resonant or almost resonant which break up and generate
stochastic layers. Separatrix ( such as the marginal TET trajectory in our
case) also generate chaotic layers.

Unbound stochastic layers are also common in unbounded maps. They can
be found for example in the map x′ = x3 + ax − y, y′ = x where |a| < 2).
There is a central island made of concentric KAM tori with thin bounded
stochastic layers in between and a peripheral stochastic layer which extends
at infinity. This region surrounds the central KAM tori but also many smaller
KAM islands.In that region, the trajectories are unbound with probability
1. There are trajectories which are bounded at all (discrete) time close to
the KAM tori but they are known to have zero measure and are unstable.
Thus, most initial conditions (with probability one) even close to the KAM
tori yield trajectories which finally escape to infinity. Their dynamics may
exhibit initially some almost regular oscillations reminiscent of the nearby
KAM orbits but after some number of iterations they becomes unstable and
escape at infinity and never return.

In our case, because of energy conservation, the projection of the stochastic
layer in the plane (u̇, u) does not extend at infinity in all directions. It is
necessarily confined to a certain domain. If the rotor initial energy is 1/2, we
readily get the inequality on the Morse oscillator energy

HM(t) <
1

2
+ |b|

. When b is non zero, this domain extends to infinity along the u axis in a stripe
with nonvanishing thickness which determines a window where the trajectories
can escape. It turns out that when |b| is nonzero, this stochastic layer which
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is inside that domain is also unbound and extends at infinity. The sensitivity
to the initial conditions (at constant energy) for example the initial phase of
the rotor is clearly a consequence the chaotic behavior in this stochastic layer.

When b = 0 the probability to escape for the TET trajectory is zero because
the escaping window shrink to zero at infinity and we observe only chaotic
oscillations. When b �= 0 this window opens and the probability to escape is
1 but after a certain number of transient chaotic oscillations. The probability
that this number of oscillation be infinite, and thus that the particle does not
escape is zero.

When the TET condition is not fulfilled, for example when varying the initial
energy of the rotor from 1/2, the approximate integrable Hamiltonian (25)
yields quasiperiodic trajectories with incomplete energy transfer instead of a
marginal trajectory. These trajectories may survive as a KAM tori or in case
of resonance as thin stochastic layers imbedded between these KAM tori. In
both cases, the trajectories become bounded and there is no chemical dissoci-
ation. This is precisely what is observed when the initial rotor energy get out
the narrow window in energy around the optimal TET energy and which we
describe next.

In our case, the trajectories close in energy to the TET energy, are well de-
scribed by the integrable approximate Hamiltonian (25) while the averaged
fast variable θ0 is really fast and decouples from the slow variables . The
chaotic behavior of our system essentially originates from the fact this fast
variable may become slow. This situation occurs when the energy transfer is
close to be complete, it is then not valid to the initial Hamiltonian average
over θ0. Then, the time oscillations of θ0 couples to the slow variables and
deviates the real trajectory from the approximate integrable trajectory. But
this deviation should depend on the phase of the oscillations of θ0 (see the
small amplitude oscillations visible on fig.3). Depending on the phase of the
oscillation of θ0 which can be assumed to be random, the particle in the Morse
oscillator may be either kicked out with some velocity or bounced back. Then,
the real trajectory borrows another periodic integrable trajectory, then comes
back almost in the same configuration but with another phase for θ0, again
may either escape with some probability or bounce back, and so on...

6.3 Energy Selectivity

Energy selectivity is an aspect of TET essential for its potential applications.
We analyze this selectivity in the Rotor-Morse oscillator model with more
details. When the initial energy of the rotor is not precisely HR(1/2) = 1/2,
the approximate Hamiltonian (25) yields a maximum energy transfer Em =
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maxt HM(t) (given by eq.37) which is not complete. Then only a part of the
initial energy periodically oscillates between the rotor and the Morse oscillator.
The maximum energy transfer given by eq.37 is a Lorentzian curve.

Fig.6 compares this result with the numerical calculation from the original
Hamiltonian (16) of the maximum energy transferred to the Morse oscillator
as a function of the initial action IR(0) = θ̇R(0) (or frequency) of the rotor
(maxt HM(t) is measured over numerical times which are long enough to be
insensitive).

