N

N

Modeling and Testing of Web Based Systems
Ana Rosa Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, Fatiha
Zaidi

» To cite this version:

Ana Rosa Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, Fatiha Zaidi. Modeling and Test-
ing of Web Based Systems. Springer. EMERGENT WEB INTELLIGENCE: ADVANCED SEMAN-
TIC TECHNOLOGIES, Springer London, pp.355-394, 2010, Advanced Information and Knowledge
Processing, 10.1007/978-1-84996-077-9_ 14 . hal-00706157

HAL Id: hal-00706157
https://hal.univ-brest.fr /hal-00706157
Submitted on 9 Jun 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.univ-brest.fr/hal-00706157
https://hal.archives-ouvertes.fr

Modeling and Testing of Web Based Systems

Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mosalend Fatiha Zaidi

Abstract The success and the massive adoption of Web applicatiorseavides are
pushing the community to increase and enhance their dawelofs. By that way,
the complexity and size of Web based systems are definitelyigg. Accordingly,
the need for sophisticated and complete methods used tdheeseliability and
security aspects of Web systems is increasing as well. Q@aid relevant test cases
development can achieve up to 70% of the total cost of theepteyhen these test
cases are hand crafted. Because of this, the industry amedbéarch community are
making big efforts to automate test cases generation. Shheireason why the test
generator must be supplied with a precise and unambigueonargie description
of the implementation under test (IUT), i.e. a formal moddlis chapter presents
two methodologies to attain automatic test cases genardkiwe first one applies
extended finite state machines to model Web services cotigrodescribed in WS-
BPEL, while the other one uses UML to model Web applicatidogether with the
formal models of the web systems, this chapter presentsatgtior conformance
and non-regression test generation.

Ana Cavalli, Mounir Lallali, Stephane Maag and Gerardo Mesa
Telecom & Management SudParis - SAMOVAR CNRS UMR 5157, 9 ruarles Fourrier,

F-91011 Evry Cedex.
e-mail: {Ana.Cavalli, Mounir.Lallali, Stephane.Maag, Gerardoriles @it-sudparis.eu

Fatiha Zaidi
LRI ; Univ. Paris-Sud, CNRS
e-mail: Fatiha.Zaidi@Iri.fr

Research supported in part by the French National Agency ofaRasevithin the WebMov
project: http://webmov.lri.fr

2 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Megaland Fatiha Zaidi

1 Introduction

Web-based systems (services and applications) are gamiugtry-wide accep-
tance and usage. They are very popular because they off@le@nmteroperability
between systems. Using Web-based systems is relativeyyagaksinexpensive for
companies and institutions. It makes it easier for them tveskheir expertise, co-
operate by outsourcing tasks between them and making tioginipatible software
systems interoperable. It hardly matters what operatigtesy, database or other
characteristics their systems rely on. The idea behind béed systems was to
create an interface that describes what a system does. &verstion with its input
to the system and output obtained from the system is descrb®ther system can
access the Web-based system, viewing it as a black box, by usernet as the
channel of communication. As the Web-based system impl&tiens grow in size
and complexity, the necessity for testing their reliapibind level of security are
becoming more and more crucial.

Besides knowing whether a given Web-based system satitfi@aictional re-
quirements, it is also important for a user to know whetheraystem behaves ap-
propriately when interoperating with others. Some of thesions that need be
answered are: (i) does the host of a selected Web-basedrspsieave correctly
without any implementation error? (ii) does the Web-bagestesn behave correctly
when new services are integrated to the network? (iii) does¢lected Web-based
system tolerate erroneous behavior of other services whibnwit must interoper-
ate? (iv) does the selected Web-based system produce stitptican cause other
components to fail?

Frequently we can find hand crafted methodologies for comdmice testing. Al-
though in most of the cases the execution of the test casetomated, the biggest
part of the test cases generation process is hand made. thederconditions, the
production of quality and relevant test cases can be exgegsimpared with the
cost of the global project (30% to 70%). Because of this, thiristry and the re-
search community have been working and making efforts toraate test cases
generation. So that a machine can generate the test caseeanedcle to assign the
verdict for the tests, one needs to feed it with a descrippiothe implementation
under test (IUT), as precise and less ambiguous as posséblaformal description
with a precise semantic.

The main contribution of this chapter is the presentatiom afiethodology to
model and test Web-based systems. For the modeling of Waddbsystems, we
have chosen UML (Unified Modeling Language) [35] to specigbwapplications.
The Web Services Business Process Execution Language (\#E)[B#] has been
chosen to specify services. This last language is well adafar service compo-
sition description. For testing purposes, we propose a msed approach that
relies on formal description languages. WS-BPEL descrigtiare translated into
another formalism, the Time Extended Finite State MacHioed/eb Services (WS-
TEFSM), which is well adapted for the modeling and the testihWeb-based sys-
tems. Once the formal model has been designed (in WS-TEFSMvikr) Lbased

Modeling and Testing of Web Based Systems 3

on formal testing relations and on a fault-model, we protilt methods and its
associated algorithms to generate the test cases. Afeswidire test cases can be
automatically or manually executed on the real implemémai.e. the deployed
Web-based system.

The tests which are presented in this chapter, are confa®rard non-regression
tests. By conformance testing we mean the assessment thadécpconforms to
its specification. Test cases are designed to test partiasieects of the Web-based
system, which are called test purposes. Non-regressitingesonsists of testing
modified software to detect whether new errors have beeoduated by the modi-
fications, and provides confidence that the modificationsale@hange the system
behavior.

The proposed methodology is composed of two approachesyasesl on WS-
TEFSMs models and the other on UML models. The methodologgdan the
UML models has been applied to a real case study, an openesetigarning
platform dotLRN [13]. Then, test generation methods hawentepplied to them.
Numerous experiments have been performed for conformamt@&e@n regression
testing, based on automatic test generation but also with beafted tests using
TCLwebtests.

In this chapter, we do not address the Web semantic. Our waiated to test-
ing and in particular to automation of testing Web-basedesys to establish their
correctness with respect to their specifications. To perftre conformance and
non regressions testing, it exists languages and standard$erence to describe
the Web-based systems and from which we generate the tesexaaute them on
the real implementation. The languages that are used irchizgter are a subset of
UML and WS-BPEL. The languages that are used in the domainnoéistc Web
are very specific and address particular objectives thahair¢hose addressed by
this chapter. Nevertheless, we give below some referenusnéormation about
the semantic Web that can help to understand what this dornaers and to estab-
lish the differences with the work performed here.

The semantic Web is the abstract representation of dataeowhld Wide Web
to make it easily processed by machines, offering more w@ftediscovery, automa-
tion, integration, and reuse among various applicatiod$ [5is different from the
Web that is essentially syntactic. It aims to facilitate twenmunication human-
machine and machine-to-machine and the automatic datagsing. The seman-
tic Web is based on some standards Ontology is the core ofaheaic Web. It
consists of a set of concepts, axioms, and relationshigsdtecribe a domain of
interest (e.g. system model, data model, etc.). Ontologynerring is supported
by primary semantic Web standards and languages (e.g. RE§o(lRce Definition
Framework [49], Web Ontology Language (OWL) [48]).

The semantic Web and Web services are complementary. Theefaims at
providing a semantic interoperability of content, while®&ervices aim at giving a
syntactic interoperability of data exchanges. In addjtsmveral information needed
by the automation of design and implementation of Web sesv{tike description,
publication, discovery, selection, execution, compoaitimonitoring, replacement,

4 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Megland Fatiha Zaidi

compensation, etc..) are either absent or described to lgeusad or interpreted
by humans. Such information can be provided by the semangic Wa way that
machines can understand and process it.

Several semantic types can be considered in the Web sexareain [5]: (i)
functional semantics: (the semantics of service signdtopaits/outputs)); (ii) data
semantics (annotation of data involved in Web service djmeraising ontologies);
quality of service semantics (the semantics of differeralityyaspects, e.g. dead-
lines, cost of service); (iv) execution semantics (thesaasgics concern message
sequence, flows, effects of service invocation, etc); (vhaio semantics: the use of
domain-specific semantics can ameliorate the discovergeledtion of services.

Some approaches [5] have been developed to introduce semtmiVeb ser-
vices by using: WSDL-S (Web Service Description Languagl ®gmantics) [52],
OWL-S language (Ontology Web Language for Services) [51], V@&(Web Ser-
vices Modeling Ontology) [53].

As stated before, the semantic Web and our work addressatiffebjectives.
Indeed, Semantic Web service technologies are developedier to give richer
semantics to services leading to the automation of the Welicgeusage process.
Nevertheless, there exist some works that try to applyrtgs$tichniques to semantic
Web services as in [39, 59], and especially in automatic amsitipn of semantic
Web Services [43, 60].

The chapter is organized as follows: in section 2, basic eptscof Web-based
systems and testing techniques are presented. This sattmimcludes the presen-
tation of related work. Section 3 presents model-basethtgttchniques starting
with a presentation of the modeling languages WS-BPEL, WSSINE-and UML,
used to describe the expected requirements or propertibe ¥fleb-based systems.
In section 4, Web services composition mechanisms and gheémeration algo-
rithms to generate tests from WS-TEFSMs and UML models arsepted. Sec-
tion 5 presents the case study, the dotLRN system, and thgemeration from an
UML model of the system by the application of the methods ded in Section 4.
Finally, we conclude the chapter and illustrate some pets@s in section 6.

2 Preliminaries

This preliminary section is devoted first to the presentatibbasic concepts related
to the Web-based systems. Then, the testing vocabularytadetke especially in
focusing on the formal aspects. Finally we present thegdlatorks in that domain
in order to illustrate the contribution of the Web-based oamity.

Modeling and Testing of Web Based Systems 5

2.1 Definitions

According to W3C definition, a Web service provides a standaedns of inter-
operating between different software applications. Wekises deal with making
heterogeneous applications interoperate. A standardizgdof integrating Web-
based applications is ensured by the XML (eXtensible Markapguage) [47],
SOAP (Simple Object Access Protocol) [55], WSDL (Web Seridescription Lan-
guage) [7] and UDDI (Universal Description, Discovery antegration) [33] that
are open standards over an Internet protocol backbone. X$Mked to tag the data,
SOAP is the protocol used to transfer the data, WSDL desctiteeavailable ser-
vices and UDDI is a kind of registry.

Used primarily as a way for businesses to communicate with ether and with
clients, Web services allow organizations to communicat& dvithout intimate
knowledge of each other system behind the firewall. The coatigin of services—
internal and external to an organization—makes up a seoriegited architecture.
The composition of Web services became this last decadejactds interest as
well as for researchers then for industrials. Several alsoof languages to pro-
gram and/or to specify Web services composition came up \arwhg them, as pre-
viously mentioned, the WS-BPEL language. This latter is walbred to address
the composition of Web services and it is also widely used. [BBe composition
is also commonly known a®rchestrationand this is carried on at a single partner
level.

While Web services are dedicated to the interactions betdifenent programs,
Web applications are commonly defined as a collection otkllyi connected Web
pages managed as a single entity reachable via a Web brovesea aetwork such
as the Internet or an Intranet [50]. A Web applications is bksoftware application
implemented in a browser-supported language (such as Hle\NaScript, Java,
etc.) executed through a Web browser.

