
HAL Id: hal-00706157
https://hal.univ-brest.fr/hal-00706157v1

Submitted on 9 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Testing of Web Based Systems
Ana Rosa Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, Fatiha

Zaidi

To cite this version:
Ana Rosa Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, Fatiha Zaidi. Modeling and Test-
ing of Web Based Systems. Springer. EMERGENT WEB INTELLIGENCE: ADVANCED SEMAN-
TIC TECHNOLOGIES, Springer London, pp.355-394, 2010, Advanced Information and Knowledge
Processing, �10.1007/978-1-84996-077-9_14�. �hal-00706157�

https://hal.univ-brest.fr/hal-00706157v1
https://hal.archives-ouvertes.fr

Modeling and Testing of Web Based Systems

Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

Abstract The success and the massive adoption of Web applications andservices are
pushing the community to increase and enhance their developments. By that way,
the complexity and size of Web based systems are definitely growing. Accordingly,
the need for sophisticated and complete methods used to testthe reliability and
security aspects of Web systems is increasing as well. Quality and relevant test cases
development can achieve up to 70% of the total cost of the project when these test
cases are hand crafted. Because of this, the industry and theresearch community are
making big efforts to automate test cases generation. That is the reason why the test
generator must be supplied with a precise and unambiguous semantic description
of the implementation under test (IUT), i.e. a formal model.This chapter presents
two methodologies to attain automatic test cases generation: The first one applies
extended finite state machines to model Web services composition described in WS-
BPEL, while the other one uses UML to model Web applications.Together with the
formal models of the web systems, this chapter presents methods for conformance
and non-regression test generation.

Ana Cavalli, Mounir Lallali, Stephane Maag and Gerardo Morales
Telecom & Management SudParis - SAMOVAR CNRS UMR 5157, 9 rue Charles Fourrier,
F-91011 Evry Cedex.
e-mail:{Ana.Cavalli,Mounir.Lallali,Stephane.Maag,Gerardo.Morales}@it-sudparis.eu

Fatiha Zaidi
LRI ; Univ. Paris-Sud, CNRS
e-mail: Fatiha.Zaidi@lri.fr

Research supported in part by the French National Agency of Research within the WebMov
project: http://webmov.lri.fr

1

2 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

1 Introduction

Web-based systems (services and applications) are gainingindustry-wide accep-
tance and usage. They are very popular because they offer complete interoperability
between systems. Using Web-based systems is relatively easy and inexpensive for
companies and institutions. It makes it easier for them to share their expertise, co-
operate by outsourcing tasks between them and making their incompatible software
systems interoperable. It hardly matters what operative system, database or other
characteristics their systems rely on. The idea behind Web-based systems was to
create an interface that describes what a system does. Everyoperation with its input
to the system and output obtained from the system is described. Another system can
access the Web-based system, viewing it as a black box, by using internet as the
channel of communication. As the Web-based system implementations grow in size
and complexity, the necessity for testing their reliability and level of security are
becoming more and more crucial.

Besides knowing whether a given Web-based system satisfies its functional re-
quirements, it is also important for a user to know whether the system behaves ap-
propriately when interoperating with others. Some of the questions that need be
answered are: (i) does the host of a selected Web-based system behave correctly
without any implementation error? (ii) does the Web-based system behave correctly
when new services are integrated to the network? (iii) does the selected Web-based
system tolerate erroneous behavior of other services with whom it must interoper-
ate? (iv) does the selected Web-based system produce outputs that can cause other
components to fail?

Frequently we can find hand crafted methodologies for conformance testing. Al-
though in most of the cases the execution of the test cases is automated, the biggest
part of the test cases generation process is hand made. Underthese conditions, the
production of quality and relevant test cases can be expensive compared with the
cost of the global project (30% to 70%). Because of this, the industry and the re-
search community have been working and making efforts to automate test cases
generation. So that a machine can generate the test cases andthe oracle to assign the
verdict for the tests, one needs to feed it with a descriptionof the implementation
under test (IUT), as precise and less ambiguous as possible;i.e. a formal description
with a precise semantic.

The main contribution of this chapter is the presentation ofa methodology to
model and test Web-based systems. For the modeling of Web-based systems, we
have chosen UML (Unified Modeling Language) [35] to specify web applications.
The Web Services Business Process Execution Language (WS-BPEL) [34] has been
chosen to specify services. This last language is well adapted for service compo-
sition description. For testing purposes, we propose a model-based approach that
relies on formal description languages. WS-BPEL descriptions are translated into
another formalism, the Time Extended Finite State Machinesfor Web Services (WS-
TEFSM), which is well adapted for the modeling and the testing of Web-based sys-
tems. Once the formal model has been designed (in WS-TEFSM or UML), based

Modeling and Testing of Web Based Systems 3

on formal testing relations and on a fault-model, we providetest methods and its
associated algorithms to generate the test cases. Afterwards, the test cases can be
automatically or manually executed on the real implementation, i.e. the deployed
Web-based system.

The tests which are presented in this chapter, are conformance and non-regression
tests. By conformance testing we mean the assessment that a product conforms to
its specification. Test cases are designed to test particular aspects of the Web-based
system, which are called test purposes. Non-regression testing consists of testing
modified software to detect whether new errors have been introduced by the modi-
fications, and provides confidence that the modifications do not change the system
behavior.

The proposed methodology is composed of two approaches, onebased on WS-
TEFSMs models and the other on UML models. The methodology based on the
UML models has been applied to a real case study, an open source e-learning
platform dotLRN [13]. Then, test generation methods have been applied to them.
Numerous experiments have been performed for conformance and non regression
testing, based on automatic test generation but also with hand crafted tests using
TCLwebtests.

In this chapter, we do not address the Web semantic. Our work is related to test-
ing and in particular to automation of testing Web-based systems to establish their
correctness with respect to their specifications. To perform the conformance and
non regressions testing, it exists languages and standardsof reference to describe
the Web-based systems and from which we generate the tests and execute them on
the real implementation. The languages that are used in thatchapter are a subset of
UML and WS-BPEL. The languages that are used in the domain of semantic Web
are very specific and address particular objectives that arenot those addressed by
this chapter. Nevertheless, we give below some references and information about
the semantic Web that can help to understand what this domaincovers and to estab-
lish the differences with the work performed here.

The semantic Web is the abstract representation of data on the World Wide Web
to make it easily processed by machines, offering more effective discovery, automa-
tion, integration, and reuse among various applications [54]. It is different from the
Web that is essentially syntactic. It aims to facilitate thecommunication human-
machine and machine-to-machine and the automatic data processing. The seman-
tic Web is based on some standards Ontology is the core of the Semantic Web. It
consists of a set of concepts, axioms, and relationships that describe a domain of
interest (e.g. system model, data model, etc.). Ontology engineering is supported
by primary semantic Web standards and languages (e.g. RDF (Resource Definition
Framework [49], Web Ontology Language (OWL) [48]).

The semantic Web and Web services are complementary. The former aims at
providing a semantic interoperability of content, while Web services aim at giving a
syntactic interoperability of data exchanges. In addition, several information needed
by the automation of design and implementation of Web services (like description,
publication, discovery, selection, execution, composition, monitoring, replacement,

4 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

compensation, etc..) are either absent or described to be only used or interpreted
by humans. Such information can be provided by the semantic Web in a way that
machines can understand and process it.

Several semantic types can be considered in the Web servicesdomain [5]: (i)
functional semantics: (the semantics of service signature(inputs/outputs)); (ii) data
semantics (annotation of data involved in Web service operation using ontologies);
quality of service semantics (the semantics of different quality aspects, e.g. dead-
lines, cost of service); (iv) execution semantics (these semantics concern message
sequence, flows, effects of service invocation, etc); (v) domain semantics: the use of
domain-specific semantics can ameliorate the discovery andselection of services.

Some approaches [5] have been developed to introduce semantics to Web ser-
vices by using: WSDL-S (Web Service Description Language with Semantics) [52],
OWL-S language (Ontology Web Language for Services) [51], WSMO (Web Ser-
vices Modeling Ontology) [53].

As stated before, the semantic Web and our work address different objectives.
Indeed, Semantic Web service technologies are developed inorder to give richer
semantics to services leading to the automation of the Web Service usage process.
Nevertheless, there exist some works that try to apply testing techniques to semantic
Web services as in [39, 59], and especially in automatic composition of semantic
Web Services [43,60].

The chapter is organized as follows: in section 2, basic concepts of Web-based
systems and testing techniques are presented. This sectionalso includes the presen-
tation of related work. Section 3 presents model-based testing techniques starting
with a presentation of the modeling languages WS-BPEL, WS-TEFSMs and UML,
used to describe the expected requirements or properties ofthe Web-based systems.
In section 4, Web services composition mechanisms and the test generation algo-
rithms to generate tests from WS-TEFSMs and UML models are presented. Sec-
tion 5 presents the case study, the dotLRN system, and the test generation from an
UML model of the system by the application of the methods described in Section 4.
Finally, we conclude the chapter and illustrate some perspectives in section 6.

2 Preliminaries

This preliminary section is devoted first to the presentation of basic concepts related
to the Web-based systems. Then, the testing vocabulary is detailed especially in
focusing on the formal aspects. Finally we present the related works in that domain
in order to illustrate the contribution of the Web-based community.