0.8 0.9 1 1.1 1.2
IR(0)

0.1 0.1

0.2 0.2

0.3 0.3

0.4 0.4

0.5 0.5

ER_max

Fig. 6. Maximum energy transfer on the Morse oscillator calculated numerically ver-
sus initial frequency θ̇R(0) of the rotor (open dots)compared with the analytical pre-
diction (37) (full line) (same parameters as fig.3) and θR(0) = π/2, u(0) = u̇(0) = 0.

The numerical results are globally in good agreement with the theoretical
predictions except for some interesting new features we now describe.

– Most numerical values of the maximum energy transfer plotted versus the
initial velocities of the rotor θ̇R(0), appear to be distributed on a smooth
peaked curve which is strictly below the dissociation energy 1/2 of the par-
ticle in the Morse potential. However, there is a narrow interval for θ̇R(0)
close to the ideal initial condition θ̇R(0) = 1 for TET (see magnification of
fig.7) where the maximum energy transferred to the Morse oscillator dis-
continuously jumps to values strictly larger than the dissociation energy
1/2. Actually, with these initial conditions on the rotor, we have chemical
dissociation that is the particle in the Morse potential never returns to its
original position but is ejected at +∞. Its velocity becomes constant and
its kinetic energy is just the excess of transferred energy over 1/2. This ki-
netic energy was carefully analyzed as a function of IR(0) = θ̇R(0) varying
by very small steps. It clearly appears to be a randomlike variable sharply
dependent on the most tiny perturbations of the initial conditions (see the
magnification of the tip of the TET peak fig.7).
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Fig. 7. Magnification of fig.6 at the peak.

According to the above interpretation, the unbounded stochastic layer
generating dissociation should persist in a small neighborhood of the ideal
initial energy for TET

– The initial conditions which do not produce chemical dissociation corre-
sponds to the smooth part of the maximum energy transfer curve (6). Then,
the energy slowly and periodically oscillates between the rotor and the Morse
oscillator while the global dynamics of the rotor-Morse system with hamil-
tonian (16) looks regular and quasiperiodic.

This feature also should be expected because when the perturbation on
the initial energy becomes large enough, the quasiperiodic trajectory of
the approximate Hamiltonian survives either as a KAM torus or in case
of resonance as a thin bounded stochastic layers imbedded within KAM
tori. There is no more unbounded stochastic layer and thus no chemical
dissociation.

However, we note small discrepancies between the numerical datas and
their analytical fit (37).
· The peak magnification of fig.7 shows that the tip of the smooth (trun-

cated) peak referred to the theoretical curve is shifted to the right hand
side that is to larger values of IR(0) = θ̇R(0).

· The intermediate part of the peak corresponding to a substantial maxi-
mum energy transfer intermediate between 0 and 1/2 (that is most of the
visible curve fig.6) is well fitted with formula (37)

· far away from top of the TET peak that is in the tails of the Lorentzian
fit where the rotor and the Morse oscillator are out of resonance, the
observed value of maximum energy transfer is systematically larger than
those predicted although both values are small.

We can explain qualitatively these features.
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We noted above that when the energy transfer to the Morse oscillator ap-
proaches its dissociation energy, the equal frequencies of the rotor and the
Morse oscillator goes to zero and thus the angle variable θ0 which was assumed
to be the unique fast variable of the system becomes slow. Consequently,
the nonintegrable hamiltonian (16) is not well approximate by the integrable
Hamiltonian (25). and a chaotic behavior appears in the long time scale vari-
ations of amplitude of the energy oscillations between rotor and Morse os-
cillator. This situation corresponds to the dynamics at the top of the peak
fig.7.

Another situation where the initial hamiltonian (16) is not well approximate
by (25) but for a different reason, is obtained when the rotor and the Morse
oscillator are far from resonance. This situation occurs in the tail of the peak
fig.6. That situation does not involve any substantial chaotic behavior since
it is well-known that KAM theory applies for the non resonant quasiperiodic
trajectories of the rotor-Morse oscillator system which is integrable at zero
coupling and where the coupling is a small perturbation.

Finally, it turns out that the approximation of (16) by (25) is accurate only
in the intermediate regime between chemical dissociation and a small energy
transfer that is just where the numerical datas fig.6 well agree with their
analytical fit.