We can notice that both types of systems, i.e. Web serviceVésiol applica-
tion rely on their access and availability through Interawed on specific dedicated
languages. In our case, we consider the composition of Welres in order to pro-
duce more complex ones. The language to describe the workfitive composition
is the WS-BPEL. The Web application language is the HTML amdHe modeling
we use UML diagrams.

2.2 Testing Techniques

After the system has been implemented, the implementatiost tme verified to

conform to its specification, to ensure that the system vgéirate correctly. This
procedure is known as conformance testing, and can be atisbeg by applying

a sequence of inputs to the implementation, by means of amrelttester, and by
verifying if the sequence of outputs is the one specified.

6 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Megaland Fatiha Zaidi

If a test sequence is capable of detecting all erroneousimgtations, it is said
to providefull fault coverage. There are many methods for generating aitcatly
a test sequence to check a given implementation againstcifispgon. Most of
the methods used in this chapter have been developed iratinevvork of protocol
engineering, since protocols are normally programs foctvprecise specifications
can be defined. However, these techniques can be adapteg@@iatiauccessfully
to the test of Web services and applications.

2.2.1 Basic concepts

A program specification is typically composed by a contrat pad a data part. This
chapter deals with the control part only; other approachestented to the analysis
of control and data dependencies [21]. The control part abgnam, which will be
referred as program specification, can be modeled as a Sizte Machine (FSM)
with a finite set of stateS= {s1,s, - ,s}, afinite setof inputs={as,ay, - - - , &},
and a finite set of outpu® = {x1,%2,--- ,Xm}. The next statéco) and output(¢)
are given by a set of mappings: Sx| — Sand¢ : Sx| — O. The FSM is usually
also represented by a direct gra@h= (V,E), where the seV = {vi,vo, -+ ,Vn}
of vertices represents the set of steeand a directed edge represents a transition
from one state to another in the FSM. Each edgé is labeled by an inpua, and
a corresponding outpug,. An edge inE from v; to v; which has labed, /x4 means
that the FSM, in stats, upon receiving inpué, produces outputy and moves to
states;. A triplet (s,a, /Xq,Sj) is used in the text to denote a transition.

A FSM is said to beully specifiedis from each state it has a transition for ev-
ery input symbol, otherwise the FSM is said tofmatially specified If a FSM is
partially specified and a non specified input is applied, utideCompleteness As-
sumptionthe FSM will either stay in the same state without any outpusignal
an error. The initial state of a FSM is the state the FSM ernitersediately after
power-up.

States is said to be weakly equivalent to stateif any specifiednput/out put
sequence fos is also specified fos;. If two states are weakly equivalent to each
other they are said to be strongly equivalent. A FSMiéserministic if for each
states € S with two associated transitiorfs;, a, /Xq,Sj) and (s, aw/Xp,sk) where
a # ay ands; # s

A graph representation of a FSM is depicted in Fig. 1. For tBsFepresented,
| ={a,b} andO = {x,y}.

2.2.2 Conformance

Since the implementation is tested as a black box (meanatgwi do not have any
internal views of the system), the strongest conformanie¢ioa that can be tested
is trace equivalencetwo FSMs are trace equivalent if the two cannot be distin-
guished by any sequence of inputs. That is, both implementand specification

Modeling and Testing of Web Based Systems 7

alx b/x
aly bix
aly
2) 3
b/x

Fig. 1 A Graphical Representation of a FSM

will generate the same outputs (i.e. trace) for all specifipdt sequences. To prove
trace equivalence it suffices to show that (i) there is a s@hpfementation states
{p1, P2, , Pn} respectively isomorphic to specification stafsg, s, ,s}, and
(ii) every transition in the specification has a correspogdsomorphic transition in
the implementation. The Figure 2 illustrates the goal ofatweformance testing.

Conformance testing consists in making the implementatiaaer test (IUT) to
interact with its environment. This environment is simathby a tester (cf. Fig. 3)
that executes the test cases and stimulates the IUT. Théaites of the tester are
called Points of Control and Observation (PCO).

Conforms?
Specification |¢<———— IuT
Fig. 2 Conformance Testing Scheme
IuT PCO Tester | Verdict (passfail)

Fig. 3 Role of the Tester

2.2.3 Models of faults

The types of faults detected by methods based on input/bE§Ms are output and
transfer faults. An output fault occurs when a transitionduces an unexpected

8 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Megaland Fatiha Zaidi

output for a given input; that is, a transition specifiedsas, /xg, sj) is implemented
as(s,ar /X, Sj) wherexq # xw. A transfer fault occurs when a transition leaves the
implementation in the incorrect state; that is, a transitipecified agp;,a; /Xq, ;)

is implemented aépi, ar /Xq, Px) Wherep; (the state that should implemers$ and

pk are not equivalent. Note that a single transition may inaotw an output and
transfer fault.

2.2.4 Automatic test Generation

The purpose of test generation is to produce a sequenceut$i(gnd corresponding
outputs), called a test sequence, which can be applied togleinentation to verify
that it correctly implements the specification.

There is a number of necessary assumptions that must be mader to make
the experiment possible: (i) the specification FSM is sthpregnnected, so that all
states can be visited; (ii) the specification FSM does noe lsrongly equivalent
states (it is minimal); (iii) there is an upper bound on thenber of states in the
implementation FSM (otherwise one could always constrathehine which would
pass a given test sequence by using as many states as thétanaitons in the
sequence).

2.3 Related Works

Several techniques to perform testing have been propogbe iiterature. We first
describe what it exists in the domain of Web applications\aadontinue with the
Web services and particularly with Web services compasifidhe considered tests
are conformance and non regression tests. As mentionetbpséy conformance
tests establish that the implementation respects itsfaga@n. In other words, we
interact with the implementation by feeding it with inputedacompare the outputs
of the implementation to the expected answers. The relétianexists between the
specification and the implementation is an implementati#ation. The specifica-
tion is produced from an informal description of what thetegsis expected to do,
here the specification languages are UML and WS-BPEL. Thensekiod of test
is regression testing, that is the process of validatingifisoldsoftware to detect
whether new errors have been introduced into previoustgdesode, and provide
confidence that modifications are correct.

As the use of the Web applications is growing up, the intepestesting these
systems and the number of works is increasing as well. Ambagécent works
it can be quoted [1], work in which the authors survey sevaralysis modeling
methods used in Website verification and testing. In [27]eghodology of Model-
Driven Testing for Web application is presented. Moreoeencerning the testing
needed to help maintaining the stability of Web applicatjamumerous works are
using the regression testing approach. This testing tqalras well as conformance

Modeling and Testing of Web Based Systems 9

testing is important to apply to the open source Web apjtioatbecause of its
continuous developing speed and changeable user demamelsvark presented
in [57] proposes a method based on Slicing to avoid the rewgian of all the
regression test cases of a Web application, and selectthpisest cases that will
interact with the part of the Web application that have seffea change with the
insertion of the new code.

Several tools and methodologies have been developed tevadc automatic re-
gression testing on Web applications that do not have a f@pezification. Among
all the tools used to build the regression test cases, thethae can record the in-
teractions between the user and the Web application duriegtain time, or a well
defined number of interactions (e.g. to follow a link or to mitba form) are the
most popular. Selenium [12], for example is a tool in which titace of interactions
(i.e. the record) is written as HTML tables. However, for purpose it was needed
to obtain a trace flexible enough to be changed and re-usedeéasy and fast way,
for example a trace written in a scripting language. Tchesbf41] is a tool to write
tests for Web applications. It provides an API for issuingT#Trequests and pro-
cessing results. It assumes specific response values, takiitg) care of the details
such as redirects and cookies. It has the basic HTML paraimgjibnality to provide
access to elements of the resulting HTML pages that are ddedéesting, mainly
links and forms. The execution of a test case written in Tbhest will simulate
a user that is interacting with the Web application througiVeb browser. Using
the links and forms it is possible to add, edit or delete dath@Web application
by executing the test case script. There exists also a lobdfsithat have focused
their research on functional testing based on a formal medeth as [25, 28, 42].
We can also mention some Web application tools (e.g. OpedSATRWAPT [45],
SOASTA [44]). The listing of load/performance test toolglaffeb functional/ re-
gression test is presented in [46].

Regarding Web services, we survey the existing works for Wélices com-
position. As previously stated, in the area of Web servites design is the most
important phase of the orchestration layer. This is wheeed®scribes the complete
services behavior. The growing use of Web services makescggsary to ensure
that the behavior is correct. The common practice in the e&réa generate unit
and integration tests with tools such as SOAPUI [14] thattarged on empirical
approaches. In the last years, the software testing contynlias started to get in-
volved in the Web services domain. As a consequence, sewer8ks have been
published to try to bridge the gap between the usual Welntggtiactices and a
formal testing process. The empirical approaches thattdresed in the domain
give acceptable results but they have become more and mstig aod do not allow
to cover all the problems raised by such systems. Moreovenwgystems become
complex, such approaches offer only partial verificationd walidations. Conse-
quently, if we want to validate Web systems with an improvest toverage, we
need to introduce rigorous methods which neverthelessoocwonto the economical
constraints of the Web services development process. Tigmalrnature of Web
services requires to first validate them individually arst taem when integrated.

10 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

Industrial tools exist and are available to perform suchigiof tests. When complex
Web services are considered, we also need to deal with theséveltes composi-
tion or in other words, orchestration.

The current practice deals with the Web Service Descrigtemmguage WSDL.
WSDL is used to describe what a Web service can do, where deagsand how to
invoke it. In our case, we consider WS-BPEL that permits diesxag the control and
data flows; thus, allowing to study the behavioral aspediseofVeb service. Several
WS-BPEL activities are related to time constraints. So, vweslre take into account
such constraints for their modeling. Currently, in therhteire, we can find several
papers dealing with WS-BPEL specification and formal modeisNeb services.
Several models are described to transform the WS-BPEL spatiifns. In [56]
a transformation of WS-BPEL in an annotated deterministiitefistate machine
(FSM) is proposed. This formalism does not allow to captheetiming aspects of
some WS-BPEL activities and does not consider WS-BPEL va$abh [31] an-
other formalism is proposed that deals with variables, tktefitied Finite State Ma-
chine (EFSM), but no timing constraints are considered28j i formalism taking
into account timing constraints is proposed, the Web Serfimed Transition Sys-
tem (WSTTS). However, this formalism uses only clocks but adables. We can
also mention works that use different kinds of formalismd gl 19, 58]. In [19, 58]
Petri nets are used to specify the Web services. This fosmah not well adapted
for testing Web services composition because it resultsgiolal description that
lacks structure making it impossible to differentiate tbevice components.