Modeling and Testing of Web Based Systems 5

2.1 Definitions

According to W3C definition, a Web service provides a standardmeans of inter-
operating between different software applications. Web services deal with making
heterogeneous applications interoperate. A standardizedway of integrating Web-
based applications is ensured by the XML (eXtensible MarkupLanguage) [47],
SOAP (Simple Object Access Protocol) [55], WSDL (Web ServiceDescription Lan-
guage) [7] and UDDI (Universal Description, Discovery and Integration) [33] that
are open standards over an Internet protocol backbone. XML is used to tag the data,
SOAP is the protocol used to transfer the data, WSDL describesthe available ser-
vices and UDDI is a kind of registry.

Used primarily as a way for businesses to communicate with each other and with
clients, Web services allow organizations to communicate data without intimate
knowledge of each other system behind the firewall. The combination of services—
internal and external to an organization—makes up a service-oriented architecture.
The composition of Web services became this last decade a subject of interest as
well as for researchers then for industrials. Several proposals of languages to pro-
gram and/or to specify Web services composition came up and among them, as pre-
viously mentioned, the WS-BPEL language. This latter is welltailored to address
the composition of Web services and it is also widely used [32]. The composition
is also commonly known asOrchestrationand this is carried on at a single partner
level.

While Web services are dedicated to the interactions betweendifferent programs,
Web applications are commonly defined as a collection of logically connected Web
pages managed as a single entity reachable via a Web browser over a network such
as the Internet or an Intranet [50]. A Web applications is like a software application
implemented in a browser-supported language (such as HTML,JavaScript, Java,
etc.) executed through a Web browser.

We can notice that both types of systems, i.e. Web service andWeb applica-
tion rely on their access and availability through Internetand on specific dedicated
languages. In our case, we consider the composition of Web services in order to pro-
duce more complex ones. The language to describe the workflowof the composition
is the WS-BPEL. The Web application language is the HTML and for the modeling
we use UML diagrams.

2.2 Testing Techniques

After the system has been implemented, the implementation must be verified to
conform to its specification, to ensure that the system will operate correctly. This
procedure is known as conformance testing, and can be accomplished by applying
a sequence of inputs to the implementation, by means of an external tester, and by
verifying if the sequence of outputs is the one specified.

6 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

If a test sequence is capable of detecting all erroneous implementations, it is said
to providefull fault coverage. There are many methods for generating automatically
a test sequence to check a given implementation against a specification. Most of
the methods used in this chapter have been developed in the framework of protocol
engineering, since protocols are normally programs for which precise specifications
can be defined. However, these techniques can be adapted and applied successfully
to the test of Web services and applications.

2.2.1 Basic concepts

A program specification is typically composed by a control part and a data part. This
chapter deals with the control part only; other approaches are oriented to the analysis
of control and data dependencies [21]. The control part of a program, which will be
referred as program specification, can be modeled as a FiniteState Machine (FSM)
with a finite set of statesS= {s1,s2, · · · ,sn}, a finite set of inputsI = {a1,a2, · · · ,ak},
and a finite set of outputsO = {x1,x2, · · · ,xm}. The next state(σ) and output(ϕ)
are given by a set of mappingsσ : S× I → Sandϕ : S× I → O. The FSM is usually
also represented by a direct graphG = (V,E), where the setV = {v1,v2, · · · ,vn}
of vertices represents the set of statesS, and a directed edge represents a transition
from one state to another in the FSM. Each edge inG is labeled by an inputar and
a corresponding outputxq. An edge inE from vi to v j which has labelar/xq means
that the FSM, in statesi , upon receiving inputar produces outputxq and moves to
statesj . A triplet (si ,ar/xq,sj) is used in the text to denote a transition.

A FSM is said to befully specifiedis from each state it has a transition for ev-
ery input symbol, otherwise the FSM is said to bepartially specified. If a FSM is
partially specified and a non specified input is applied, under theCompleteness As-
sumptionthe FSM will either stay in the same state without any output or signal
an error. The initial state of a FSM is the state the FSM entersimmediately after
power-up.

Statesi is said to be weakly equivalent to statesj if any specifiedinput/out put
sequence forsi is also specified forsj . If two states are weakly equivalent to each
other they are said to be strongly equivalent. A FSM isdeterministic, if for each
statesi ∈ S, with two associated transitions(si ,ar/xq,sj) and(si ,aw/xp,sk) where
ar 6= aw andsj 6= sk.

A graph representation of a FSM is depicted in Fig. 1. For the FSM represented,
I = {a,b} andO = {x,y}.

2.2.2 Conformance

Since the implementation is tested as a black box (meaning that we do not have any
internal views of the system), the strongest conformance relation that can be tested
is trace equivalence: two FSMs are trace equivalent if the two cannot be distin-
guished by any sequence of inputs. That is, both implementation and specification

Modeling and Testing of Web Based Systems 7

1

3 2

a/x

b/x

b/x

a/y

a/y b/x

Fig. 1 A Graphical Representation of a FSM

will generate the same outputs (i.e. trace) for all specifiedinput sequences. To prove
trace equivalence it suffices to show that (i) there is a set ofimplementation states
{p1, p2, · · · , pn} respectively isomorphic to specification states{s1,s2, · · · ,sn}, and
(ii) every transition in the specification has a corresponding isomorphic transition in
the implementation. The Figure 2 illustrates the goal of theconformance testing.

Conformance testing consists in making the implementationunder test (IUT) to
interact with its environment. This environment is simulated by a tester (cf. Fig. 3)
that executes the test cases and stimulates the IUT. The interfaces of the tester are
called Points of Control and Observation (PCO).

IUT Specification
Conforms?

Fig. 2 Conformance Testing Scheme

IUT Tester PCO Verdict (pass,fail)

Fig. 3 Role of the Tester

2.2.3 Models of faults

The types of faults detected by methods based on input/output FSMs are output and
transfer faults. An output fault occurs when a transition produces an unexpected

8 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

output for a given input; that is, a transition specified as(si ,ar/xq,sj) is implemented
as(si ,ar/xw,sj) wherexq 6= xw. A transfer fault occurs when a transition leaves the
implementation in the incorrect state; that is, a transition specified as(pi ,ar/xq, p j)
is implemented as(pi ,ar/xq, pk) wherep j (the state that should implementssj) and
pk are not equivalent. Note that a single transition may incur into an output and
transfer fault.

2.2.4 Automatic test Generation

The purpose of test generation is to produce a sequence of inputs (and corresponding
outputs), called a test sequence, which can be applied to an implementation to verify
that it correctly implements the specification.

There is a number of necessary assumptions that must be made in order to make
the experiment possible: (i) the specification FSM is strongly connected, so that all
states can be visited; (ii) the specification FSM does not have strongly equivalent
states (it is minimal); (iii) there is an upper bound on the number of states in the
implementation FSM (otherwise one could always construct amachine which would
pass a given test sequence by using as many states as there aretransitions in the
sequence).

2.3 Related Works

Several techniques to perform testing have been proposed inthe literature. We first
describe what it exists in the domain of Web applications andwe continue with the
Web services and particularly with Web services composition. The considered tests
are conformance and non regression tests. As mentioned previously, conformance
tests establish that the implementation respects its specification. In other words, we
interact with the implementation by feeding it with inputs and compare the outputs
of the implementation to the expected answers. The relationthat exists between the
specification and the implementation is an implementation relation. The specifica-
tion is produced from an informal description of what the system is expected to do,
here the specification languages are UML and WS-BPEL. The second kind of test
is regression testing, that is the process of validating modified software to detect
whether new errors have been introduced into previously tested code, and provide
confidence that modifications are correct.

As the use of the Web applications is growing up, the intereston testing these
systems and the number of works is increasing as well. Among the recent works
it can be quoted [1], work in which the authors survey severalanalysis modeling
methods used in Website verification and testing. In [27], a methodology of Model-
Driven Testing for Web application is presented. Moreover,concerning the testing
needed to help maintaining the stability of Web applications, numerous works are
using the regression testing approach. This testing technique as well as conformance

Modeling and Testing of Web Based Systems 9

testing is important to apply to the open source Web applications because of its
continuous developing speed and changeable user demands. The work presented
in [57] proposes a method based on Slicing to avoid the re-execution of all the
regression test cases of a Web application, and selects justthe test cases that will
interact with the part of the Web application that have suffered a change with the
insertion of the new code.

Several tools and methodologies have been developed to achieve an automatic re-
gression testing on Web applications that do not have a formal specification. Among
all the tools used to build the regression test cases, the ones that can record the in-
teractions between the user and the Web application during acertain time, or a well
defined number of interactions (e.g. to follow a link or to submit a form) are the
most popular. Selenium [12], for example is a tool in which the trace of interactions
(i.e. the record) is written as HTML tables. However, for ourpurpose it was needed
to obtain a trace flexible enough to be changed and re-used in an easy and fast way,
for example a trace written in a scripting language. Tclwebtest [41] is a tool to write
tests for Web applications. It provides an API for issuing HTTP requests and pro-
cessing results. It assumes specific response values, whiletaking care of the details
such as redirects and cookies. It has the basic HTML parsing functionality to provide
access to elements of the resulting HTML pages that are needed for testing, mainly
links and forms. The execution of a test case written in Tclwebtest will simulate
a user that is interacting with the Web application through aWeb browser. Using
the links and forms it is possible to add, edit or delete data of the Web application
by executing the test case script. There exists also a lot of works that have focused
their research on functional testing based on a formal modelsuch as [25, 28, 42].
We can also mention some Web application tools (e.g. OpenSTA[37], WAPT [45],
SOASTA [44]). The listing of load/performance test tools and Web functional/ re-
gression test is presented in [46].