Actually, a standard perturbation theory applied to the initial Hamiltonian
(16) should determine in principle through canonical transformations a series
of approximate integrable Hamiltonians Hp at successive order starting from
H1 = Ha (25). For example, the off-diagonal terms of Hamiltonian (23) which
were averaged to zero with the assumption of fast variable θ0, should contribute
as a higher order correction of the approximate lowest order Hamiltonian (25).
We shall not perform here this tedious calculation. In the absence of chaos,
that is when the dynamics of the system is quasiperiodic on a KAM torus, this
series of approximate integrable Hamiltonian Hp is convergent and describe the
perturbations of KAM torus. The consequence is that the detuning function
(3) is still a well defined function although it has to be renormalized.

We expect that these corrections should explain the disagreement between
the fit (37) and the numerical datas of fig.6 and 7 which are observed in the
smooth part of the curve mostly close to the tip of the peak and in the tails for
the above reasons. In particular, the optimum value of I0 for complete TET
should shifted as observed close to the top of the numerical peak of TET.

We can make a rough estimation of the width of the window of initial energies
where we expect to have chemical dissociation on the basis of empirical argu-
ments. The trajectory are well described by the approximate Hamiltonian (25)
while the averaged fast oscillation of θ0 is really fast. Actually, the coupling
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energy (17) initially depended on θ0 before averaging. When the amplitude u
of the Morse oscillator is large and thus when the variation of θ and θ0 are
both slow, it becomes b cos θR = b cos(θ + θ0)/2. Although this energy would
be zero on time average, it is not zero at a precise time and depends on the
phase of the rotor θR.

Consequently, when a trajectory close to TET reaches its maximum of en-
ergy transfer Em which is expected to be (37) calculated with the approxi-
mate integrable Hamiltonian (25), energy conservation considered for the non
approximate Hamiltonian requires that the real energy of the Morse oscilla-
tor at this maximum is slightly different and equal to Em − b cos θR when
θR slowly vary. This effect is in some sense equivalent to a kick on the in-
tegrable trajectory which depends depends on the rotor phase. If we have
Em − b cos θR > 1/2, then, the particle in the Morse potential has enough
energy for escaping and its kinetic energy is then Em − 1/2 − b cos θR (note
the coupling force between the Morse oscillator and the rotor vanishes at large
u). If we have Em − b cos θR < 1/2, then the particle bounces back. It starts
a new oscillation well described again by the integrable Hamiltonian (25) but
with a small change of initial conditions. The trajectory return again at the
same maximum amplitude but with another value for θR, again the particle
may dissociate or bounce back and so on... Considering the values of θR at
the maxima of amplitude becomes random, this model considers the transient
chaotic behavior observed for the unbounded stochastic layer as generated by
small random kicks at its maximum amplitudes.

According to this description, when the maximum energy (37) transferred to
the Morse potential plus the maximum pinning energy |b| of the rotor, is larger
than the dissociation energy 1/2, Then, we obtain that chemical dissociation
occurs when 1 − δ < IR(0) < 1 + δ where δ2 = 2|bλ2|/(1 − 2|b|) ≈ 2|bλ2|
for |b| small. Thus for the example of fig.7 where b = λ = 2.10−2, we obtain
2δ ≈ 8.10−3 which roughly corresponds to the observed peak width.

6.4 Absence of Chemical Dissociation at Large Coupling

At large coupling, the energy landscape of the model is obviously strongly
affected. However, the dissociation energy is unchanged. It is interesting to
test again if chemical dissociation still may occur in equivalent conditions
that is with the dissociation energy 1/2 as initial energy and the same pinning
energy |b| (which yields the maximum kinetic energy to the particle). We
observe that chemical dissociation disappear.
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The energy flux received by the Morse oscillator is

dHM

dt
=

dHM

dIM
İM = −(1 − IM)

∂H
∂θM

where H is given by eq.23. Then,

dHM

dt
= λ(1 − IM)

∑

n≥0

an(IM)n sin nθM cos θR

When averaging over the fast variable θ0, we obtain the average energy flux

<
dHM

dt
>≈ λ

2
(1 − IM)a1(IM) sin θ

When we have perfect TET, the phase difference between the rotor and the
Morse oscillator is θ = θR − θM ≈ π/2. The perfect phase coherence between
the rotor and the Morse oscillator maintains the energy flux positive at its
maximum value all along the transfer. Thus, at small coupling λ, the situation
of targeted energy transfer corresponds to the fastest possible energy transfer
between the rotor and the Morse oscillator.