In [4] an interesting approach is presented using RT-UML tmdai real time
aspects of Web service choreographies but this does nodesmschestration and
interoperability of services and components. The work gmeed in [15] is sim-
ilar to this one: to design a methodology based on WS-BPELmRbzation of
WS-BPEL language semantics is necessary to eliminate aitibgyand make ab-
stract operational specifications executable. Here arradisState Machine (ASM)
model is used but unlike FSM or WS-TEFSM [26] (Web Servicesedrixtended
Finite State Machine) models used in this work, it is notdiseexecutable and re-
quires not so evident translations, making it more diffitaltevelop testing tools.
The used Distributed ASM needs also to be extended with gmonstraints and
variables. Other not yet very advanced approaches exadt,aaiin [17] where WS-
BPEL is translated to Promela which is the input languag&eSPIN [20] model
checker, allowing test generation. These approaches ndegl developed and im-
plemented in tools where scalability and usability can duated.

3 Web-based system modeling

The proposed methodology is based on two main elements: ddeling language
and the generation methods. This latter will be detailedhéSection 4. The mod-
eling step provides a precise representation of the sydteendescription language

Modeling and Testing of Web Based Systems 11

used here to describe the composition of Web services is thdRER. language
for the reasons that have been mentioned above. In the caselofpplications,
the UML notation and in particular some diagrams have beesea This notation
is well-suited to describe Web applications which are oftemeloped using object
concepts. With UML we can represent the navigation by me&asavigation map
which provides information about the dynamic content ofhédeb page. Further-
more, the sequence diagrams that represent the exchangeebethe elements of
the system are good candidate to express the test objectives

We detailed below the modeling choices of both Web servioes\Vieb appli-
cations, note that the choices have been made taking intmatthe adequacy of
the language to the system to be described and also forggatiposes. Let us note
that both Web-based systems in our methodology need to befiyrdescribed for
testing generation methods which is one of our problematibe willing to deal
with such an approach is issued from our own experience isiniél projects. We
notice that the delays to produce a software or a new releaseaoming more and
more short. Furthermore in a competitive market the cliesfiiest cost reduction
in their management and maintenance costs. For all thesermea more automated
technique to generate tests is needed as hand-craftedtestsime-consuming ac-
tivity. Hence, as said, a model is the first step and represbkatspecification of the
system inputs and can be handled at a very early stage of tieéogenent cycle of
a Web-based system, i.e. from the requirement information.

3.1 Modeling of Web Services

To standardize the specification of a Web services compaosit8BM and other com-
panies have proposed the WS-BPEL language [34] that becagt®ihan OASIS
Standard [32].

WS-BPEL is a coordination and composition language thaturaptusiness in-
teractions between Web services. It can also be viewed askdlowo language for
Web Services. WS-BPEL provides constructs to describeraribyt complex busi-
ness processes. A WS-BPEL process can interact synchrgrayadynchronously
with its partners (i.e. client service or services that amdked by the WS-BPEL
process). The building blocks for a WS-BPEL process are tserifgions of the
parts participating in the process, in terms of data angities flow. A basic process
in WS-BPEL is defined as a root element, consisting of one oerobild elements
describingpartners links a set ofvariablesthat records the state of the process:-
relation Setsevent handlersfault handlers compensation handleendactivities
This latter defines the logical interactions of a processitngartners. The WS-
BPEL activities that can be performed by a business proostarice are categorized
into basic (e.gswait> , <exit> and<assign> activities),communication (e.g.
<receive> , <reply> and<invoke> activities) and structured activities (e.g.

1 PLATONIS (http://www-lor.int-evry.fr/platonis), ASK-IThttp://www.ask-it.org/.) and WebMov
(http://webmov.Iri.fr)

12 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

<sequence> , <flow> and<while> activities). For instance, thereceive>
activity waits for a message from a partner, and theply> activity sends
an answer for a message previously received witreceive> activity. The
<wait> activity waits for a specified amount of time before contirguivhile the
<onAlarm> WS-BPEL construct corresponds to a timer-based alarm.

We present in the next section the timed modeling of the Wehi&ss composi-
tion described in WS-BPEL.

3.1.1 WS-BPEL Timed Modeling Approach

A WS-BPEL process component implements a business procesg/gb service).
The behavior of a Web service is described by sequencesiaitiast their execu-
tion time and their semantic. For instance, tveait> activity is triggered when
the timeout occurs, thereply> of invocation may be considered as an instanta-
neous activity, while thereceive> activity may require an arbitrary amount of
time. To model this temporal behavior, we propose the WS-TERSBIich extends
EFSM with clock variables, state invariants on clocks aridriiies on transitions.
The time progresses in states, and transitions take no tirbe &xecuted. In order
to represent the time progress, a local clock is added in theM&8fSSM. It can be
initialized at the beginning of each activity to be execwaad can be reset at its end.
Moreover, in order to model an absolute time, a global cloekotedyc, is added
in the WS-TEFSM. It can be explicitly set to a certain valuehatlbeginning of the
WS-BPEL process execution, and is never reset later. In @aodeontrol the time
progress, we use time invariants in the states.

All WS-BPEL activities are modeled as instantaneous a@wigxcepgwait>
<receive> ,<empty> (with durationattribute) ancconAlarm> that are related
explicitly to a time notion. These instantaneous actisitige modeled, as instant
transitions calledaction transitions. These transitions are equivalent to assign th
time invariantc < 0 (wherecis a local clock initialized ta@erg to the source state of
the transition. In that case, the time cannot progress fdgihiirce state. Contrarily,
the non instantaneous activities are modelededaytransitions. They take certain
amount of time represented by time increment in the statefalfmved by their
immediate execution. It is semantically equivalent to adst fa clock invariant to
the source state of the transition depending on time, anonsi&c guards on the
clock variables of transition guards on WS-BPEL processatides.

For instance, thewait> activity and theconAlarm> element are used to rep-
resent timeouts. These constructs have two forms. In thefies(withfor attribute)
they are triggered after a duratidn\We associate in this case the invariart d to
the source state of the transition. In the second one (vith attribute), the transi-
tions are triggered if the current absolute time has theipéwalue (i.e. deadline
dl). We associate the invariagt < dl to the source state of the transition.

A transition priority is used to model interruptions in ré@mhe systems. In this
model, we use priority on transitions to model the fault Hargland the termination

Modeling and Testing of Web Based Systems 13

of the WS-BPEL process and its sub-activities. Each non at@uiivity can be
interrupted by adding an urgent transition from each statefiarticulaistopstate.
All the transitions of each WS-BPEL atomic activity have ahggt priority and
cannot be blocked or interrupted.d&laytransition has a lowest priority.

In order to introduce the Timed Extended Finite State Maehiuith Priorities
(WS-TEFSM), we need first to depict the clock valuation comcep

LetV afinite set of data variables. A valuatigioverV is a functionv:V — D\‘yl

that assigns to each variabte= V a value in the data variables dom@ﬁ". The
initial data variables valuation is noteg. V[V := X| denotes the data valuation
which updates the variableg = {vi,---,vn} and keeps the rest of variables (i.e.
V\ {v1,---,vn}) unchanged.

A clock valuationu over the set of clock€ is a functionu: C — R‘f' (noted by

ue R'f') that assigns to each clocke C a value inR .. The initial clock valuation
Up corresponds to the initialization to O of all clock variadléc € C, up(c) = 0.

We introduce in the following the formal definition of the Téah Extended Finite
State Machine with Priorities which is used to model the WEBPBrocess.

Definition 1 (WS-TEFSM). A machine WS-TEFSM is a tupleM = (Q,>,V,C,
Qo, F, T, Pri, Inv) where:

e Q= ({o,01, - ,qn: afinite set of states;

2 = a,/b,c,...: alphabet of the actions including symbats (output action) and
2m (input action);

V: finite set of data variables wheré = (v1,V, -+ ,Vi);

C: finite set of clocks wher& = (c1,Cp, -+ ,Cn);

(o € Q: initial state;

F C Q: finite set of end states;

T C Q x Ax 2%: transition relation that:

A: Set of transition action& x P(V) A @(C) x u x 2° where:

P(V) A @(T) : guard condition is logical formula on data variables and
clocks;

u(V): data variables update function;

2C: set of clocks to be reset.

e Pri:Tx Dg‘ — N> assigns to each transition its priority that respects tbekcl
valuationu;
e Inv:Q— @(C) assigns a set of time invariants (logical formulas) to tlaest

The actions in> represent an observable actions. The labégl > denotes an
internal action that is unobservable. We ndigthe set> U {t}.

In the WS-TEFSM model, the states are associated with stedeiamts that ex-
press simple clock conditions. The invariants of a stataishbe true when the

14 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

machine is in this state. This machine may remain in a stdtsgsas the clock val-
uation satisfies the invariant condition of the considetattsWe can assign a set of
time invariants to one state because it can be the soureeddtaéveral transitions
such asif> and<pick> activities. This set associated to a staie denoted by
Inv(g) = {e1,e,...}. We will write u € Inv(qg) to denote that the clock valuatian

satisfye | 3 g € Inv(q).

Each transition = g g; is annotated with a set of guards on
data variables and clocks (eapnd), actions (e.ga), data variable updates (denoted
V :=X) and a clock set to be reset (eR). The transition priority depends of the
time and can be dynamically updated with respect to timenesg It assigns a non-
negative integer value to each transition priority withp@s to a clock valuation.
An enabled transition can block another one if it has a highierity.

<conda,[V:=X;R]>

The WS-TEFSM semantic are defined as follows to be used in $erigéon of
the timed test case generation algorithm (presented in $4c®).

3.1.2 Semantic of WS-TEFSM

The delaytransition indicates that if the other transitions outgpfrom the same
source state have a lower priority, then the any action. hemtvords, the state is
not modified, but the machine increments the current valdkeo€locksd by ue d
(that represents a valuation where all clocks have beeanmented by the real value
d from their value iru). A delaytransition may affect the priority of other transitions
through the functiorPri and does not block any transition. The priority of tteday
transition is a constant valwera

The action transition having the highest priority, indicates thathié tcondition
condis evaluated to true, then the machine follows the transitip executing the
actiona, changing the current values of the data variables by thera¥ := X]
(i.e. vV = V[V := X)), resetting the subset clock(the clock valuatioru resets
each clock in the seR) and moving to the next statg. Particularly in the case of
the internal actiorr, the clocks remain unchanged and consequentlyu.

Lets,s € S In the following, we denote thdelaytransition bys:d> s&d, and
theactiontransition bys= <.

Definition 2 (WS-TEFSM Semantic).Let M be a WS-TEFSM = (Q, 2,V,C,
Qo, F, T, Pri,Inv). The WS-TEFSM semantic is defined by a labeled transition sys-
tem (LTS)Seny = (S, %0, ,=):

e SCQx R‘f‘ P DC/‘ is the set of semantic stat@g u,v) where:

— Qis a state of a machind;
— uis an assignment (i.e. clock values represented by cloakatiah u) that
satisfies one invariant of the stajéi.e. u € Inv(q));

Modeling and Testing of Web Based Systems 15

— vis a data values represented by data variable valusgtion

e 50 = (qo,Up, Vo) is theinitial state;
o [=5;U{d|deR,}isthe label set wheré corresponds to the elapsed time.
e = C Sx R, x Sis the transition relation defined by:

— actiontransition: Let(q,u,v) and(q¢,u’,V') be two states.
Then(q,u,v) = (d,u,V)if 3t=q M g € T such that
uccond U =uR~ 0], U €Inv(q),V =V[V := X]
Vt'=q seond d VR g’ € T,uecond =
(Pri(t,u) > Pri(t’,u)) v ((Pri(t,u) = Pri(t',u)) Arand(t,t’) =1t)
— delaytransition: Ther(q, u, V) 4 (q,ued,v) if
vo<d <d, upd e lnv(qg);
vi=(q <conda,[V:=X;R]> q,) cT

vo<d <d,ugpd €cond= Pri(t,ued) =0.