Regarding Web services, we survey the existing works for Webservices com-
position. As previously stated, in the area of Web services,the design is the most
important phase of the orchestration layer. This is where one describes the complete
services behavior. The growing use of Web services makes it necessary to ensure
that the behavior is correct. The common practice in the areais to generate unit
and integration tests with tools such as SOAPUI [14] that arebased on empirical
approaches. In the last years, the software testing community has started to get in-
volved in the Web services domain. As a consequence, severalworks have been
published to try to bridge the gap between the usual Web testing practices and a
formal testing process. The empirical approaches that are still used in the domain
give acceptable results but they have become more and more costly and do not allow
to cover all the problems raised by such systems. Moreover, when systems become
complex, such approaches offer only partial verifications and validations. Conse-
quently, if we want to validate Web systems with an improved test coverage, we
need to introduce rigorous methods which nevertheless conform to the economical
constraints of the Web services development process. The original nature of Web
services requires to first validate them individually and test them when integrated.

10 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

Industrial tools exist and are available to perform such kinds of tests. When complex
Web services are considered, we also need to deal with the Webservices composi-
tion or in other words, orchestration.

The current practice deals with the Web Service DescriptionLanguage WSDL.
WSDL is used to describe what a Web service can do, where it resides, and how to
invoke it. In our case, we consider WS-BPEL that permits describing the control and
data flows; thus, allowing to study the behavioral aspects ofthe Web service. Several
WS-BPEL activities are related to time constraints. So, we need to take into account
such constraints for their modeling. Currently, in the literature, we can find several
papers dealing with WS-BPEL specification and formal models for Web services.
Several models are described to transform the WS-BPEL specifications. In [56]
a transformation of WS-BPEL in an annotated deterministic finite state machine
(FSM) is proposed. This formalism does not allow to capture the timing aspects of
some WS-BPEL activities and does not consider WS-BPEL variables. In [31] an-
other formalism is proposed that deals with variables, the Extended Finite State Ma-
chine (EFSM), but no timing constraints are considered. In [23] a formalism taking
into account timing constraints is proposed, the Web Service Timed Transition Sys-
tem (WSTTS). However, this formalism uses only clocks but no variables. We can
also mention works that use different kinds of formalisms [4,15,19,58]. In [19,58]
Petri nets are used to specify the Web services. This formalism is not well adapted
for testing Web services composition because it results in aglobal description that
lacks structure making it impossible to differentiate the service components.

In [4] an interesting approach is presented using RT-UML to model real time
aspects of Web service choreographies but this does not consider orchestration and
interoperability of services and components. The work presented in [15] is sim-
ilar to this one: to design a methodology based on WS-BPEL. Formalization of
WS-BPEL language semantics is necessary to eliminate ambiguities and make ab-
stract operational specifications executable. Here an Abstract State Machine (ASM)
model is used but unlike FSM or WS-TEFSM [26] (Web Services Timed Extended
Finite State Machine) models used in this work, it is not directly executable and re-
quires not so evident translations, making it more difficultto develop testing tools.
The used Distributed ASM needs also to be extended with timing constraints and
variables. Other not yet very advanced approaches exist, such as in [17] where WS-
BPEL is translated to Promela which is the input language of the SPIN [20] model
checker, allowing test generation. These approaches need to be developed and im-
plemented in tools where scalability and usability can be evaluated.

3 Web-based system modeling

The proposed methodology is based on two main elements: the modeling language
and the generation methods. This latter will be detailed in the Section 4. The mod-
eling step provides a precise representation of the system.The description language

Modeling and Testing of Web Based Systems 11

used here to describe the composition of Web services is the WS-BPEL language
for the reasons that have been mentioned above. In the case ofWeb applications,
the UML notation and in particular some diagrams have been chosen. This notation
is well-suited to describe Web applications which are oftendeveloped using object
concepts. With UML we can represent the navigation by means of a navigation map
which provides information about the dynamic content of each Web page. Further-
more, the sequence diagrams that represent the exchange between the elements of
the system are good candidate to express the test objectives.

We detailed below the modeling choices of both Web services and Web appli-
cations, note that the choices have been made taking into account the adequacy of
the language to the system to be described and also for testing purposes. Let us note
that both Web-based systems in our methodology need to be formally described for
testing generation methods which is one of our problematics. The willing to deal
with such an approach is issued from our own experience in industrial projects1. We
notice that the delays to produce a software or a new release are becoming more and
more short. Furthermore in a competitive market the clientsrequest cost reduction
in their management and maintenance costs. For all these reasons a more automated
technique to generate tests is needed as hand-crafted testsare a time-consuming ac-
tivity. Hence, as said, a model is the first step and represents the specification of the
system inputs and can be handled at a very early stage of the development cycle of
a Web-based system, i.e. from the requirement information.

3.1 Modeling of Web Services

To standardize the specification of a Web services composition, IBM and other com-
panies have proposed the WS-BPEL language [34] that became in2007 an OASIS
Standard [32].

WS-BPEL is a coordination and composition language that captures business in-
teractions between Web services. It can also be viewed as a workflow language for
Web Services. WS-BPEL provides constructs to describe arbitrarily complex busi-
ness processes. A WS-BPEL process can interact synchronously or asynchronously
with its partners (i.e. client service or services that are invoked by the WS-BPEL
process). The building blocks for a WS-BPEL process are the descriptions of the
parts participating in the process, in terms of data and activities flow. A basic process
in WS-BPEL is defined as a root element, consisting of one or more child elements
describingpartners links, a set ofvariablesthat records the state of the process,cor-
relation Sets, event handlers, fault handlers, compensation handlersandactivities.
This latter defines the logical interactions of a process andits partners. The WS-
BPEL activities that can be performed by a business process instance are categorized
into basic (e.g.<wait> , <exit> and<assign> activities),communication (e.g.
<receive> , <reply> and<invoke> activities) and structured activities (e.g.

1 PLATONIS (http://www-lor.int-evry.fr/platonis), ASK-IT(http://www.ask-it.org/.) and WebMov
(http://webmov.lri.fr)

12 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

<sequence> , <flow> and<while> activities). For instance, the<receive>
activity waits for a message from a partner, and the<reply> activity sends
an answer for a message previously received with a<receive> activity. The
<wait> activity waits for a specified amount of time before continuing while the
<onAlarm> WS-BPEL construct corresponds to a timer-based alarm.

We present in the next section the timed modeling of the Web Services composi-
tion described in WS-BPEL.

3.1.1 WS-BPEL Timed Modeling Approach

A WS-BPEL process component implements a business process (i.e. Web service).
The behavior of a Web service is described by sequences of activities, their execu-
tion time and their semantic. For instance, the<wait> activity is triggered when
the timeout occurs, the<reply> of invocation may be considered as an instanta-
neous activity, while the<receive> activity may require an arbitrary amount of
time. To model this temporal behavior, we propose the WS-TEFSM which extends
EFSM with clock variables, state invariants on clocks and priorities on transitions.
The time progresses in states, and transitions take no time to be executed. In order
to represent the time progress, a local clock is added in the WS-TEFSM. It can be
initialized at the beginning of each activity to be executedand can be reset at its end.
Moreover, in order to model an absolute time, a global clock,denotedgc, is added
in the WS-TEFSM. It can be explicitly set to a certain value at the beginning of the
WS-BPEL process execution, and is never reset later. In orderto control the time
progress, we use time invariants in the states.

All WS-BPEL activities are modeled as instantaneous activities except<wait> ,
<receive> , <empty> (with durationattribute) and<onAlarm> that are related
explicitly to a time notion. These instantaneous activities are modeled, as instant
transitions calledaction transitions. These transitions are equivalent to assign the
time invariantc≤ 0 (wherec is a local clock initialized tozero) to the source state of
the transition. In that case, the time cannot progress in this source state. Contrarily,
the non instantaneous activities are modeled asdelaytransitions. They take certain
amount of time represented by time increment in the state andfollowed by their
immediate execution. It is semantically equivalent to add first a clock invariant to
the source state of the transition depending on time, and secondly guards on the
clock variables of transition guards on WS-BPEL process variables.

For instance, the<wait> activity and the<onAlarm> element are used to rep-
resent timeouts. These constructs have two forms. In the first one (withfor attribute)
they are triggered after a durationd. We associate in this case the invariantc≤ d to
the source state of the transition. In the second one (withuntil attribute), the transi-
tions are triggered if the current absolute time has the specified value (i.e. deadline
dl). We associate the invariantgc≤ dl to the source state of the transition.

A transition priority is used to model interruptions in real-time systems. In this
model, we use priority on transitions to model the fault handlers and the termination

Modeling and Testing of Web Based Systems 13

of the WS-BPEL process and its sub-activities. Each non atomic activity can be
interrupted by adding an urgent transition from each state to a particularstopstate.
All the transitions of each WS-BPEL atomic activity have a highest priority and
cannot be blocked or interrupted. Adelaytransition has a lowest priority.

In order to introduce the Timed Extended Finite State Machine with Priorities
(WS-TEFSM), we need first to depict the clock valuation concept.

LetV a finite set of data variables. A valuationv overV is a functionv : V 7→D|V|
V

that assigns to each variablex ∈ V a value in the data variables domainD|V|
V . The

initial data variables valuation is notedv0. v[−→v := −→x] denotes the data valuation
which updates the variables−→v = {v1, · · · ,vn} and keeps the rest of variables (i.e.
V \{v1, · · · ,vn}) unchanged.