When the coupling λ increases, IM , IR and θ are not slow variables anymore,
so that the integrable hamiltonian (25) obtained by averaging over the unique
fast variable θ0 becomes a poor approximation of (16).

We numerically tested the behavior of the system with the same initial condi-
tions (θR(0) = π/2, θ̇R(0) = 1, u(0) = u̇(0) = 0) when increasing λ from small
values while keeping the available energy |b| for dissociation constant.

Actually, we observe initially that when λ increases from small values, the
characteristic time for energy transfer decreases proportionally to 1/|λ| as ex-
pected from eq.33 and subsequently chemical dissociation rapidly occurs after
a short chaotic transient of few energy oscillations as shown fig.3. However at
larger values when λ approaches from below a critical value λc ≈ 0.77, the
duration of the chaotic transient sharply increases. The fast chaotic energy
oscillations becomes less and less efficient for producing the chemical dissoci-
ation. This effect is clearly due to the fact that the trajectory becomes less
chaotic (i.e. its Lyapounov exponent goes to zero) and tends to be quasiperi-
odic. For λ > λc, the trajectory of the system becomes bounded and perfectly
quasiperiodic. It is then clear that chemical dissociation will never occur even
over very long time.

We demonstrate this behavior by exhibiting a Poincaré map of the dynamics
of the system. We consider the 2D manifold M imbedded in the 4D phase
space (θR, pR = θ̇R, u, p = u̇) defined by θR(0) = π modulo 2π, θ̇R(0) ≥ 0 and
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-1 1 3 5u(tn)

-1

1

.
u(tn)

Fig. 8. Projection of the sequence of points Pn = P (tn) in the plane (u, u̇) generated
from the trajectory with initial conditions (θR(0) = π/2, θ̇R(0) = 1, u(0) = u̇(0) = 0
for λ = 0.764 and b = 0.02.

the total energy (16) H(θR, pR, u, p) = 1
2

corresponding to the initial energy
at TET. Any point P in this manifold can be represented uniquely by its
projection in the 2D plane PM(P ) = (u, u̇). This projection is restricted to
the domain D defined by

1

2
u̇2(0) + VM(u(0)) ≤ 1

2

We consider the return map F(P ) : M → M as the first point which returns

in M for the continuous trajectory P (t) =
(

θR(t), θ̇R(t), u(t), u̇(t)
)

generated
with the evolution eqs. 18 and 19, by the initial conditions

P (0) =
(

θR(0) = π/2, θ̇R(0) =
√

1 − V (u(0)) − u̇2(0), u(0), u̇(0)
)

Defining the discrete monotone increasing sequence of times tn by the con-
dition θR(tn) = π modulo 2π and θ̇R(tn) > 0, then we obtain recursively
F(P (tn+1)) = P (tn). We plot the projection of this sequence of points of the
sequence of points Pn which have coordinates (u(tn), u̇(tn)). Since dθR(0) ∧
dpR(0)+ du(0)∧ dp(0) = dθR(t1)∧ dpR(t1)+ du(t1)∧ dp(t1) and since θR(0) =
θR(t1) = π is fixed, we have in M, du(0) ∧ dp(0) = du(t1) ∧ dp(t1), which
implies the projected return map of F in D is symplectic (i.e. area preserving
in 2D).

Figs.8 and 9 show two examples of the obtained distribution of points Pn. Fig.8
is obtained for λ smaller but close to λc. The distribution of points Pn projected
in D is still clearly erratic although they tend to cluster around a closed curve.
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Fig. 9. Same as fig.8 but for λ = 0.78.

The existence of the unbounded stochastic layer is clearly visualized. Actually,
the number of points Pn, which appears within the bounded frame shown in the
figure, is finite because for n large enough Pn escapes to infinity but however it
is large. Indeed, when the particle escapes at infinity from the Morse potential,
the rotor angle oscillates periodically around the value 0 modulo 2π and does
not reach the value π anymore. Thus, the number of points appearing within
the frame is small when λ is small because chemical dissociation occurs after
few energy oscillations. When λ approaches λc from below, this number grows
and becomes very large as can be seen on fig8. It diverges at λc.