After defining a WS-TEFSM and its semantic, an overview of taagformation
of WS-BPEL into WS-TEFSM and two examples (e.g. activitieg) @esented.

3.1.3 Overview of WS-BPEL Mapping into WS-TEFSM

A WS-BPEL process always starts with tkg@rocess> element which con-
tains the workflow definition. It is composed of the followigtional children:
<partnerLinks> , <partners> , <variables> , <correlationSets> ,
<faultHandlers> , <compensationHandlers> and<eventHandlers>

The execution of sub-activities is carried out in paralletduse the fault, the event
and the compensation handlers can be carried out indepiynadérthe principal
<process> activity. If this is not the case, these sub-activities anechronized
by the tuple (sending, reception).

A transformation rule is defined for each WS-BPEL construtte Tecursive
mapping starts by transforming all the WS-BPEL constructs ipartial WS-
TEFSM. The WS-BPEL process model is based on the asynchrqrodsict of
the partial WS-TEFSMs of its sub-activities. This asynclosproduct represents
the parallel execution of the partial WS-TEFSMs where the&ysymchronized by
the tuple (sending/receiving).

The recursion result is a partial WS-TEFSM/ which can be represented as a
WS-TEFSMM by renaming thenitial stateqp by theinput stateq;,, adding the
output states ofQqy; to the final states sét and adding theglobal clock gc to
the clocks se€. The data variables skt is the union of the transformation of the
<variables> , <partners> and<partnerLinks> elements.

M = (Q,Z,V,CU{QC},qm,FUQout,T,Pri,an) (1)
PM = (Qa Z7V7C7qin; QOUU F7T7 Pri7 InV)

16 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

3.1.4 Examples of WS-BPEL Construct Transformation
The Wait Activity

The <wait> activity allows to wait for a given time period (i.e. duratia or
until a certain deadlingll). One of the expiration criteria must be specified ex-
actly [34]. The<wait> syntax is<wait for=d> or <wait until=dI> . Let
Priw = {(t1,-,1p)} wherel is a low priority.

e <wait for=d> is modeled as a partial WS-TEFSRM

PM = {{0lin,Gout}, D, 0, {c}, tlin, {out}, @, {t1}, Priw, Inv} 2)
t1 = (gin,<c=d,_, [{c}] >,0out)
Inv = {(gin,c < d), (qout,true)}

e <wait until=dl> is modeled as a partial WS-TEFSRM

PM = {{Qin, QOut}; Q)a 03 07 Gin, {qout}v 07 {tl}a Prin |nV} (3)
tl = (qin7< gc= d|7777 >,qout)
Inv = {(gin,gc < dl), (Qout, true) }

The partial WS-TEFSMs of thewait for> and the<wait until> activ-
ities are illustrated in Fig. 4 and Fig. 5. Note that in thesaneples, there are not
actions.

<c=d,_, [_:{c}]>

priority = basic

Fig. 4 The partial WS-TEFSM of thewait for> activity

<gc=dl, _,_>

priority = basic

gc<dl

Fig. 5 The partial WS-TEFSM of thewait until> activity

Modeling and Testing of Web Based Systems 17

The Wait for Machine with Termination Handling

Each<wait> , for instance, can be interrupted and terminated premgtdie ter-
minate this activity, we add a stop transitipnto a <wait> machine (described
above) which has an urgent priority and can interrupt thesiteont;. Let hy be

a highest prioritystopProcesss a global variable of the process that is assigned
to true by the<exit> activity. stopScopés a local variable of each scope that is
assigned tarue by the scopecthrow> activity. These two boolean variables are
used to handle the termination. Thwait> machine with termination is defined
as:

PM = {{qin, QOuhCIstop}, 0,0,{c},0in, {dout}, 0, {t1,t2}, Priw, Inv} (4)
t1 = (Gin, < c=d, [{C}] >,Cout)
t> = (gin, < StopProcess stopScopg, [-; {C}] >, Ostop)
Priv = {(t1,-,1p), (t2,-,hp) }
Inv = {(din, ¢ < d), (dout,true), (dstop true) }

The partial WS-TEFSM of thewait for> with termination is given in Fig. 6.

<c=d,_ [_i{c}>

priority = basic

c<d priority = stop

<stopProcess [stopScope =true, _, [_; {c}]>

Fig. 6 The partial WS-TEFSM of thewait for> activity with Termination

We can transform all the WS-BPEL constructs (elements arndtas) in a sim-
ilar way. While we have detailed how to model Web services,ae&le in the fol-
lowing the Web applications modeling.

3.2 Modeling of Web Applications

This methodology describes how UML diagrams developedératialysis phase are
used to automatically produce test cases. We will show havhézk the graphical
user interfaces but also the generated pages content.

18 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

3.2.1 UML Overview

The UML language is a standardized visual specificationdagg for object mod-
eling [35]; It is a general-purpose modeling language theitides a graphical nota-
tion used to create an abstract model of a system. Using Udlbne diagram can
capture the different elements of a system in its entiregnd¢, UML 2.0 is made
up of thirteen diagrams that can be used to model a systerfiexedit points of time
in the software life cycle of a system. Nevertheless, in tie¢hmdology presented in
this chapter only four UML diagrams, which constitute thptihdata, are needed to
be applied for the Web application modeling and testing. UM diagrams used
in this approach are fully described in the next subsection.

3.2.2 Using UML to model Web applications

In order to derive the test cases, it is needed to grasp amdiloeshe system func-
tionality at least in a semi-formal way. A model-based apploof Web applications
can be performed using UML techniques and UML notation. Aigiesnethodol-
ogy based on a UML extension for Hypermedia [8] is used. Isgin of three main
steps that constitute the conceptual model, the navigaimm and the presentation
model. The conceptual model is built taking into account fihectional require-
ments captured with use cases [9]. The output of this steptidirectly used as an
input to the test suite but it is important in order to desigg ML diagrams which
actually constitute the input data.

From this conceptual model, the navigation space modelistoacted, also rep-
resented as a static class model. It defines a view on the pluatenodel showing
which classes may be visited through navigation in the Wedigadion. Finally, a
dynamic presentation model is represented by UML sequeiageains describing
the collaborations and behaviors of the navigational dbjand access primitives.
In order to specify our model, the following diagrams areimed:

e Class Diagram to introduce the main classes of the system;

e Activity Diagram for each actor to display dependencies iagrihe use cases;

e Navigation Map to provide information about the dynamic teo of the Web
pages;

e Sequence Diagram for each use case describing the maineatlemative sce-
narios of the use case to represent the dynamic presentatidel.

These diagrams are exported in an XMI format (XML Metadatarithange for-
mat) [36] , i.e. an OMG standard for exchanging metadatarin&tion via XML.
This activity is supported by all the modern CASE tools likgdUML [10] and Ra-
tional Rose [22]. Afterwards the XMl is parsed and it is proed a program which
connects to the Web server and makes requests according ¢ivin scenario in
the Sequence Diagram. Finally, the response Web page isire@ito verify if it
conforms to the specification. Figure 7 presents briefly tifferdnt steps of our
study.

Modeling and Testing of Web Based Systems 19

Web Application .| Web Application
Specification " UML Model

Test Cases Implemented XMI P UML Diagrams
in a Script Language arser Exported in XMI

Fig. 7 Representation of the methodology

3.2.3 From Conceptual Model to Navigation Map

In order to specify a Web application, first it is needed tddaiconceptual model
of the application domain taking into account the functioeguirements captured
with use cases. Techniques such as finding classes andasstgiand defining
inheritance structures are performed.

The Navigation Map of a Web application introduced in [3] &d because it
provides information about the dynamic content of each Wagepvhich is part of
the system as well as the links between the different Web9admes information is
essential during the parsing of the HTML pages. Navigati@pli$ a Class diagram
where each Web page is a class and a link between two pagesassaciation
between the two respective classes. This extension of UMMeb applications
introduces a number of tagged values, constraints andsfees (such as indexes,
guided tours, queries and menus).

3.2.4 Modeling Use Case Dependencies

The use cases of a system are not independent. Apartificiodeandextendrela-
tionships, there are also sequential dependencies. Im réxecute one use case,
another should have taken place before. For instance, iM@tyapplication such
as an e-mail Web interface or e-learning platform, the ulseulsl login before be-
ing able to do anything else. Since testing automation ghaeeis also concerned,
it is mandatory to describe somehow these dependencies.isTachieved by in-
troducing an activity diagram where the vertices repressatcases and edges are
sequential dependencies between the use cases.

An edge in such a diagram denotes that the use case in thagdi e executed
before the use case in the hekdtk andjoin are used when some use cases should
be executed independently in order another one to take.gfrdanstance, in an
e-learning platform the addition of the subject and the t@oldiof the term are two
independent use cases which should be synchronized to tilewesting of the
creation of a class.

20 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

3.2.5 Sequence Diagram

In UML, a Sequence diagram realizes the interaction of abjeia the interchange
of messages in time. Similarly, as in activity diagrams thgats are instances of
a class described in the Class diagram. Usually the sequbageams describe a
single scenario. The messages are enumerated in a way ltvas &b illustrate a
number of alternative scenarios in the same diagram. Aeugtd this convention,
capital letters denote alternatives (error messages)dBytang this tactic it is pos-
sible to derive easily the different Message Sequence<|d}ed to the same use
case.

Now that the modeling of Web-based systems has been prdsémiéis: a pro-
posed WS-TEFSM model for a Web services composition destitb&/S-BPEL,
an overview of the WS-BPEL transformation into WS-TEFSM iltased by an
example and a methodology to model Web applications by udivd, we may
present in the following techniques to test these Web-bagsttms from the for-
mal models.

4 Web-based System Testing

As previously mentioned, the main goal of Web-based systaodeling is to ease
their testing. Therefore, this section presents testidgrtigjues devoted to Web ser-
vices and Web applications. The first method generates tiestdcases and uses a
timed-traces equivalence as conformance relation betevgéeb service implemen-
tation and its formal specification. The second methodtiliies how to generate a
test case for a Web application from the obtained UML diagram

4.1 Web Services Testing

To define a Web services composition testing methodologyetarchinistic WS-
TEFSM that models a composite Web service described in WS-BIPHE its se-
mantic (see Sect. 3.1) are considered. First, the concdpheél sequences, timed
traces, timed test cases and the conformance relation4L@h&tween the specifi-
cation and the implementation) to be used in this testindnoulogy are defined.
Secondly, the timed test cases generation algorithm idei@t&inally, an example
of Web service modeling and testing is detailed.