A clock valuationu over the set of clocksC is a functionu : C 7→ R
|C|
+ (noted by

u∈ R
|C|
+) that assigns to each clockc∈C a value inR+. The initial clock valuation

u0 corresponds to the initialization to 0 of all clock variables:∀c∈C, u0(c) = 0.

We introduce in the following the formal definition of the Timed Extended Finite
State Machine with Priorities which is used to model the WS-BPEL process.

Definition 1 (WS-TEFSM). A machine WS-TEFSMM is a tupleM = (Q,Σ ,V,C,
q0,F,T,Pri, Inv) where:

• Q = q0,q1, · · · ,qn: a finite set of states;
• Σ = a,b,c, . . .: alphabet of the actions including symbols !m (output action) and

?m (input action);
• V: finite set of data variables where−→v = (v1,v2, · · · ,vm);
• C: finite set of clocks where−→c = (c1,c2, · · · ,cn);
• q0 ∈ Q: initial state;
• F ⊆ Q: finite set of end states;
• T ⊆ Q×A×2Q: transition relation that:

A: Set of transition actionsΣ ×P(V)∧φ(C)×µ ×2C where:

P(−→v) ∧ φ(−→c) : guard condition is logical formula on data variables and
clocks;
µ(−→v): data variables update function;
2C: set of clocks to be reset.

• Pri : T ×D|C|
C 7→ N≥0 assigns to each transition its priority that respects the clock

valuationu;
• Inv : Q 7→ Φ(C) assigns a set of time invariants (logical formulas) to the states.

The actions inΣ represent an observable actions. The labelτ /∈ Σ denotes an
internalaction that is unobservable. We noteΣτ the setΣ ∪{τ}.

In the WS-TEFSM model, the states are associated with state invariants that ex-
press simple clock conditions. The invariants of a state should be true when the

14 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

machine is in this state. This machine may remain in a state aslong as the clock val-
uation satisfies the invariant condition of the considered state. We can assign a set of
time invariants to one state because it can be the source state of several transitions
such as<if> and<pick> activities. This set associated to a stateq is denoted by
Inv(q) = {e1,e2, ...}. We will write u∈ Inv(q) to denote that the clock valuationu
satisfyei | ∃ ei ∈ Inv(q).

Each transitiont = qi
<cond,a,[−→v :=−→x ;R]>
−−−−−−−−−−−−→ q j is annotated with a set of guards on

data variables and clocks (e.g.cond), actions (e.g.a), data variable updates (denoted
−→v := −→x) and a clock set to be reset (e.g.R). The transition priority depends of the
time and can be dynamically updated with respect to time progress. It assigns a non-
negative integer value to each transition priority with respect to a clock valuation.
An enabled transition can block another one if it has a higherpriority.

The WS-TEFSM semantic are defined as follows to be used in the description of
the timed test case generation algorithm (presented in Sect. 4.1.2).

3.1.2 Semantic of WS-TEFSM

The delay transition indicates that if the other transitions outgoing from the same
source state have a lower priority, then the any action. In other words, the state is
not modified, but the machine increments the current value ofthe clocksd by u⊕d
(that represents a valuation where all clocks have been incremented by the real value
d from their value inu). A delaytransition may affect the priority of other transitions
through the functionPri and does not block any transition. The priority of thedelay
transition is a constant valuezero.

The action transition having the highest priority, indicates that if the condition
cond is evaluated to true, then the machine follows the transition by executing the
actiona, changing the current values of the data variables by the action [−→v := −→x]
(i.e. v′ = v[−→v := −→x]), resetting the subset clocksR (the clock valuationu resets
each clock in the setR) and moving to the next stateq′. Particularly in the case of
the internal actionτ, the clocks remain unchanged and consequentlyu′ = u.

Let s,s′ ∈ S. In the following, we denote thedelaytransition bys
d
⇒ s⊕d, and

theactiontransition bys
a
⇒ s′.

Definition 2 (WS-TEFSM Semantic).Let M be a WS-TEFSMM = (Q,Σ ,V,C,
q0,F,T,Pri, Inv). The WS-TEFSM semantic is defined by a labeled transition sys-
tem (LTS)SemM = (S,s0,Γ ,⇒):

• S⊆ Q×R
|C|
+ ×D|V|

V is the set of semantic states(q,u,v) where:

– q is a state of a machineM;
– u is an assignment (i.e. clock values represented by clock valuationu) that

satisfies one invariant of the stateq (i.e.u∈ Inv(q));

Modeling and Testing of Web Based Systems 15

– v is a data values represented by data variable valuationv.

• s0 = (q0,u0,v0) is theinitial state;
• Γ = Στ ∪{d | d ∈ R+} is the label set whered corresponds to the elapsed time.
• ⇒⊆ S×R+ ×S is the transition relation defined by:

– actiontransition: Let(q,u,v) and(q′,u′,v′) be two states.

Then(q,u,v)
a
⇒ (q′,u′,v′) if ∃ t = q

<cond,a,[−→v :=−→x ;R]>
−−−−−−−−−−−−→ q′ ∈ T such that

· u∈ cond, u′ = u[R 7→ 0], u′ ∈ Inv(q′),v′ = v[−→v := −→x]

· ∀ t ′ = q
<cond′,a′,[

−→
v′ :=

−→
x′ ;R′]>

−−−−−−−−−−−−−→ q′′ ∈ T,u∈ cond′ ⇒
(Pri(t,u) > Pri(t ′,u))∨ ((Pri(t,u) = Pri(t ′,u))∧ rand(t, t ′) = t)

– delaytransition: Then(q,u,v)
d
⇒ (q,u⊕d,v) if

· ∀ 0≤ d′ ≤ d, u⊕d′ ∈ Inv(q);

· ∀ t =

(

q
<cond,a,[−→v :=−→x ;R]>
−−−−−−−−−−−−→ q′

)

∈ T,

∀ 0≤ d′ ≤ d, u⊕d′ ∈ cond⇒ Pri(t,u⊕d′) = 0.

After defining a WS-TEFSM and its semantic, an overview of the transformation
of WS-BPEL into WS-TEFSM and two examples (e.g. activities) are presented.

3.1.3 Overview of WS-BPEL Mapping into WS-TEFSM

A WS-BPEL process always starts with the<process> element which con-
tains the workflow definition. It is composed of the followingoptional children:
<partnerLinks> , <partners> , <variables> , <correlationSets> ,
<faultHandlers> , <compensationHandlers> and<eventHandlers> .
The execution of sub-activities is carried out in parallel because the fault, the event
and the compensation handlers can be carried out independently of the principal
<process> activity. If this is not the case, these sub-activities are synchronized
by the tuple (sending, reception).

A transformation rule is defined for each WS-BPEL construct. The recursive
mapping starts by transforming all the WS-BPEL constructs into partial WS-
TEFSM. The WS-BPEL process model is based on the asynchronousproduct of
the partial WS-TEFSMs of its sub-activities. This asynchronous product represents
the parallel execution of the partial WS-TEFSMs where they are synchronized by
the tuple (sending/receiving).

The recursion result is a partial WS-TEFSMPM which can be represented as a
WS-TEFSMM by renaming theinitial stateq0 by the input stateqin, adding the
output states ofQout to the final states setF and adding theglobal clock gc to
the clocks setC. The data variables setV is the union of the transformation of the
<variables> , <partners> and<partnerLinks> elements.

M = (Q,Σ ,V,C∪{gc},qin,F ∪Qout,T,Pri, Inv) (1)

PM = (Q,Σ ,V,C,qin,Qout,F,T,Pri, Inv)

16 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

3.1.4 Examples of WS-BPEL Construct Transformation

The Wait Activity

The <wait> activity allows to wait for a given time period (i.e. duration d or
until a certain deadlinedl). One of the expiration criteria must be specified ex-
actly [34]. The<wait> syntax is<wait for=d> or <wait until=dl> . Let
Priw = {(t1, , lp)} wherelp is a low priority.

• <wait for=d> is modeled as a partial WS-TEFSMPM

PM = {{qin,qout}, /0, /0,{c},qin,{qout}, /0,{t1},Priw, Inv} (2)

t1 = (qin,< c = d, , [;{c}] >,qout)

Inv = {(qin,c≤ d),(qout, true)}

• <wait until=dl> is modeled as a partial WS-TEFSMPM

PM = {{qin,qout}, /0, /0, /0,qin,{qout}, /0,{t1},Priw, Inv} (3)

t1 = (qin,< gc= dl, , >,qout)

Inv = {(qin,gc≤ dl),(qout, true)}

The partial WS-TEFSMs of the<wait for> and the<wait until> activ-
ities are illustrated in Fig. 4 and Fig. 5. Note that in these examples, there are not
actions.

qin qout

priority = basic
[c:=0]

<c = d, _, [_ ; {c}]>

c ≤ d

Fig. 4 The partial WS-TEFSM of the<wait for> activity

qin qout

priority = basic

<gc = dl, _, _>

gc ≤ dl

Fig. 5 The partial WS-TEFSM of the<wait until> activity

Modeling and Testing of Web Based Systems 17

The Wait for Machine with Termination Handling

Each<wait> , for instance, can be interrupted and terminated prematurely. To ter-
minate this activity, we add a stop transitiont2 to a <wait> machine (described
above) which has an urgent priority and can interrupt the transition t1. Let hp be
a highest priority.stopProcessis a global variable of the process that is assigned
to true by the<exit> activity. stopScopeis a local variable of each scope that is
assigned totrue by the scope<throw> activity. These two boolean variables are
used to handle the termination. The<wait> machine with termination is defined
as:

PM = {{qin,qout,qstop}, /0, /0,{c},qin,{qout}, /0,{t1, t2},Priw, Inv} (4)

t1 = (qin,< c = d, , [;{c}] >,qout)

t2 = (qin,< stopProcess∨stopScope, , [;{c}] >,qstop)

Priw = {(t1, , lp),(t2, ,hp)}

Inv = {(qin,c≤ d),(qout, true),(qstop, true)}

The partial WS-TEFSM of the<wait for> with termination is given in Fig. 6.

qin

qout

priority = basic

c ≤ d

[c:=0]

<c = d, _, [_ ; {c}]>

qstop

priority = stop

<stopProcess ∨ stopScope = true, _, [_ ; {c}]>

Fig. 6 The partial WS-TEFSM of the<wait for> activity with Termination

We can transform all the WS-BPEL constructs (elements and activities) in a sim-
ilar way. While we have detailed how to model Web services, we tackle in the fol-
lowing the Web applications modeling.