Fig.9 which is obtained for λ larger and close to λc, shows that within the dot
size accuracy, the number of points in the frame becomes apparently infinite.
Their distribution is dense and uniform on a thin smooth closed curve. This
result implies that this curve is invariant by the Poincaré map transformation
F and thus is the section of an invariant KAM torus by the manifold M. The
trajectory of the system for this initial condition is quasiperiodic and bounded
and the Poincaré map F is homeomorphic to a rotation on a circle with an
angle incommensurate with 2π. As a result, no chemical dissociation can occur
in that case.

In conclusion, it appears that ultrafast chemical dissociations by TET can
operate efficiently only when the coupling is not too large. There is an optimal
coupling where chemical dissociation becomes faster.
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7 Some Comments on Quantum aspects

It was shown on some examples in [36], that TET may persist in quantum
models when a sufficiently large number of quanta is involved, and that the
classical behavior is already well recovered for a relatively small number of
quantas. Then, it corresponds to the tunneling of high level excitation from
the donor oscillator to the acceptor. Actually, this transfer is not direct but
is done through a finite sequence of almost degenerate intermediate quantum
states connecting the states with a maximum energy on the Donor and on
the Acceptor respectively (these degeneracies appear through semiclassical
quantization of the classical system when the detuning function (3) vanishes).
However, no chemical dissociation was involved in the studied example where
the energy wave packet was only oscillating back and forth with however a
slow defocusing in the quantum case.

Considering the rotor-Morse oscillator model as quantum, it is supposed to
deal with large amount of energy involving many quanta of energy and we may
believe to be in proper conditions where the classical approximation should
be good. However, we are in a situation where the chaotic behavior appeared
to be essential for chemical dissociation in the classical case. The question is
to know if their will be quantum manifestations of this classical chaos which
are essential or if the quantum dissociation simply reduces to a tunnelling
problem.

With that respect, it is interesting to note that our rotor-Morse model can
be easily quantized in the uncoupled case (λ = 0). The eigenenergies of the
bound states of the quantum Morse oscillator with potential (7) are exactly
known [37,38]

E(M)
n = (n +

1

2
)h̄ωe − (n +

1

2
)2 h̄2ω2

e

4De
(38)

The Morse potential has a finite number ne+1 of bounded states |n >M where
0 ≤ n ≤ ne with

ne = int(
2De

h̄ωe
− 1

2
) (39)

( int denotes integer part). It can be noted that the Morse potential is one
of the rare potentials where the semiclassical quantization[40] is exact since
E(M)

n = HM((n + 1/2)h̄) where HM is given (12). For having at least one
bounded state in order the chemical bond to exist, we should have ne ≥ 0 or
4De > h̄ωe. Actually, we shall assume that ne is substantially large (typically
ne > 5 is sufficient) which is generally true for strong chemical bonds.

The quantum levels of the free rotor corresponding to the classical Hamiltonian
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(13) are
E(R)

n = n2δR (40)

where δR = h̄2

2JR

and integer n now runs from −∞ to +∞. The corresponding

normalized eigen states are |n >R= einθR/
√

2π. Again, the semiclassical quan-
tization is exact for the quantum rotor since E(R)

n = HR(nh̄) [40]. Note that
these states are twice degenerate since n can be either positive or negative.
This is the quantum counterpart of the fact that in the classical TET occurs
independently of the direction of rotation of the rotor.

If one consider, the energies E(n)
p of the quantum states |p >R ⊗|n − p >M of

the whole system where the Morse oscillator is in its pth excited states and
the rotor in its (n − p)th excited state with 0 ≤ p ≤ n, we have

E(n)
p = E(M)

p + E
(R)
n−p = HM((p +

1

2
)h̄) + HR((n − p)h̄) (41)

The discrete function

ǫ(Q)
p = E

(n)
0 − E(n)

p = p(2nδR +
h̄2ω2

e

4De
− h̄ωe) + p2(

h̄2ω2
e

4De
− δR) (42)

considered versus p is the quantum analogous of the detuning function. When
the classical condition for TET

δR =
h̄2

2JR
=

h̄2ω2
e

4De
(43)

is fulfilled, we get ǫ(Q)
p = pδR((2n + 1) − h̄ωe

δR

) which vanishes when

2De = (ne +
1

2
)h̄ωe

and n = ne In that case, the last bounded state of the quantum Morse potential
is marginally bounded.