4.1.1 Conformance Relation and Timed Test Cases

LetM = (Q,Z,V,C,qo,F,T,Pri,Inv) be a WS-TEFSM anfM] = (S5, ,=) be
the LTS describing th& semantic. Let, s,5S1,...,51 € S LetSedX) = (ZUR)*

Modeling and Testing of Web Based Systems 21

be the set of all finite timed sequences ogerA timed sequence € Sed) is

composed of actiona and non-negative real where:s > ¢ ands< sad. Og €
SedM) is the<empty> sequence.

Let >’ C X ando € SedZ2) a timed sequencets (o) denotes the projection of
o to 2’ obtained by deleting i all actions not present i&’. Time o) denotes the
sum of all delays in a sequence

Leto =01.02--- 0y are a timed sequencxe% is used to denote that there exists
syandsZ s, Z 5. L s, The observable timed traces of a WS-TEFSMs
defined by:

Tr(M) = {r=(0) | 0 € Sed;) A o=} (5)

Let Ms and M, two WS-TEFSMs which model respectively the specification
of a composite Web service (a WS-BPEL description) and itdémpntation (a
WS-BPEL process instancé)ned-traces equivalenec®ted~T, is considered as a
conformanceelation where the time delays is considered to be obsexaiions.
First, thetimed-traces inclusiomelation noted<r, is defined M, <t Ms requires
each observable sequenceMi to be an observable sequencavhf

(M| <1r Mg) < (Tr(Ms) C TF(M|)) (6)

The <1, conformance relation (timed-trace inclusion) can be ed¢ento~,.
This latter requires that each observable sequend# @$ also an observable se-
quence oMs. Ms conforms M, denotedMs =1, M if Tr(Ms) =Tr(M):

(M| =Tr Ms) = (TI’(Ms) <Tr Tr(M|) A TI’(M|) <Tr TI’(Ms)) (7)

A timed test case is a timed trace that validates some timgairements (e.g.
timed test purposes) and generatgmasor fail verdict: thepassverdict if all test
purposes are satisfied, tfal verdict else if.

Based on the WS-TEFSM semantic, a set of timed test purposetharit-or-
Jump exploration strategy [6]—the timed test case generatgorithm—is detailed
in the following.

4.1.2 Timed Test Case Generation Algorithm

This algorithm generates timed test cases from a composte 8&rvice specifi-
cation given in WS-TEFSM and timed test purposes. For test gaseration, the
Hit-or-Jump strategy (a generalization of the exhaustaéareh technigue and ran-
dom walks) is adapted to WS-TEFSM model. The generated tiesidcases are
used to check the conformance of a composite Web serviceemwpitation to its

22 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

specification. The test cases are a sequence of observéiblesaghich have to be
executed according to some time constraints.

Starting from the initial state of the WS-TEFSM and considgid searcliepth
limit and a set of timed test purposes to be satisfied (representabbts or timed
constraints), a partial search is conducted from the ctuistates of the reachability
graph until;

AHitstep. Reached a statg (a Hit state) where one or more test purposes are
satisfied. Then the sequence freno s; is concatenated to the test sequence, the
test purposes set is updated and the Hit step is repeatedfrom

A Jump step. Reached a searatepth limitwithout satisfying any test purpose.
Then one leaf node (i.e. a statg of the partial search tree is selected, the se-
guence frons to s;j is concatenated to the test sequence, the stagemoved (a
Jump state) and the Hit step is repeated fgpm

The algorithm terminates when all the test purposes arsfigatior when there
are no more transitions to explore. The main interest of dlgsrithm is that the
construction of the complete WS-TEFSM reachability graphdsrequired. The
test case generation algorithm is illustrated in Fig. 8.

4.1.3 Example of Web Service Modeling and Testing

In this section, The K Web service is applied to illustrate the WS-TEFSM result-
ing of the transformation of a WS-BPEL description, and tlet tases generating
from this WS-TEFSM by using the test generation algorithnaiked in the previous
section.

The RckK process receives a loan application document from the esgrthe
LoAN service). Itinvokes the asynchronous loan service (ieeAtiyNCBPEL SER-
VICE service) by sending this document and uses a BRatk> activity to re-
ceive an asynchronous response from the partner service exitt after a time-
out (e.g. 30 seconds). This partner service sets the cediggraccording the loan
amount and returns the loan application document to tk& Bervice. If the loan
amount is greater than 10000, it takes about 30 secondsdqudttiner service to
process it and therefore a timeout will be raised. Finatlg,RCck service sends the
loan application document to its user.

The Rck Web service is illustrated in Fig. 9 (in BPMN Notation [18[fs WS-
BPEL description and the resulting WS-TEFSM (according eorttethodology de-
scribed in Sect. 3.1) are respectively given in Appendix.

We want to test the twepick> activity branches (see Fig. 9). We define, for
instance, two test scenarios as following:

Modeling and Testing of Web Based Systems 23

INITIAL CONDITION :

e The system is in an initial stasy = (o, Uo, Vo);
e The Set of timed test purposes to be satisfiebRs= {tp1,tp2,...,tpm}.
e The timed test sequenseqis empty (i.eseq= 0;).

TERMINATION :

The algorithm terminates when all the timed test purposes asfisdtii.e. TP = 0;

EXECUTION:

Repeat

@ Hit: From the current system stage conduct a search by exploring all possible transi-
tions:actiontransitions 2 S+1 or delaytransitions :d> s@dunti@or®:

@ Reach a statg; such thas = s; and
forall ksuch thatj =tpc: TP=TP\ {tpx} — aHit. Then:
(i) Concatenate the sequenedrom s to s; to the test sequencseq= seqo;
(i) Moveto .

® Reach a seardttepth limit Then move to@).

Until (TP=0V “no transition to explore.

IF TP= 0 Then return segelse“no test sequence!”.

@ Jump:
(i) A partial searched tree has been constructed, rootgd at
(if) Examine all the tree leaf nodes, and select agjes(ich that < sj) uniformly and
randomly;
(iii) Concatenate the sequenaggrom s to s; to the test sequencseq= seqo;
(iv) Arrive ats; —a Jump.
(v) Moveto@.

Fig. 8 Timed Test Case Generation Algorithm

Scenario 1. Receive a AYNCBPELSERVICE response after 10 seconds and re-
ply this response to the user.

Scenario 2. Exit the BPEL process after waiting asANCBPEL SERVICE re-
sponse 30 seconds.

For the two scenarios, we present below the test purposesmgee timed test
case generation algorithm (defined in Sect. 4.1.2).

Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

24

O

1
1
1
1
1
1
1
)
o

ndino
uolyeoo|ddy ueo

osuodsos =: yndino |

oxoAu|

——— >

f-===----0

92IAI9S AW YR Y} JO UOIEION NINJE 3yl 6 ‘Bl

L) u_.w_

ndu|
uopeoddy ueo = T T T T T T T T T T T

andus =: 3sonbai |

asjoAu| ubissy aA1809Y

)
ﬁ ubissy

asuodsay
= soineg13dguAsY

1
1
1
=

il
1
1
1
1
o

—_—

O
]
1
1
1
I

Jsenbay
~ eoineg13dguAsy T

- =

P I

95iAIoS
1348 snouoiyouksy oyl

291A10S YDld SUL

9IMISS MOld YL

@

Modeling and Testing of Web Based Systems 25

Test purposes for scenario 1

The Rck service receives the 2yNCBPEL SERVICE response (i.eesponsevari-
able) after 10 seconds. Finally, it sends this loan apjtinadocument (i.eoutput
variable) to the uset. The test purposes for scenario 1 can be formulated as:

TR = {tpa,tpz2,tpa} (8)
tpy = “action : AsyncBPELService ?onResult(response) "

tp2 = “action :client !onResult(output)
tps = “clock:c4 = 10"

Test purposes for Scenario 2
The RcK service invokes the BYNCBP EL SERVICE service and waits its response

for 30 seconds. After, it terminates its activity. The timest purposes for scenario
2 can be formulated as:

TR = {tpstp2} 9)
tp1 = “action : AsyncBPELService linitiate(request) "
tp2 = “clock:c4 = 30"

The two following timed test cases (presented in Fig. 10)gaeerated from
the WS-TEFSM model of thelBk Web service (see Fig. 19 in Appendix) and the
timed test purpose§ @ andTR).

Timed Test case for Scenario 1

client ?initiate(input)

AsyncBPELService linitiate(request)
delay = 10 seconds
AsyncBPELService ?onResult(response)
client !onResult(output)

agprwbdE

Timed Test case for Scenario 2

1. client ?initiate(input)
AsyncBPELService linitiate(request)
3. delays = 30 seconds

N

Fig. 10 The Timed Test Cases for the Two Scenarios

2 A Web service that is involved in the WS-BPEL process is alwaydetenl as aporType>

(i.e. abstract group of operations (noteg) supported by a service). These operations are executed
via a<partnerlink> (noted bypl) that specifies the communication channel. In the following,
the input messagepl ?0p(v) denotes the receiving of the messag#v) (constructed from the
operationop and the WS-BPEL variable) via the channepl. Theoutputmessage is denoted by

pllop(v).

26 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

After dealing with the test generation for Web services, gpreach to generate
test cases from a parsed UML model for Web applications isquried.

4.2 Test Generation for Web applications

To automate test generation, the goal is first to parse the digrams obtained
from the previous steps. Therefore, based on these diagthesecessary requests
to the Web application server are generated and then chédkedserver’s replies
are as expected by the previous models. The requests are HGTPsts that sim-
ulate a user navigating the site through a Web browser. Thsilgle actions are to
fill and submit a form, to click on a link or to navigate to a giveRL. Similarly
the server's replies are HTTP Responses that can eithesincamt HTML page, a
redirection to another URL or an error message. Assumin§rdtease, the HTML
page of the response has to be parsed to see if its contertseag@pected ones.
Based on these requirements, it is needed to choose the nemtpdhat were re-
quired to build the test suite.

Since we are dealing with UML, it would be more efficient to oke an object-
oriented language as a test scripting language, which als@s to provide easy
string handling and a high level of abstraction for netwasknenunications. For the
reasons mentioned below, the chosen programming langsabe anost suitable is
the Python scripting language. Python is a modern objeetitmd language which
combines remarkable power with very clear syntax. Its Baoilnodules provide
numerous functions that facilitate string handling andvoeking.

4.2.1 Parsing and executing the UML

To parse the UML diagrams it is possible either to use the ARl OML tool or
to export the diagrams in an XMI format that would allow pagsthem using an
XML parser. Exporting to XMI was the preferred solution @ritdoes not tie the
methodology to a specific tool. Although having the posgipbiio use any XML
parser to parse the XMlI, due to the high complexity of the cadh it was decided
to use a specialized XMI parser.

The used one was the parser included in the System Modelindkb&bch
(SMW) tool [40]. It is free, open source and also written intiyt, making it easier
to integrate with the code.