3.2 Modeling of Web Applications

This methodology describes how UML diagrams developed in the analysis phase are
used to automatically produce test cases. We will show how tocheck the graphical
user interfaces but also the generated pages content.

18 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

3.2.1 UML Overview

The UML language is a standardized visual specification language for object mod-
eling [35]; It is a general-purpose modeling language that includes a graphical nota-
tion used to create an abstract model of a system. Using UML, no one diagram can
capture the different elements of a system in its entirety. Hence, UML 2.0 is made
up of thirteen diagrams that can be used to model a system at different points of time
in the software life cycle of a system. Nevertheless, in the methodology presented in
this chapter only four UML diagrams, which constitute the input data, are needed to
be applied for the Web application modeling and testing. TheUML diagrams used
in this approach are fully described in the next subsection.

3.2.2 Using UML to model Web applications

In order to derive the test cases, it is needed to grasp and describe the system func-
tionality at least in a semi-formal way. A model-based approach of Web applications
can be performed using UML techniques and UML notation. A design methodol-
ogy based on a UML extension for Hypermedia [8] is used. It consists of three main
steps that constitute the conceptual model, the navigationmap, and the presentation
model. The conceptual model is built taking into account thefunctional require-
ments captured with use cases [9]. The output of this step is not directly used as an
input to the test suite but it is important in order to design the UML diagrams which
actually constitute the input data.

From this conceptual model, the navigation space model is constructed, also rep-
resented as a static class model. It defines a view on the conceptual model showing
which classes may be visited through navigation in the Web application. Finally, a
dynamic presentation model is represented by UML sequence diagrams describing
the collaborations and behaviors of the navigational objects and access primitives.
In order to specify our model, the following diagrams are involved:

• Class Diagram to introduce the main classes of the system;
• Activity Diagram for each actor to display dependencies among the use cases;
• Navigation Map to provide information about the dynamic content of the Web

pages;
• Sequence Diagram for each use case describing the main and the alternative sce-

narios of the use case to represent the dynamic presentationmodel.

These diagrams are exported in an XMI format (XML Metadata Interchange for-
mat) [36] , i.e. an OMG standard for exchanging metadata information via XML.
This activity is supported by all the modern CASE tools like ArgoUML [10] and Ra-
tional Rose [22]. Afterwards the XMI is parsed and it is produced a program which
connects to the Web server and makes requests according to the given scenario in
the Sequence Diagram. Finally, the response Web page is examined to verify if it
conforms to the specification. Figure 7 presents briefly the different steps of our
study.

Modeling and Testing of Web Based Systems 19

Web Application
Specification

Web Application
UML Model

UML Diagrams
Exported in XMI XMI Parser

Test Cases Implemented
in a Script Language

Fig. 7 Representation of the methodology

3.2.3 From Conceptual Model to Navigation Map

In order to specify a Web application, first it is needed to build a conceptual model
of the application domain taking into account the functional requirements captured
with use cases. Techniques such as finding classes and associations, and defining
inheritance structures are performed.

The Navigation Map of a Web application introduced in [3] is used because it
provides information about the dynamic content of each Web page which is part of
the system as well as the links between the different Web pages. This information is
essential during the parsing of the HTML pages. Navigation Map is a Class diagram
where each Web page is a class and a link between two pages is anassociation
between the two respective classes. This extension of UML for Web applications
introduces a number of tagged values, constraints and stereotypes (such as indexes,
guided tours, queries and menus).

3.2.4 Modeling Use Case Dependencies

The use cases of a system are not independent. Apart fromincludeandextendrela-
tionships, there are also sequential dependencies. In order to execute one use case,
another should have taken place before. For instance, in anyWeb application such
as an e-mail Web interface or e-learning platform, the user should login before be-
ing able to do anything else. Since testing automation procedure is also concerned,
it is mandatory to describe somehow these dependencies. This is achieved by in-
troducing an activity diagram where the vertices representuse cases and edges are
sequential dependencies between the use cases.

An edge in such a diagram denotes that the use case in the tail has to be executed
before the use case in the head.Fork andjoin are used when some use cases should
be executed independently in order another one to take place. For instance, in an
e-learning platform the addition of the subject and the addition of the term are two
independent use cases which should be synchronized to allowthe testing of the
creation of a class.

20 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

3.2.5 Sequence Diagram

In UML, a Sequence diagram realizes the interaction of objects via the interchange
of messages in time. Similarly, as in activity diagrams the objects are instances of
a class described in the Class diagram. Usually the sequencediagrams describe a
single scenario. The messages are enumerated in a way that allows to illustrate a
number of alternative scenarios in the same diagram. According to this convention,
capital letters denote alternatives (error messages). By adopting this tactic it is pos-
sible to derive easily the different Message Sequences [2] related to the same use
case.

Now that the modeling of Web-based systems has been presented, that is: a pro-
posed WS-TEFSM model for a Web services composition described in WS-BPEL,
an overview of the WS-BPEL transformation into WS-TEFSM illustrated by an
example and a methodology to model Web applications by usingUML, we may
present in the following techniques to test these Web-basedsystems from the for-
mal models.

4 Web-based System Testing

As previously mentioned, the main goal of Web-based systemsmodeling is to ease
their testing. Therefore, this section presents testing techniques devoted to Web ser-
vices and Web applications. The first method generates timedtest cases and uses a
timed-traces equivalence as conformance relation betweena Web service implemen-
tation and its formal specification. The second method illustrates how to generate a
test case for a Web application from the obtained UML diagrams.

4.1 Web Services Testing

To define a Web services composition testing methodology, a deterministic WS-
TEFSM that models a composite Web service described in WS-BPEL and its se-
mantic (see Sect. 3.1) are considered. First, the concept oftimed sequences, timed
traces, timed test cases and the conformance relation [16, 24] (between the specifi-
cation and the implementation) to be used in this testing methodology are defined.
Secondly, the timed test cases generation algorithm is detailed. Finally, an example
of Web service modeling and testing is detailed.

4.1.1 Conformance Relation and Timed Test Cases

Let M = (Q,Σ ,V,C,q0,F,T,Pri, Inv) be a WS-TEFSM and[M] = (S,s0,Γ ,⇒) be
the LTS describing theM semantic. Lets,s0,s1, . . . ,sn ∈ S. Let Seq(Σ) = (Σ ∪R)∗

Modeling and Testing of Web Based Systems 21

be the set of all finite timed sequences overΣ . A timed sequenceσ ∈ Seq(Σ) is

composed of actionsa and non-negative reald where:s
a
⇒ s′ ands

d
⇒ s⊕d. σε ∈

Seq(M) is the<empty> sequence.
Let Σ ′ ⊆ Σ andσ ∈ Seq(Σ) a timed sequence.πΣ ′(σ) denotes the projection of

σ to Σ ′ obtained by deleting inσ all actions not present inΣ ′. Time(σ) denotes the
sum of all delays in a sequenceσ .

Let σ = σ1.σ2 · · ·σn are a timed sequence,s
σ
⇒ is used to denote that there exists

sn ands
σ1⇒ s1

σ2⇒ s2 · · ·
σn⇒ sn. The observable timed traces of a WS-TEFSMM is

defined by:

Tr(M) = {πΣ (σ) | σ ∈ Seq(Στ) ∧ s0
σ
⇒} (5)

Let MS and MI two WS-TEFSMs which model respectively the specification
of a composite Web service (a WS-BPEL description) and its implementation (a
WS-BPEL process instance).timed-traces equivalencenoted≅Tr is considered as a
conformancerelation where the time delays is considered to be observable actions.
First, thetimed-traces inclusionrelation noted4Tr is defined.MI 4Tr MS requires
each observable sequence ofMS to be an observable sequence ofMI :

(

MI 4Tr MS) ⇔ (Tr(MS) ⊆ Tr(MI)
)

(6)

The 4Tr conformance relation (timed-trace inclusion) can be extended to≅Tr.
This latter requires that each observable sequence ofMI is also an observable se-
quence ofMS. MS conforms MI , denotedMS ≅Tr MI if Tr(MS) = Tr(MI):

(

MI ≅Tr MS) ⇔ (Tr(MS) 4Tr Tr(MI) ∧ Tr(MI) 4Tr Tr(MS)
)

(7)

A timed test case is a timed trace that validates some timed requirements (e.g.
timed test purposes) and generates apassor fail verdict: thepassverdict if all test
purposes are satisfied, thefail verdict else if.

Based on the WS-TEFSM semantic, a set of timed test purposes and the Hit-or-
Jump exploration strategy [6]—the timed test case generation algorithm—is detailed
in the following.