Thus, when the rotor is chosen initially in its ne quantum state, there is a path
of exactly degenerate quantum states which brings the Morse oscillator from
its ground state to the marginal quantum state at the limit of dissociation 5 .

When the coupling parameter λ is not zero but small, the Hamiltonian con-
tains small off-diagonal terms which couples this chain of ne + 1 quantum
states and further to the continuum of extended states of the quantum Morse
oscillator which suggest that the tunnelling of the particle out of the Morse

5 Note however, that this is a peculiarity of our model where the semiclassical quan-
tization is exact. In general, the quantum TET conditions involves small quantum
corrections when compared to the classical one.

32



potential should be quite easy in case of classical TET. There is no reason to
believe that quantum manifestation of the classical chaos are still important
for this quantum chemical dissociation. Then, classical TET should manifest
as a sharp peak in the quantum yield of the chemical dissociation as a func-
tion of the initial energy and of the rotor or the Morse oscillator parameters.
The maximum of the quantum yields should correspond to the situation with
quasidegenerate pathway of quantum states. This is nothing but the quantum
correspondence of the classical chemical expressway.

It is worthwhile to perform more analytical and numerical investigations in
order to estimate precisely the quantum yields of this chemical dissociation
and its selectivity.

It should be noted that because of the double degeneracy of the quantum states
of the rotor and since quantum states can be linearly superposed we should
also expect chemical dissociation if the initial quantum state is a arbitrary
combination of the state |nR >R ⊗|0 >M and | − nR >R ⊗|0 >M The careful
analysis of this quantum rotor-Morse oscillator system is left for further works.

8 Final comments and summary

We have introduced the concept of conjugate nonlinear oscillators or local
modes which may be viewed as a nonlinear extension of the concept of linear
resonance although it requires more conditions involving also the nonlinear-
ities. Weakly coupled pair of conjugate nonlinear oscillators may exchange
coherently a well defined amount of energy only (Targeted Energy Transfer).

Using this effect, a simple pedagogical model is shown to induce selectively
the chemical dissociation of a selected bond. In our example the chemical
bond is modelled as a Morse oscillator and the conjugate oscillator is a rotor
with appropriate momentum tuned for conjugacy. For a well defined amount
of energy injected to the rotor which is precisely the dissociation energy, this
energy is coherently and completely transferred to the Morse oscillator and
then induces chemical dissociation. This TET effect is highly selective because
it can break only a bond which is conjugated with the rotor while it would let
intact any other bond. Nevertheless, this model clearly needs improvements
for application to real systems.

In order to fix the ideas, let us consider a physical example of rotor and the
characteristics of the chemical bond it could dissociate. Biomolecules contain
many methyl groups C − C − H3 which terminates carbon chains and forms
rotors. The three protons forms a rather rigid trihedra with axis the C − C
bond which may rotate around its axis. They are more often moving in three
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fold symmetry potential but sometimes could be almost free depending upon
its environment.

The length of the bond C −H is 1.08 Å=1.08 10−10 m thus a ≈ 1.08/
√

3 Å is
the distance of the proton from the axis of the C − H3 Rotor. The mass
of the proton is mp = 1

6.02
.10−26 kg. The velocity of the proton is aφ̇ and

its kinetic energy is 1
2
mpa

2φ̇2. The rotor kinetic energy which involves three

protons is 3
2
mpa

2φ̇2. Because of the 3-fold symmetry, one should consider the
new angle variable θR = 3φ since a rotation by 2π/3 brings the rotor in the
same state. Then, EK = 1

6
mpa

2θ̇2
R. Consequently, JR = 1

6
mpa

2 ≈ 1.07 10−48.
TET condition (15) or (43) becomes δR = 0.52 10−20 Joules = 3.2 10−2 eV.
Since at quantum TET, we should have 2ne + 1 = 4De/(h̄ωe), we obtain the
dissociation energy De = (ne + 1/2)2δR ≈ n and h̄ωe = (2ne + 1)δR for a
chemical bond conjugate to the −C − H3 rotor where ne is the number of
quantum vibrational states of this chemical bond. In order to fix the ideas,
let us choose ne = 5, then h̄ωe = 3.52.10−1 eV which is a rather large phonon
frequency even beyond the maximum physical range. Then, De = 0.988 eV
which is a quite small dissociation energy especially for such a rigid bond.
There are apparently no physical chemical bonds in this range of parameters.