4.2.2 Parsing the HTML pages
Since HTML mixes presentation and content data, the HTMLlpouof the Web

application does not allow extracting the wanted informmativithout first looking
the implementation details. To avoid this, it is needed @ngfe the page templates

Modeling and Testing of Web Based Systems 27

of the Web application in order to provide the data in a momentd way. This

is achieved by adding id attributes to the tags we want toyquear example, to
thetd tag that contains the user's name in the user pages will haattabute
id=username . By this way it can query any page independently of the imple-
mentation of the page layout.

The approaches presented in this section are applied td aasa study illus-
trated in the following section.

5 Case Study: dotLRN

To exercise the testing generation methods previouslyepted, we consider a
real case study which is an open source e-learning platfdetLRN) [13]. An
open source platform is more demanding of testing aspeatsiotain a correct e-
learning Web application. Indeed, all the open source sofhare constantly chang-
ing with addition of new features. Therefore new bugs mayeapjplisabling some
functionalities. Then we need to re-execute all the prevtests that were generated
at the conformance testing phase in order to guaranteeahéitst of the system.
This step of testing is known as non-regression testing. Megnt the experiments
that have been conducted on the e-learning platform. Tlsis sady is representa-
tive enough to experience the approach. We have made theedioadeal with only
one real case study for both types of Web-based systemdabhfoint is motivated
by the growing convergence of these two types of systemgelhdwe can notice
that the industrial market is more and more interested byngdis development as
Web services to promote the use of its development. It carediiew to use the Web
application in the framework of new development by compasiof this applica-
tion transformed into a web service with other available wetvices. This aspect
particularly holds for open source software that need todesl o get feedback to
improve the software.

We present in the following the model-based approach withiML modeling
of dotLRN, the test objectives and how we execute the teststtii on the platform.
Afterwards, we also explain how hand tests can be producetthi®oparticular ap-
plication with TCL script when no formal model is providedné&lly, based on the
work described in [29] we explain how we can transform a Welieation in a Web
service. This latter aspect is essential for certain kind/eb applications whose the
model is very tough to obtain (even using UML). Indeed, bynatigng them to Web
services, the use of testing techniques based on WS-BPEL eapiied. case-
study/introduction-application

28 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

5.1 The DotLRN framework

DotLRN is a learning management Web application [13]. Itriso@en source plat-
form for supporting e-learning and digital communities.eTiool was originally
developed at the Massachusetts Institute of Technology M$ a virtual learn-
ing environment and it evolved into a comprehensive platfarcluding not only
e-learning support but also generic Web resources.

The platform is based on the OpenACS Web application frameybl], a
toolkit for building scalable, community-oriented Web &pations. The toolkit
structure is highly modular and dotLRN is a set of modules pravide the ad-
ditional features to deploy an e-learning environment. OpenACS (and therefore
dotLRN) is tightly integrated with a relational databasethbPostgreSQL and Ora-
cle are currently supported. The Web server that handlesstgat the basic level is
AOLServer, the America Online’s open source Web server. @ite main features
is the integration in its core of a multi-threaded TCL inteter which provides an
effective solution for industrial strength type of sengcauch as those present in
large higher educational institutions [38].

As in most open source projects, there is a community aroatldRN/OpenACS
involving nearly 11,000 registered users. The communitygbas itself based on
this platform and coordinates the interaction between Idpegs, users, technical
personnel employed by higher education institutions anythadly interested on ex-
changing ideas, solutions and information about the tool.

Several features make dotLRN an effective and powerfulbeaiag platform.
Its modular structure allows for very fast customizatiord gmmototyping of new
applications. The user space is organized through a cuzabhei set of portlets,
each of them offering access to one of the various serviakahle. The underlying
OpenACS toolkit provides an ever increasing set of Web fonetity most of them
suitable to be adopted by the e-learning platform.

The fact that OpenACS is a community-oriented toolkit haffuenced and
shaped dotLRN into what it could be called a “communicaticierded LMS”
(Learning Management System). Most of the current LMS feduat the beginning
of their existence on providing content management forttiegcstaff and learners.
DotLRN, on the other hand, was conceived as a platform tdit@ei communica-
tion among all the different actors in a learning experience

5.2 Test Generation from the UML model

In the Section 3.2 are described the UML diagrams that ardatet® model a Web
Application, now it will be illustrated how these UML diagrs are used to model
the dotLRN framework and how the test cases can be geneediied into account
the Section 4.2.

Modeling and Testing of Web Based Systems 29

5.2.1 Modeling Use Case Dependencies

In the Class diagram the use case parameters are also idcilige reason is that
sometimes it is easier to realize the dependencies betlvegratameters of the use
cases. For instance, in the Figure 11, in order to add a ness,dlae administrator
should provide information about the termfiegfm.name) and the subject of the
class Subject.name). As a consequence, there is a dependency between the
Add class ,theAdd Term andtheAdd Subject use cases.

Finally, in the diagram the use cases are organized in graopsrding to the
objects they are associated with. These objects are iregtasfcthe classes in the
Class diagram. Figure 11 shows the respective activityrdiador the Administra-
tor. According to this latterAdd department should preced@&dd subject
Also,Add term andAdd subject should occur beforadd class , andAdd
user andAdd class should take place before the executiorAskign user
to class . Finally, Manage User depends orAdd User since first the user
should be added to the system and then the administratordiahi profile and
modify his permissions.

In the testing phase, before simulating the scenarios ifsdtpience diagrams,
these activity diagrams should be scanned to obtain theesegun which the use
cases will be tested.

Subj eclbl

AN AN
User Cl ass Depay(mentbl

Add user(T
User.name) Add Term(Add department(
Term.name)] Department.name)
Add Subject(
— L Department.name,
\ Y 11 Subject.name)

p
Add user(Add Class(
User.name) Subject.name,
Term.name,
L Class.name)

Assign user to class(
User>email,
Class.name)

Fig. 11 The class diagram

5.2.2 Sequences diagrams

The Sequence diagrams are also parameterized since impuigtars can influence
the execution and constitute separate choices [2]. Sucteangéer can be the email
of a user. Whether this email belongs to a registered usest¢agi the database) or
belongs to a new user (does not exist in the database) datssmihat is going to

30 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

occur. In the former case the dotLRN page is displayed otiserawarning appears
in the Log In page. During the testing procedure, if theresaigh branches and pa-
rameters then the produced program has to fork to test afliffezent possibilities.
Figure 12 shows the respective sequence diagram for tharfLage case.

dotLRN:Web site

|
1l:navigate(/) !

A 4

1.2:display(Log In)

A

2:submit(Log In, Loginforum,[userl.email, userl.password])

A 4

| 2.A:error("Unknown email")

< JRE— —_ —_— —_— JR— JR— —_— —_— _ —_—
2.B:error("missing input") |
e — - - — - — — =
|
2.C:error("Invalid username or password) |
< - — - - - — — — — — —
|
1

2.1:display(My_space[user=userl])
d
Ll «¢

Fig. 12 HTTP sequences

Table 1 summarizes the actions used in the Sequence diagganized as HTTP
requests of the user and possible HTTP responses returttesluser by the server,
since the success or the failure of the tests depends upsa thquests and the
respective responses. The system under test being a Wetediopl, there are three
possibilities for the user: either (1) navigates to a URLZrréquests a Web page
through another one (clicks on a link to the wanted page))syBmits information
by filling an HTML form. System answers either directly byuneting the requested
page (display) or by giving an error message.

[HTTP Request [HTTP Response |

— navigate(url:String): — display(page:Webpage):

User makes an HTTP request for an URL. |Web server returns the requested Web.
— link(target:String): — display(page:Webpage):

User clicks in a HTTP link. Web server returns the target Web page.
— Sublit(page:WebPage, form:Form,data:list)]— display(page:Webpage):

User submits an HTTP form. In case of legitimate input the Web

server responses with a new Web page.
— error(msg:String):
In case of wrong input the Web server
responses with the previous page
displaying a warning message.

Table 1 Actions of the Sequence Diagram

Modeling and Testing of Web Based Systems 31

5.2.3 dotLRN HTML pages parsing and tests execution

The Figure 13 presents the skeleton of a possible resulieafdnner to parse the
HTML and UML and then execute the UML. In the code we have lefhe code
(mainly some functions) in order to reduce the size and aszelarity.

1: from urllib import urlopen

2. from smw.io umport XMIStreamer

3: from smw.metamodel import UML14

4:

5: class TestSuite:

6: returned page = None

7

8: def validateLink(self,link)

9: operation = self.getOperation(link)

10:

11: if operation.name == "navigate":

12: url = self.getOperationParameters(operation)
13: fd = urlopen(serverbase + url)

14: self.returnedPage = fd.read()

15: fd.close

16:

17: elseif operation.nale == "display":

18: params = self.getOperationParameters(operation)
19: pageTemplate = generatePageTemplate(params)
20:

21: parser = dotHTMLParser(pageTemplate)

22: parser.feed(returnedPage)

23:

24: def execute(self,source):

25: xmi = XMIStreamer(UML14)

26: fd = open(source,"r")

27: model = xmi.loadFromStream(fd)

28: fd.close()

29:

30: sequenceDiagram = self.SequenceDiagram(model)
31: for link in self.getLinks(sequenceDiagram)

32: self.validateLink(link)

Fig. 13 Parsing and execution of UML

Functionexecute (line 24) is the main function of the class that reads the XMl
code from the file defined in the varialdeurce that is given as a parameter. It
then isolates the sequence diagram (for this example weneshiat only one exists)
and then validates one by one all its messages (links).

All the getX functions (likegetLinks) consist of navigating through the struc-
ture generated by SMW to get a specific data. They are assurbediefined inside
the class. The validation of each link depends on the oerati

32 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

If the operation isnavigate (lines 11-15) then we have to extract the desti-
nation URL from the parameters and then get the requestesl égyassume that
destination is a relative URL, so we use therverbase variable (line 13) to
make it absolute. The page is then kept inttseirnedPage variable to be used
by the following commands. In the case ofiaplay operation (lines 17-22), we
create a template of the page based on the operation pararaatkthen use the
HTML parser to compare theturnedPage with the template. The skeleton of
the parser is presented in the Figure 14.

1: from HTMLParser import HTMLParser
2

3: class dotHTMLParser(HTMLParser)

4 pageTemplate = None

5:

6 def init(self,pageTemplate):

7 self.pageTemplate = pageTemplate
8:

9: def handle _starttag(self,tag,attrs):
10: for att in attrs

11: if "id" in attr:

12: validateElement(tag,attr)

Fig. 14 Parsing the HTML

ThedotHTMLParser class inherits thelTMLParser class and overrides the
handle _starttag function to search for elements that havedattribute. Every
such element will be validated according to {p@geTemplate that was given
during the instantiation. Similarly to the two example agms we can write the
code to handle the rest of the supported operations.

5.3 Non-regression testing for Web applications

Besides and as this is above mentioned, the non-regregsting aims to verify
if after the insertion of new source code into the appliaatal the functionalities
still run correctly. Hence the first task for testing a Weblaggpion is to test if the
behavior of the platform is conform to the blue-prints useduild it (i.e. its speci-
fication). Because of the lack of formal specification, theudnentation of dotLRN
and our expertise in OpenACS/dotLRN was used to build arrindb specification
(i.e. the list of requirements and standards that dotLRNtmmest). By using this
specification it is possible to interact with the platforndaybserve if it meets the
standards or not. Now, to achieve the stability of the platfduring its continuous
development by applying a simple testing strategy, i.¢estall, requires an unac-
ceptable amount of time and resources. It is needed thertamate the process to
re-test the platform to improve the testing efficiency.