4.1.2 Timed Test Case Generation Algorithm

This algorithm generates timed test cases from a composite Web service specifi-
cation given in WS-TEFSM and timed test purposes. For test case generation, the
Hit-or-Jump strategy (a generalization of the exhaustive search technique and ran-
dom walks) is adapted to WS-TEFSM model. The generated timed test cases are
used to check the conformance of a composite Web service implementation to its

22 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

specification. The test cases are a sequence of observable actions which have to be
executed according to some time constraints.

Starting from the initial state of the WS-TEFSM and considering a searchdepth
limit and a set of timed test purposes to be satisfied (represented by events or timed
constraints), a partial search is conducted from the current statesi of the reachability
graph until:

A Hit step. Reached a statesj (a Hit state) where one or more test purposes are
satisfied. Then the sequence fromsi to sj is concatenated to the test sequence, the
test purposes set is updated and the Hit step is repeated fromsj .

A Jump step. Reached a searchdepth limitwithout satisfying any test purpose.
Then one leaf node (i.e. a statesj) of the partial search tree is selected, the se-
quence fromsi to sj is concatenated to the test sequence, the statesj is moved (a
Jump state) and the Hit step is repeated fromsj .

The algorithm terminates when all the test purposes are satisfied or when there
are no more transitions to explore. The main interest of thisalgorithm is that the
construction of the complete WS-TEFSM reachability graph isnot required. The
test case generation algorithm is illustrated in Fig. 8.

4.1.3 Example of Web Service Modeling and Testing

In this section, The PICK Web service is applied to illustrate the WS-TEFSM result-
ing of the transformation of a WS-BPEL description, and the test cases generating
from this WS-TEFSM by using the test generation algorithm detailed in the previous
section.

The PICK process receives a loan application document from the user (e.g. the
LOAN service). It invokes the asynchronous loan service (i.e. the ASYNCBPELSER-
VICE service) by sending this document and uses a BPEL<pick> activity to re-
ceive an asynchronous response from the partner service or to exit after a time-
out (e.g. 30 seconds). This partner service sets the credit rating according the loan
amount and returns the loan application document to the PICK service. If the loan
amount is greater than 10000, it takes about 30 seconds for the partner service to
process it and therefore a timeout will be raised. Finally, the PICK service sends the
loan application document to its user.

The PICK Web service is illustrated in Fig. 9 (in BPMN Notation [18]).Its WS-
BPEL description and the resulting WS-TEFSM (according to the methodology de-
scribed in Sect. 3.1) are respectively given in Appendix.

We want to test the two<pick> activity branches (see Fig. 9). We define, for
instance, two test scenarios as following:

Modeling and Testing of Web Based Systems 23

I NITIAL CONDITION :

• The system is in an initial states0 = (q0,u0,v0);
• The Set of timed test purposes to be satisfied isTP= {t p1, t p2, . . . , t pm}.
• The timed test sequenceseqis empty (i.e.seq= σε).

TERMINATION :

The algorithm terminates when all the timed test purposes are satisfied, i.e.TP= /0;

EXECUTION :

Repeat

1© Hit : From the current system statesi , conduct a search by exploring all possible transi-

tions:actiontransitionsi
a
⇒ si+1 or delaytransitionsi

d
⇒ si ⊕d until a© or b© :

a© Reach a statesj such thatsi
σ
⇒ sj and

forall k such thatsj |= t pk : TP= TP\{t pk} — a Hit. Then:
(i) Concatenate the sequenceσ from si to sj to the test sequence:seq= seq.σ ;

(ii) Move to 1©.

b© Reach a searchdepth limit. Then move to 2©.

Until (TP= /0∨ “no transition to explore”).

IF TP= /0 Then return seqelse“no test sequence!”.

2© Jump:

(i) A partial searched tree has been constructed, rooted atsi ;
(ii) Examine all the tree leaf nodes, and select one (sj such thatsi

σ
⇒ sj) uniformly and

randomly;
(iii) Concatenate the sequenceσ from si to sj to the test sequence:seq= seq.σ ;
(iv) Arrive at sj — a Jump.
(v) Move to 1©.

Fig. 8 Timed Test Case Generation Algorithm

Scenario 1. Receive a ASYNCBPELSERVICE response after 10 seconds and re-
ply this response to the user.

Scenario 2. Exit the BPEL process after waiting a ASYNCBPELSERVICE re-
sponse 30 seconds.

For the two scenarios, we present below the test purposes used in the timed test
case generation algorithm (defined in Sect. 4.1.2).

24 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

F
ig

.9
T

he
B

P
M

N
N

ot
at

io
n

of
th

e
PIC

K
W

eb
S

er
vi

ce

Modeling and Testing of Web Based Systems 25

Test purposes for scenario 1

The PICK service receives the ASYNCBPELSERVICE response (i.e.responsevari-
able) after 10 seconds. Finally, it sends this loan application document (i.e.output
variable) to the user2. The test purposes for scenario 1 can be formulated as:

TP1 = {t p1, t p2, t p3} (8)

t p1 = “action :AsyncBPELService ?onResult(response) ”

t p2 = “action :client !onResult(output) ”

t p3 = “clock :c4 = 10 ”

Test purposes for Scenario 2

The PICK service invokes the ASYNCBPELSERVICE service and waits its response
for 30 seconds. After, it terminates its activity. The timedtest purposes for scenario
2 can be formulated as:

TP2 = {t p1, t p2} (9)

t p1 = “action :AsyncBPELService !initiate(request) ”

t p2 = “clock :c4 = 30 ”

The two following timed test cases (presented in Fig. 10) aregenerated from
the WS-TEFSM model of the PICK Web service (see Fig. 19 in Appendix) and the
timed test purposes (TP1 andTP2).

Timed Test case for Scenario 1

1. client ?initiate(input)
2. AsyncBPELService !initiate(request)
3. delay = 10 seconds
4. AsyncBPELService ?onResult(response)
5. client !onResult(output)

Timed Test case for Scenario 2

1. client ?initiate(input)
2. AsyncBPELService !initiate(request)
3. delays = 30 seconds

Fig. 10 The Timed Test Cases for the Two Scenarios

2 A Web service that is involved in the WS-BPEL process is always modeled as a<porType>
(i.e. abstract group of operations (notedop) supported by a service). These operations are executed
via a<partnerlink> (noted bypl) that specifies the communication channel. In the following,
the input messagepl ?op(v) denotes the receiving of the messageop(v) (constructed from the
operationop and the WS-BPEL variablev) via the channelpl. Theoutputmessage is denoted by
pl !op(v).

26 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

After dealing with the test generation for Web services, an approach to generate
test cases from a parsed UML model for Web applications is presented.

4.2 Test Generation for Web applications

To automate test generation, the goal is first to parse the UMLdiagrams obtained
from the previous steps. Therefore, based on these diagrams, the necessary requests
to the Web application server are generated and then checkedif the server’s replies
are as expected by the previous models. The requests are HTTPrequests that sim-
ulate a user navigating the site through a Web browser. The possible actions are to
fill and submit a form, to click on a link or to navigate to a given URL. Similarly
the server’s replies are HTTP Responses that can either contain an HTML page, a
redirection to another URL or an error message. Assuming thefirst case, the HTML
page of the response has to be parsed to see if its contents arethe expected ones.
Based on these requirements, it is needed to choose the components that were re-
quired to build the test suite.

Since we are dealing with UML, it would be more efficient to choose an object-
oriented language as a test scripting language, which also serves to provide easy
string handling and a high level of abstraction for network communications. For the
reasons mentioned below, the chosen programming language as the most suitable is
the Python scripting language. Python is a modern object-oriented language which
combines remarkable power with very clear syntax. Its built-in modules provide
numerous functions that facilitate string handling and networking.

4.2.1 Parsing and executing the UML

To parse the UML diagrams it is possible either to use the API of a UML tool or
to export the diagrams in an XMI format that would allow parsing them using an
XML parser. Exporting to XMI was the preferred solution since it does not tie the
methodology to a specific tool. Although having the possibility to use any XML
parser to parse the XMI, due to the high complexity of the standard it was decided
to use a specialized XMI parser.

The used one was the parser included in the System Modeling Workbench
(SMW) tool [40]. It is free, open source and also written in Python, making it easier
to integrate with the code.

4.2.2 Parsing the HTML pages

Since HTML mixes presentation and content data, the HTML output of the Web
application does not allow extracting the wanted information without first looking
the implementation details. To avoid this, it is needed to change the page templates

Modeling and Testing of Web Based Systems 27

of the Web application in order to provide the data in a more formal way. This
is achieved by adding id attributes to the tags we want to query. For example, to
the td tag that contains the user’s name in the user pages will have an attribute
id=username . By this way it can query any page independently of the imple-
mentation of the page layout.

The approaches presented in this section are applied to a real case study illus-
trated in the following section.

5 Case Study: dotLRN

To exercise the testing generation methods previously presented, we consider a
real case study which is an open source e-learning platform (dotLRN) [13]. An
open source platform is more demanding of testing aspects tomaintain a correct e-
learning Web application. Indeed, all the open source software are constantly chang-
ing with addition of new features. Therefore new bugs may appear disabling some
functionalities. Then we need to re-execute all the previous tests that were generated
at the conformance testing phase in order to guarantee the stability of the system.
This step of testing is known as non-regression testing. We present the experiments
that have been conducted on the e-learning platform. This case study is representa-
tive enough to experience the approach. We have made the choice to deal with only
one real case study for both types of Web-based systems. Thislast point is motivated
by the growing convergence of these two types of systems. Indeed, we can notice
that the industrial market is more and more interested by editing its development as
Web services to promote the use of its development. It can also allow to use the Web
application in the framework of new development by composition of this applica-
tion transformed into a web service with other available webservices. This aspect
particularly holds for open source software that need to be used to get feedback to
improve the software.