However, a forthcoming paper demonstrates that TET may be also induced
by Fermi resonance that is when the rotor frequency is a higher harmonics
of the Morse oscillator frequency [41]. Then, chemical dissociation with the
same model but different parameters remain almost as much as efficient even
when resonance occurs by the fourth harmonics. We shall see that TET by
Fermi resonance will turn to be more efficient for breaking chemical bonds
with larger energy.

Actually, many kinds of heavier rotors involving atoms other than protons or
even bigger molecular groups could be found in biomolecules. Those rotors in
principle could break selectively the more energetic chemical bonds which are
conjugate. It is also worthwhile to note that despite our model is classical, our
selective chemical dissociation should be in principle sensitive to the isotopic
substitution of the atoms involved since the frequencies of the normal modes
would be changed which could break conjugacy. Otherwise, the origin of the
small coupling is not important provided it is small. It could be due to a direct
mechanical coupling by chemical groups or it could be electrostatic, dipolar,
quadripolar ... or else.

We also briefly discussed in that paper, the effect of the quantum corrections,
and concluded that this selective dissociation effect should manifest as a sharp
peak in the quantum yield. Quantum corrections should not introduce major
changes concerning the qualitative description of the classical process.

Coupling this two degree of freedom system with a complex environment is
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likely much more important. As we explained in section 2, one of the effect of
the environment is to transform the anharmonic oscillators into local modes
(at least for a coupling not too large). In other words, this local vibration
is then “dressed” with a collective vibration of the environment which de-
cays exponentially at long distance. The consequence is that Hamiltonians
HR(IR) and HM(IM) are renormalized. Thus, the condition for TET should
also renormalized and fulfilled for different parameters.

It should be also noted here that because of the fine tuning of TET, small
change in the environment may be sufficient to detune or retune the two
oscillators for conjugacy. This effect may be used to control the chemical dis-
sociation thus opening or closing the chemical expressways with small exter-
nal chemical or physical perturbations (pH, electric field, specific adsorbed
molecules, etc...).

The second important consequence is due to the possible existence of many
nonconjugate resonant modes in the environment. The simplest (but empir-
ical) model which can be done for describing this complex situation, is to
consider the environment as a harmonic phonon bath (with continuous spec-
trum) which results into extra damping terms in the dynamical equations. If
the energy dissipation during TET is not too large (at the scale of the coupling
energy), substantial energy transfer may still occur. We plan to correct the
tuning conditions for TET in presence of damping and to find under which
conditions, chemical dissociation may still be persist.

The third important consequence which is the most challenging is to under-
stand the role the thermal fluctuations on the selective chemical dissociation.
As already noted, the phonon bath could be modelled in the dynamical equa-
tion of the model as a random Langevin force. As the temperature increases,
this random force is expected to gradually destroy the relative phase coher-
ence of the rotor and Morse oscillator which is essential for TET. Then, energy
transfer from the rotor to the Morse oscillator becomes gradually stochastic
reducing the selectivity of the chemical dissociation. On contrary, if the os-
cillators are not well tuned one with each other, small thermal fluctuations
may help at the beginning TET favoring chemical dissociation but only up to
a certain certain temperature. Higher temperature would disfavor again the
chemical dissociation. When the temperature increases too much and or when
the oscillators are far from conjugacy, our model simply return to an genuine
Kramers model which is essentially driven by a Brownian force and where the
chemical expressways which could exist at low temperature have been washed
out because of dynamical decoherence.

In any case, studying in details the effect of thermal fluctuations should reveal
a variety of non trivial and interesting features interpolating low temperature
coherent models with the standard Brownian theory of chemical reactions.
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Their investigation is left to further works.

In summary, although this simple model in this form will likely need improve-
ments for applications, and despite we have no clearly identified example to
propose in real systems, we believe that this model is conceptually very in-
teresting. It explicits a simple mechanism which could produce a chemical ex-

pressway and thus show that this concept should not be considered as purely
speculative. It is an intrinsically nonlinear phenomena which cannot exist in
linear models. We hope that this result could open new directions for un-
derstanding biochemistry and especially concerning the high selectivity (and
sensitivity) of many biochemical reactions while conventional approaches seem
to fail.
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