Modeling and Testing of Web Based Systems 33

5.4 Alternative method for the test generation of Web apptioas

In order to test a Web application that does not have a forpedification, test cases
may be manually developed. In this Section the methodolofigwed to develop
these test cases for dotLRN using the Tclwebtest recordéigtdlustrated. It will
also introduce the acs-automated-testing, an OpenACSpddiage for the man-
agement of test cases execution and the verdict storageloftest case. Although
the phase of the conformance testing was a hand made prbgassing the TwtR
plug in it is possible to obtain a record or static trace ofitlteraction of the user
with the Web application, this static trace is the base ferdbvelopment of the
non-regression test cases. The process of obtaining a state is illustrated in the
Figure 15.

The TwtR [41] is a recent tool based in the interaction reicayés Selenium,
by using this tool it is possible to obtain the trace writteraiTCL script language,
more specifically in Tclwebtest code. TwtR will produce distaace that does not
contain all the interactions between the user and the Welicapipn, but only the
stimulations of the user to the Web application. This statice is the basis for the
part of the functional testing process presented in thislart

Interaction
Recorder

Inputs

Expert | —— IUT

Outputs
Inputs ﬂ Outputs

¢ \J

[Trace 1] [Trace 2] [Trace 3]

Fig. 15 Generation of the static traces used as a base for further goesegon testing.

To build the tests for the dotLRN features, the informat®first extracted from
the OpenACS documentation and the dotLRN platform usgbiliten the informal
specification is built. After this, we interact with dotLRM test its conformance
while recording the static trace using TwtR.

If the result of this conformance test execution verdictasifive, the static trace
can be re-used to serve as a basis to build the non-regrdsstocase. This static
trace must be modified by inserting variables instead of ltakd values (e.g.
the ids and the URLS). Each test case will be finally describeiclwebtest and
composed by a set of concatenated scripts.

34 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

The generation of each test case using Tclwebtest is pedéySollowing these
steps:

1. Create the script of the test preamble, i.e. a sequengeeohtions that will lead
the system to a state where the test case can be executedstorce to test
the edition of the user’s name, first it is needed to corrdiediee user existence
and that it has already a name assigned, otherwise it is ddedaeate these
elements;

. Develop the script that will interact with the feature ®tbsted,;

3. Develop the scripts that will analyze the reaction of thebVdpplication to the

interaction with the test case. This script will also asdigm verdict (pass or
fail); basically it will observe if the platform did what itas supposed to.

N

5.4.1 Example: the addition of aQuesti on and Answer from the f aq
package of dotLRN

The trace produced during the addition oQaestion and Answer (Q&A of
the FAQis illustrated in the Figure 16. In this trace it can be obedrthat the
elements such as tifAQname and th€&Ais hard coded. In the first line it can be
viewed that the user has followed a link namdest faq " which is the name of
the FAQto be tested. After this in the third line the user followed limk to come to
the page to create a né&A Then from the lines four to seven the form was filled
with the question¥What is your name? " and the answerHMarry ”.

1: ::tclwebtest::link follow Test faq ;#

“u {http://domain/fag/ad/one-fag?faq_id=12}}
2: tclwebtest::assert text FAQ
3: itclwebtest::link follow Create New Q&A #

“u {http://domain/fag/ad/g-a-add?faq_id=12}}
4: ::tclwebtest::form find "n {new_quest_answ}}
5: :tclwebtest:field fill What is your name? #

“n {question} ;\# type of field = text}
6: ::tclwebtest::field fill Harry ;#
“n {answer} ;\# type of field = password}

7: :tclwebtest::form submit

Fig. 16 Static trace of the interactions of the user with dotLRN whezating a new Q&A.

In replacing by variables all the texts to be inserted in tA&/M forms and text
of the links to be followed, the static trace is transformei ia dynamic script that
will be the part of the test case for testing the addition Qf&A It will also be re-
used and served as the preamble of other test cases, for lexantipe test Edit
a Q&A. Remember that before editing an item, it is mandatory thiatitem exists.

Modeling and Testing of Web Based Systems 35

It is important to notice that the chunk of code of the Figurewdll be just the
part of the non-regression test case that will interact withpart of dotLRN that
allows to add a ne\Q&A The entire test case must include the preamble (log in of
the user, creation of tHeAQ assign a value to the variables to be used, etc.) and the
part of the test case that will analyze if tQ&Awas correctly created and assign the
verdict.

: tclwebtest::link follow $faq _name

: tclwebtest::link follow "Create New Q&A™

: tclwebtest::form find ™n "new _quest _answ"
: tclwebtest::field find "n "question"

: tclwebtest::field fill "$question”

: tclwebtest::field find "n "answer"

: tclwebtest::field fill "$answer"

: tclwebtest::form submit

:aa _log "Fag Question Form submitted"

OCoO~NOUAWNPE

Fig. 17 Chunk of the test case that was extracted from the TwtR tracstiiflited in the figure 16.

Besides, when a developer adds a new functionality to amsyétethis case a
Web application), most of the times he manually tests thig fumctionality to be
sure that it works, to then release the new version of thesydtowever, not only
the new functionality should be tested, but all the systenctionalities to be sure
that the new inserted implementation does not disturb thavier of the rest of the
system.

The OpenAcs framework has among its packages the acs-aetbesting, this
package allows to execute the test cases and store the Vatue werdict. In this
way, it is possible to test dotLRN feature by feature and twesthe verdict. The
non-regression testing consists in executing the packageglonx and then to test
the package A versior+ 1. As the verdicts of both tests are stored, it is possible
to detect when a functionality that was working fine in thesi@mnx does not work
anymore in the new versiofx+ 1). By doing this it is possible to maintain the
stability of all the features of the versiorof the package A.

Next to the illustration of the methodologies to generast seiites for Web ser-
vices and Web applications, we introduce in the followingt pid the chapter a
method that allows to describe dotLRN in the Service Ori@techitecture (SOA).
The goal of this method is to migrate from Web applicatiom iteb service. The
main goal is of course to apply the methodology presentedsting Web services
to dotLRN, and to generalize it to any other Web application.

36 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

5.5 Migrating Web Applications Functionalities into Web Seaces

Service Oriented Architecture (SOA) [30] is a paradigm fayamizing and utiliz-
ing distributed capabilities that may be under the contfodliferent ownership
domains. It permits to encapsulate application logic ivises with an uniformly
defined interface and making these publicly available vicaliery mechanisms.
Software applications (offered by different providersh e interconnected using
the common SOA infrastructure for obtaining new services applications. Some
systematic approaches for exporting existing softwardiegippns towards the new
service oriented architectures are proposed in the litexat

In [29], an approach based on wrapping techniques is projgosaigrate func-
tionalities of existing Web applications into Web servicEise main goal is to apply
modeling and testing techniques used for Web services to afgpbcation func-
tionalities whose the formalization is often difficult totain. For instance, the Web
application User Interface which is tough to model (evemg$IML) could be mi-
grated towards a formal Web service and then be tested asomethin Sect. 4.1.

This migrating approach uses black-box reverse enging&thniques for mod-
eling the Web application User Interface (i.e. a model ofitlteractions between
a user and the Web application) for each functionality. Appex interacting with
the Web application is used to transform the User Interfate Web service re-
quest/response interface (e.g. WSDL description [7]). Wrapper is constituted
by the following four components:

i. Automaton which provides a model of the interactions agged with a given
functionality. This model is a set of interaction statesicars and a set of tran-
sitions between these states;

ii. Web Application Interaction Executor which executeg thteractions of the
Automaton;

iii. Automaton Interpreter that coordinates the Web agggian execution (i.e. the
execution of the actions associated to each state of thevaitm);

iv. Web Service Interface Manager that manages externaldéelice requests and
responses.

This approach and a proposed migration platform are useskistdhe migration
of the dotLRN platform. Functionalities of each dotLRN mdéal(e.g. forums, fags,
calendar, file storage, etc.) can be migrated into a sim@eomposite Web service.
A selected dotLRN functionality can be captured by an use.CHsis latter can be
decomposed in more elementary use cases which can be wriayppeihgle Web
service. Therefore, the use case can be represented as a BISpBitess having
as partners single services.

The process of this migration includes the following folapst:

1. Selection of the dotLRN functionality to be turned into alW\service;
2. Reverse engineering of the dotLRN User Interface: ifieation of execution
scenarios and characterization of their states;

Modeling and Testing of Web Based Systems 37

3. Design of the interaction model: evaluation of the madg$olutions and spec-
ification of the model in WSDL(for single automata) and evefijuin WS-
BPEL (for composite automata);

4. Wrapper validation and deploy: testing the wrapped Webicziand publish-
ing its WSDL description in an application server. The Welvises composi-
tion testing approach is a used in this step to discover theution failures of
the wrapper Web service (e.g. unexpected output responsedentified Web
pages, etc.

6 Conclusion

We have presented in this chapter two approaches to test eb¥dslnl system. We
have dealt with Web services composition and Web applioatid/e have proposed
a stepwise methodology that consists first to describe fiyrttee system that re-
sponds to the requirement information; then from the modelhave developed
methods to generate the tests and finally we have executeelstiseon a real imple-
mentation, an e-learning platform.

The modeling step has been performed with two dedicatedibges, i.e. WS-
BPEL for the Web services composition and UML for Web appiares. We have
defined rules of mapping from WS-BPEL towards a formal spetifia, i.e. the
Timed Extended Finite State Machines for Web Services (WESM). The objec-
tive of this mapping is twofold: to give a semantic to the WSHRRcomposition
and to dispose of a model from which the tests have been gedefeor the Web
applications, we have made the choice of UML as modelingdagg. This latter is
well-suited to cope with object oriented applications amdnbdel the test cases by
means of sequence diagrams and also to represent the dymavigation between
pages of the Web application.

Together with the formal models of the web systems, we hagsgmted meth-
ods for conformance and non-regression test generatiencdiiformance is estab-
lished by a conformance relation between an implementaiwha specification.
Two techniques have been developed for tests generatiggogeyr one to handle
WS-BPEL specification and one for the UML model.

Finally, we have exercised the proposed methodology onlecesa study, an
open source e-learning platform dotLRN. We have carriedomficcmance and non-
regression tests with the formal approach and also with & kaafted methods
based on TCL scripts. We have presented how to provide a Weissérom a Web
application. The obtained Web services can be composedotitdr available Web
services and the WS-BPEL testing methods can be thus applied.

38 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi
References
1. Alalfi, M.H., Cordy, J.R., Dean, T.R.: A survey of analysis mis@ged methods in website ver-

10.
11.

13.
14.
15.

16.

17.

18.

20.

21.

22.

23.