We present in the following the model-based approach with the UML modeling
of dotLRN, the test objectives and how we execute the tests directly on the platform.
Afterwards, we also explain how hand tests can be produced for this particular ap-
plication with TCL script when no formal model is provided. Finally, based on the
work described in [29] we explain how we can transform a Web application in a Web
service. This latter aspect is essential for certain kind ofWeb applications whose the
model is very tough to obtain (even using UML). Indeed, by migrating them to Web
services, the use of testing techniques based on WS-BPEL can be applied. case-
study/introduction-application

28 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

5.1 The DotLRN framework

DotLRN is a learning management Web application [13]. It is an open source plat-
form for supporting e-learning and digital communities. The tool was originally
developed at the Massachusetts Institute of Technology (MIT) as a virtual learn-
ing environment and it evolved into a comprehensive platform including not only
e-learning support but also generic Web resources.

The platform is based on the OpenACS Web application framework [11], a
toolkit for building scalable, community-oriented Web applications. The toolkit
structure is highly modular and dotLRN is a set of modules that provide the ad-
ditional features to deploy an e-learning environment. TheOpenACS (and therefore
dotLRN) is tightly integrated with a relational database, both PostgreSQL and Ora-
cle are currently supported. The Web server that handles requests at the basic level is
AOLServer, the America Online’s open source Web server. Oneof its main features
is the integration in its core of a multi-threaded TCL interpreter which provides an
effective solution for industrial strength type of services such as those present in
large higher educational institutions [38].

As in most open source projects, there is a community around dotLRN/OpenACS
involving nearly 11,000 registered users. The community portal is itself based on
this platform and coordinates the interaction between developers, users, technical
personnel employed by higher education institutions and anybody interested on ex-
changing ideas, solutions and information about the tool.

Several features make dotLRN an effective and powerful e-learning platform.
Its modular structure allows for very fast customization and prototyping of new
applications. The user space is organized through a customizable set of portlets,
each of them offering access to one of the various services available. The underlying
OpenACS toolkit provides an ever increasing set of Web functionality most of them
suitable to be adopted by the e-learning platform.

The fact that OpenACS is a community-oriented toolkit has influenced and
shaped dotLRN into what it could be called a “communication oriented LMS”
(Learning Management System). Most of the current LMS focused at the beginning
of their existence on providing content management for teaching staff and learners.
DotLRN, on the other hand, was conceived as a platform to facilitate communica-
tion among all the different actors in a learning experience.

5.2 Test Generation from the UML model

In the Section 3.2 are described the UML diagrams that are needed to model a Web
Application, now it will be illustrated how these UML diagrams are used to model
the dotLRN framework and how the test cases can be generated taking into account
the Section 4.2.

Modeling and Testing of Web Based Systems 29

5.2.1 Modeling Use Case Dependencies

In the Class diagram the use case parameters are also included. The reason is that
sometimes it is easier to realize the dependencies between the parameters of the use
cases. For instance, in the Figure 11, in order to add a new class, the administrator
should provide information about the term (Term.name) and the subject of the
class (Subject.name). As a consequence, there is a dependency between the
Add class , theAdd Term and theAdd Subject use cases.

Finally, in the diagram the use cases are organized in groupsaccording to the
objects they are associated with. These objects are instances of the classes in the
Class diagram. Figure 11 shows the respective activity diagram for the Administra-
tor. According to this latter,Add department should precedeAdd subject .
Also,Add term andAdd subject should occur beforeAdd class , andAdd
user andAdd class should take place before the execution ofAssign user
to class . Finally, Manage User depends onAdd User since first the user
should be added to the system and then the administrator can edit his profile and
modify his permissions.

In the testing phase, before simulating the scenarios in theSequence diagrams,
these activity diagrams should be scanned to obtain the sequence in which the use
cases will be tested.

A d d u s e r (
U s e r . n a m e)

U s e r

A d d u s e r (
U s e r . n a m e)

A s s i g n u s e r t o c l a s s (
U s e r > e m a i l ,
C l a s s . n a m e)

C l a s s

A d d C l a s s (
S u b j e c t . n a m e ,

T e r m . n a m e ,
C l a s s . n a m e)

T e r m

A d d T e r m (
T e r m . n a m e)

A d d S u b j e c t (
D e p a r t m e n t . n a m e ,

S u b j e c t . n a m e)

S u b j e c t D e p a r t m e n t

A d d d e p a r t m e n t (
D e p a r t m e n t . n a m e)

Fig. 11 The class diagram

5.2.2 Sequences diagrams

The Sequence diagrams are also parameterized since input parameters can influence
the execution and constitute separate choices [2]. Such a parameter can be the email
of a user. Whether this email belongs to a registered user (exists in the database) or
belongs to a new user (does not exist in the database) determines what is going to

30 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

occur. In the former case the dotLRN page is displayed otherwise a warning appears
in the Log In page. During the testing procedure, if there aresuch branches and pa-
rameters then the produced program has to fork to test all thedifferent possibilities.
Figure 12 shows the respective sequence diagram for the “Login” use case.

2 : s u b m i t (L o g I n , L o g i n f o r u m , [u s e r 1 . e m a i l , u s e r 1 . p a s s w o r d])

1 : n a v i g a t e (/)

1 . 2 : d i s p l a y (L o g I n)

d o t L R N : W e b s i t eu s e r 1 : U s e r

2 . A : e r r o r (" U n k n o w n e m a i l ")

2 . B : e r r o r (" m i s s i n g i n p u t ")

2 . C : e r r o r (" I n v a l i d u s e r n a m e o r p a s s w o r d)

2 . 1 : d i s p l a y (M y _ s p a c e [u s e r = u s e r 1])

Fig. 12 HTTP sequences

Table 1 summarizes the actions used in the Sequence diagram organized as HTTP
requests of the user and possible HTTP responses returned tothe user by the server,
since the success or the failure of the tests depends upon these requests and the
respective responses. The system under test being a Web application, there are three
possibilities for the user: either (1) navigates to a URL or (2) requests a Web page
through another one (clicks on a link to the wanted page) or (3) submits information
by filling an HTML form. System answers either directly by returning the requested
page (display) or by giving an error message.

HTTP Request HTTP Response

– navigate(url:String): – display(page:Webpage):
User makes an HTTP request for an URL. Web server returns the requested Web.
– link(target:String): – display(page:Webpage):
User clicks in a HTTP link. Web server returns the target Web page.
– Sublit(page:WebPage, form:Form,data:list):– display(page:Webpage):
User submits an HTTP form. In case of legitimate input the Web

server responses with a new Web page.
– error(msg:String):
In case of wrong input the Web server
responses with the previous page
displaying a warning message.

Table 1 Actions of the Sequence Diagram

Modeling and Testing of Web Based Systems 31

5.2.3 dotLRN HTML pages parsing and tests execution

The Figure 13 presents the skeleton of a possible result of the manner to parse the
HTML and UML and then execute the UML. In the code we have left some code
(mainly some functions) in order to reduce the size and increase clarity.

1: from urllib import urlopen
2: from smw.io umport XMIStreamer
3: from smw.metamodel import UML14
4:
5: class TestSuite:
6: returned page = None
7:
8: def validateLink(self,link)
9: operation = self.getOperation(link)
10:
11: if operation.name == "navigate":
12: url = self.getOperationParameters(operation)
13: fd = urlopen(serverbase + url)
14: self.returnedPage = fd.read()
15: fd.close
16:
17: elseif operation.nale == "display":
18: params = self.getOperationParameters(operation)
19: pageTemplate = generatePageTemplate(params)
20:
21: parser = dotHTMLParser(pageTemplate)
22: parser.feed(returnedPage)
23:
24: def execute(self,source):
25: xmi = XMIStreamer(UML14)
26: fd = open(source,"r")
27: model = xmi.loadFromStream(fd)
28: fd.close()
29:
30: sequenceDiagram = self.SequenceDiagram(model)
31: for link in self.getLinks(sequenceDiagram)
32: self.validateLink(link)

Fig. 13 Parsing and execution of UML

Functionexecute (line 24) is the main function of the class that reads the XMI
code from the file defined in the variablesource that is given as a parameter. It
then isolates the sequence diagram (for this example we assume that only one exists)
and then validates one by one all its messages (links).

All the getX functions (likegetLinks) consist of navigating through the struc-
ture generated by SMW to get a specific data. They are assumed to be defined inside
the class. The validation of each link depends on the operation.

32 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

If the operation isnavigate (lines 11-15) then we have to extract the desti-
nation URL from the parameters and then get the requested page. We assume that
destination is a relative URL, so we use theserverbase variable (line 13) to
make it absolute. The page is then kept in thereturnedPage variable to be used
by the following commands. In the case of adisplay operation (lines 17-22), we
create a template of the page based on the operation parameters and then use the
HTML parser to compare thereturnedPage with the template. The skeleton of
the parser is presented in the Figure 14.

1: from HTMLParser import HTMLParser
2:
3: class dotHTMLParser(HTMLParser)
4: pageTemplate = None
5:
6: def init(self,pageTemplate):
7: self.pageTemplate = pageTemplate
8:
9: def handle starttag(self,tag,attrs):
10: for att in attrs
11: if "id" in attr:
12: validateElement(tag,attr)

Fig. 14 Parsing the HTML

ThedotHTMLParser class inherits theHTMLParser class and overrides the
handle starttag function to search for elements that have anid attribute. Every
such element will be validated according to thepageTemplate that was given
during the instantiation. Similarly to the two example operations we can write the
code to handle the rest of the supported operations.