24.

ification and testing. In: Proc. Seventh International Coeriee on Web Engineering ICWE
2007, pp. 306-311 (2007)

Basanieri, F., Bertolino, A., Marchetti, E.: The cauite approach to planning and deriving
test suites in UML projects. In: J.MéZquel, H. Hussmann, S. Cook (eds.) UML 2002 -
The Unified Modeling Language. Model Engineering, Langsa@oncepts, and Tools. 5th
International Conference, Dresden, Germany, Septembeb@cif02, ProceedingsNCS
vol. 2460, pp. 383-397. Springer (2002)

Bayse, E., Cavalli, A., Bhez, M., Zaidi, F.: A passive testing approach based on invariant
application to the wap. Comput. Netw. ISDN Sy&8(2), 247—-266 (205)

Cambronero, M.E., Diaz, G., Pardo, J.J., Valero, V., Peliyo; Rt-uml for modeling real-
time web services. In: Proc. IEEE Services Computing Workshow 8006, pp. 131-139
(2006)

Cardoso, J.: Approaches to developing semantic web servidesndtional Journal of Com-
puter Science (1JCSI(1), 8-21 (2006)

Cavalli, A.R., Lee, D., Rinderknecht, C.,da F.: Hit-or-jump: An algorithm for embedded
testing with applications to in services. In: FORTE XIl / PSTVXX1999: Proc. of the IFIP
TC6 WGS6.1 Joint International Conference on Formal Descmiptiechniques for Distributed
Systems and Communication Protocols (FORTE XII) and Protocetifipation, Testing and
Verification (PSTV XIX), pp. 41-56. Kluwer, B.V., Deventéthe Netherlands, The Nether-
lands (1999)

Christensen, Curbera, F., Meredith, G., Weerawarana, &h:3&fvices description language
wsdl ver. 1.1 (March 2001). http://www.w3.org/TR/wsdl

Christopher A. Jones & Fred L. Drake, J.: Python & XML, 1st editedn. O'Reilly &
Associates (2001)

Cockburn, A.: Writing Effective Use Cases, 1st edition edndisdn-Wesley (2000)
CollabNet: Argouml (2008). http://argouml.tigris.org/

Community, O.: Openacs. http://openacs.org

. Community, O.: Selenium ide. http://www.openga.orgfsela-ide/

dotLRN: Learn, research, network. http://www.dotlrg.o

EVIWARE: soapui: the web services testing tool (2009).:Hitpvw.soapui.org/

Farahbod, R., Glasser, U., Vajihollahi, M.: Specificatiod validation of the business process
execution language for web services. In: Abstract State Maship. 78-94 (2004)

Fouchal, H., Petitjean, E., Salva, S.: Testing timed systeithstimed purposes. In: Proc.
Seventh International Conference on Real-Time ComputingeSystand Applications, pp.
166-171 (2000)

Garca-Fanjul, J., Tuya, J., de la Riva, C.: Generating testscspecifications for bpel com-
positions of web services using spin. In: Proc. Internationatkélop on Web Services -
Modeling and Testing WS-MaTe 2006, pp. 83—94. Palermo, |@006)

Group, O.M.: BPMN, business process modeling notation (20Q&://www.bpmn.org/

. Hinz, S., Schmidt, K., Stahl, C.: Transforming bpel to pe#ts. In: Business Process Man-
agement, pp. 220-235 (2005)

Holzmann, G.J.: The spin model checker: Primer and referenceah@003)

Hong, H.S., Cha, S.D., Lee, I, Sokolsky, O., Ural, H.:@D#dw testing as model checking.
International Conference on Software Engineefing32 (2003)

IBM: Rational rose. http://www-306.ibm.com/software/awals/developer/rose/index.html
Kazhamiakin, R., Pandya, P., Pistore, M.: Timed modellirdyaaralysis in web service com-
positions. In: Proc. First International Conference on Avality, Reliability and Security
ARES 2006, pp. 7 pp.— (2006)

Krichen, M., Tripakis, S.: An expressive and implementablenfd framework for testing
real-time systems. In: Proc. 16th IFIP International Conferemcgesting of Communicating
Systems TestCom 2005, pp. 209-225 (2005)

Modeling and Testing of Web Based Systems 39

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.
36.
37.
38.

39.

40.
41.
42.

43.

44,
45,
46.

47.
48.
49.
50.
51.

52.

Kung, D.C., Liu, C.H., Hsia, P.: An object-oriented webttmodel for testing web applica-
tions. Asia-Pacific Conference on Quality Softw@rd.11 (2000)

Lallali, M., Zaidi, F., Cavalli, A.: Timed modeling of webrstces composition for automatic
testing. In: Proc. Third International IEEE Conference ogn@i-lmage Technologies and
Internet-Based System SITIS 2007, pp. 417-426 (2007)

Li, N., gin Ma, Q., Wu, J., zhong Jin, M., Liu, C.: A framework model-driven web ap-
plication testing. Computer Software and Applications Cogriee, Annual Internationa,
157-162 (2006)

Liu, C., Kung, D., Hsia, P., Hsu, C.: Structure testing of vegiplications. In: Proc. 11th
Annual International Symposium on Software Reliability Eregring, pp. 84-96 (October
2000)

Lorenzo, G.D., Fasolino, A.R., Melcarne, L., Tramontdhayittorini, V.: Turning web ap-
plications into web services by wrapping techniques. Workiogference on Reverse Engi-
neering0, 199-208 (2007)

MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F.,MB&.: Reference model for service
oriented architecture 1.0. oasis standard, 12 october 2Q8//thocs.oasis-open.org/soa-rm/
v1.0/soa-rm.pdf

NAKAJIMA, S.: Lightweight formal analysis of web service flswProgress in Informatics
2,57-76 (2005)

OASIS: Organization for the advancement of structuredrimétion standards. http://www.
oasis-open.org/specs/index.php

OASIS: Universal description discovery and integratidip:Huddi.xml.org/uddi-org

OASIS: Wsbpel ver. 2.0 (April 2007). http://docs.oasisfopey/wsbpel/2.0/0S/wsbpel-v2.
0-OS.html

OMG: Unified modeling language (uml). http://www.uml.org/

OMG: Xml metadata interchange (xmi). http://www.omg.orgtsgMI1/2.1.1/

OpenSTA: Open system testing architecture. http://wwewnefa.org/

P., E.J., laFuente Valentn L, D., S, G., A, P, C, D.K.: Aygmhes to developing semantic web
services. International Journal of Computer Sciel{d¢, 8-2 (2006)

Paradkar, A.M., Sinha, A., Williams, C., Johnson, R.D., @stin, S., Shriver, C., Liang, C.:
Automated functional conformance test generation for semargicservices. IEEE Interna-
tional Conference on Web Services ICWSL10-117 (2007)

probleme: System modeling workbench tool. http://mww.bdporres/html/smw.html
Realfsen, A.S.: Tclwebtest recorder. http://www.km ilona/twtr

Ricca, F., Tonella, P.: Analysis and testing of web appboa. International Conference on
Software Engineering, 0025 (2001)

Sheshagiri, M.: Automatic composition and invocation of sdinaveb services. Master's
thesis, UMBC (2004)

SOASTA: Soasta cloudtest. http://www.soasta.com/

Softlogica: Wapt: Web application testing. http://wloadtestingtool.com/

Software QA and Testing Resource Center: Web site test todlsite management tools.
http://lwww.softwaregatest.com/qatwebl1.html

W3C: extensible markup language xml. http://www.w3.0MIX

W3C: Ontology web language (owl). http://www.w3.orB/6wl-features/

W3C: Resource definition framework (rdf). http://www.m8)/RDF/

W3C: Web application formats working group. http://ww&.0org/2006/appformats/

W3C: Web ontology web language for services (owl-s). Hitguw.w3.0rg/Submission/
OWL-S/

W3C: Web service description language with semantics (wsdl-Bjtp://www.w3.org/
Submission/WSDL-S/

. W3C: Web services modeling ontology (wsmo). http://www.wsngg.
. W3C: The world wide web consortium. http://www.w3.org/
. W3C: Simple object access protocol soap (version 1.1) (Ma@Rhttp://www.w3.org/TR/

soap/

40

56

57.

58.

50.

60.

Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

. Wombacher, A., Fankhauser, P., Neuhold, E.: Transformiegibf annotated deterministic
finite state automata for service discovery. In: Proc. |IEEE iatgonal Conference on Web
Services ICWS 2004, pp. 316-323 (2004)

Xu, L., Xu, B., Chen, Z., Jiang, J., Chen, H.: Regression g&inweb applications based on
slicing. Computer Software and Applications Conference,usthinternationa0, 652 (2003)
Yang, Y., Tan, Q., Yu, J., Liu, F.: Transformation bpel tongis for verifying web services
composition. In: Proc. International Conference on Next Gatien Web Services Practices
NWeSP 2005, pp. 6 pp.— (2005)

Yu, Y., Huang, N., Luo, Q.: Owl-s based interaction testifiggeb service-based system. Next
Generation Web Services Practices, International Conderen0, 31-34 (2007)

Zhang, R., Arpinar, |.B., Aleman-Meza, B.: Automatic corsifion of semantic web services.
In: International Conference on Web Services ICWS 20033pp41 (2003)

Modeling and Testing of Web Based Systems 41

Appendix

<process>
<sequence>
<recei ve name="receivelnput" partnerLink="client" portType="tn s:Pick"
operation="initiate" variable="input" createlnstance= "yes"/>
<assi gn>
<copy>

<from variable="input" part="payload"/>
<to variable="request" part="payload"/>
</ copy>
</ assi gn>
<i nvoke name="invokeAsyncService" partnerLink="AsyncBPELServ ice"
portType="services:AsyncBPELService" operation="init iate"
inputVariable="request"/>
<pi ck name="receiveResult">
<onMessage partnerLink="AsyncBPELService"
portType="services:AsyncBPELServiceCallback" operati on="onResult"
variable="response">
<assi gn>
<copy>
<from variable="response" part="payload"/>
<to variable="output" part="payload"/>
</ copy>
</ assi gn>
</ onMessage>
<onAl ar m for=""PT30S™>
<t er m nat e/>
</ onAl ar n»
</ pi ck>
<i nvoke name="replyOutput" partnerLink="client" portType="tns :PickCallback"
operation="onResult" inputVariable="output"/>
</ sequence>
</ process >

Fig. 18 The WS-BPEL Description of ThelBk Web Service

42 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Mesaand Fatiha Zaidi

< c<=rand(Clock) , client ?initiate(input) , _>

[c1l := 0]

cl <= rand(Clock) ¢2 <=0

<true, _, [request:=input, _]>

Pri = low

[c3 := 0]

c3 <=0

<c3=0, AsyncBPELService linitiate(request) , _>

Pri = low

<c4<30 , AsyncBPELService ?onResult (response) , [_,c4]>

[c5 := 0] [c4 := 0]

<c4=30, _, [_,c4]>

Pri = low

<true, _ , [output:=response , _]>

Pri = low

[c6 := 0]
c6 <=0 c7 <=0

<_, _, [stopProcess:= true; _]>

Pri = high
< _,client ! onResult(output) , _>

Pri = low

Fig. 19 The WS-TEFSM of the Rk Web Service without termination handling