5.3 Non-regression testing for Web applications

Besides and as this is above mentioned, the non-regression testing aims to verify
if after the insertion of new source code into the application, all the functionalities
still run correctly. Hence the first task for testing a Web application is to test if the
behavior of the platform is conform to the blue-prints used to build it (i.e. its speci-
fication). Because of the lack of formal specification, the documentation of dotLRN
and our expertise in OpenACS/dotLRN was used to build an informal specification
(i.e. the list of requirements and standards that dotLRN must meet). By using this
specification it is possible to interact with the platform and observe if it meets the
standards or not. Now, to achieve the stability of the platform during its continuous
development by applying a simple testing strategy, i.e. re-test all, requires an unac-
ceptable amount of time and resources. It is needed then to automate the process to
re-test the platform to improve the testing efficiency.

Modeling and Testing of Web Based Systems 33

5.4 Alternative method for the test generation of Web applications

In order to test a Web application that does not have a formal specification, test cases
may be manually developed. In this Section the methodology followed to develop
these test cases for dotLRN using the Tclwebtest recorder tool is illustrated. It will
also introduce the acs-automated-testing, an OpenACS [11]package for the man-
agement of test cases execution and the verdict storage of each test case. Although
the phase of the conformance testing was a hand made process,by using the TwtR
plug in it is possible to obtain a record or static trace of theinteraction of the user
with the Web application, this static trace is the base for the development of the
non-regression test cases. The process of obtaining a static trace is illustrated in the
Figure 15.

The TwtR [41] is a recent tool based in the interaction recording as Selenium,
by using this tool it is possible to obtain the trace written in a TCL script language,
more specifically in Tclwebtest code. TwtR will produce a static trace that does not
contain all the interactions between the user and the Web application, but only the
stimulations of the user to the Web application. This statictrace is the basis for the
part of the functional testing process presented in this article.

IUT Expert

Interaction
Recorder

Inputs

Outputs

Trace 1 Trace 2 Trace 3

Inputs Outputs

Fig. 15 Generation of the static traces used as a base for further non-regression testing.

To build the tests for the dotLRN features, the information is first extracted from
the OpenACS documentation and the dotLRN platform usability. Then the informal
specification is built. After this, we interact with dotLRN to test its conformance
while recording the static trace using TwtR.

If the result of this conformance test execution verdict is positive, the static trace
can be re-used to serve as a basis to build the non-regressiontest case. This static
trace must be modified by inserting variables instead of hardcoded values (e.g.
the ids and the URLs). Each test case will be finally describedin Tclwebtest and
composed by a set of concatenated scripts.

34 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

The generation of each test case using Tclwebtest is processed by following these
steps:

1. Create the script of the test preamble, i.e. a sequence of operations that will lead
the system to a state where the test case can be executed. For instance to test
the edition of the user’s name, first it is needed to corroborate the user existence
and that it has already a name assigned, otherwise it is needed to create these
elements;

2. Develop the script that will interact with the feature to be tested;
3. Develop the scripts that will analyze the reaction of the Web application to the

interaction with the test case. This script will also assignthe verdict (pass or
fail); basically it will observe if the platform did what it was supposed to.

5.4.1 Example: the addition of aQuestion and Answer from the faq
package of dotLRN

The trace produced during the addition of aQuestion and Answer (Q&A) of
the FAQ is illustrated in the Figure 16. In this trace it can be observed that the
elements such as theFAQname and theQ&Ais hard coded. In the first line it can be
viewed that the user has followed a link named “Test faq ” which is the name of
theFAQto be tested. After this in the third line the user followed the link to come to
the page to create a newQ&A. Then from the lines four to seven the form was filled
with the question “What is your name? ” and the answer “Harry ”.

1: ::tclwebtest::link follow Test faq ;#
˜u {http://domain/faq/ad/one-faq?faq_id=12}}

2: ::tclwebtest::assert text FAQ
3: ::tclwebtest::link follow Create New Q&A ;#

˜u {http://domain/faq/ad/q-a-add?faq_id=12}}
4: ::tclwebtest::form find ˜n {new_quest_answ}}
5: ::tclwebtest::field fill What is your name? ;#

˜n {question} ;\# type of field = text}
6: ::tclwebtest::field fill Harry ;#

˜n {answer} ;\# type of field = password}
7: ::tclwebtest::form submit

Fig. 16 Static trace of the interactions of the user with dotLRN when creating a new Q&A.

In replacing by variables all the texts to be inserted in the HTML forms and text
of the links to be followed, the static trace is transformed into a dynamic script that
will be the part of the test case for testing the addition of aQ&A. It will also be re-
used and served as the preamble of other test cases, for example to the test “Edit
a Q&A”. Remember that before editing an item, it is mandatory thatthis item exists.

Modeling and Testing of Web Based Systems 35

It is important to notice that the chunk of code of the Figure 17 will be just the
part of the non-regression test case that will interact withthe part of dotLRN that
allows to add a newQ&A. The entire test case must include the preamble (log in of
the user, creation of theFAQ, assign a value to the variables to be used, etc.) and the
part of the test case that will analyze if theQ&Awas correctly created and assign the
verdict.

1: tclwebtest::link follow $faq name
2: tclwebtest::link follow "Create New Q&A"
3: tclwebtest::form find ˜n "new quest answ"
4: tclwebtest::field find ˜n "question"
5: tclwebtest::field fill "$question"
6: tclwebtest::field find ˜n "answer"
7: tclwebtest::field fill "$answer"
8: tclwebtest::form submit
9: aa log "Faq Question Form submitted"

Fig. 17 Chunk of the test case that was extracted from the TwtR trace illustrated in the figure 16.

Besides, when a developer adds a new functionality to a system (in this case a
Web application), most of the times he manually tests this new functionality to be
sure that it works, to then release the new version of the system. However, not only
the new functionality should be tested, but all the system functionalities to be sure
that the new inserted implementation does not disturb the behavior of the rest of the
system.

The OpenAcs framework has among its packages the acs-automated-testing, this
package allows to execute the test cases and store the value of the verdict. In this
way, it is possible to test dotLRN feature by feature and to store the verdict. The
non-regression testing consists in executing the package Aversionx and then to test
the package A versionx+ 1. As the verdicts of both tests are stored, it is possible
to detect when a functionality that was working fine in the versionx does not work
anymore in the new version(x+ 1). By doing this it is possible to maintain the
stability of all the features of the versionx of the package A.

Next to the illustration of the methodologies to generate test suites for Web ser-
vices and Web applications, we introduce in the following part of the chapter a
method that allows to describe dotLRN in the Service Oriented Architecture (SOA).
The goal of this method is to migrate from Web application into Web service. The
main goal is of course to apply the methodology presented to testing Web services
to dotLRN, and to generalize it to any other Web application.

36 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

5.5 Migrating Web Applications Functionalities into Web Services

Service Oriented Architecture (SOA) [30] is a paradigm for organizing and utiliz-
ing distributed capabilities that may be under the control of different ownership
domains. It permits to encapsulate application logic in services with an uniformly
defined interface and making these publicly available via discovery mechanisms.
Software applications (offered by different providers) can be interconnected using
the common SOA infrastructure for obtaining new services and applications. Some
systematic approaches for exporting existing software applications towards the new
service oriented architectures are proposed in the literature.

In [29], an approach based on wrapping techniques is proposed to migrate func-
tionalities of existing Web applications into Web services. The main goal is to apply
modeling and testing techniques used for Web services to Webapplication func-
tionalities whose the formalization is often difficult to obtain. For instance, the Web
application User Interface which is tough to model (even using UML) could be mi-
grated towards a formal Web service and then be tested as mentioned in Sect. 4.1.

This migrating approach uses black-box reverse engineering techniques for mod-
eling the Web application User Interface (i.e. a model of theinteractions between
a user and the Web application) for each functionality. A wrapper interacting with
the Web application is used to transform the User Interface into Web service re-
quest/response interface (e.g. WSDL description [7]). Thiswrapper is constituted
by the following four components:

i. Automaton which provides a model of the interactions associated with a given
functionality. This model is a set of interaction states, actions and a set of tran-
sitions between these states;

ii. Web Application Interaction Executor which executes the interactions of the
Automaton;

iii. Automaton Interpreter that coordinates the Web application execution (i.e. the
execution of the actions associated to each state of the Automaton);

iv. Web Service Interface Manager that manages external Webservice requests and
responses.

This approach and a proposed migration platform are used to assist the migration
of the dotLRN platform. Functionalities of each dotLRN module (e.g. forums, faqs,
calendar, file storage, etc.) can be migrated into a simple ora composite Web service.
A selected dotLRN functionality can be captured by an use case. This latter can be
decomposed in more elementary use cases which can be wrappedinto single Web
service. Therefore, the use case can be represented as a WS-BPEL process having
as partners single services.

The process of this migration includes the following four steps:

1. Selection of the dotLRN functionality to be turned into a Web service;
2. Reverse engineering of the dotLRN User Interface: identification of execution

scenarios and characterization of their states;

Modeling and Testing of Web Based Systems 37

3. Design of the interaction model: evaluation of the modeling solutions and spec-
ification of the model in WSDL(for single automata) and eventually in WS-
BPEL (for composite automata);

4. Wrapper validation and deploy: testing the wrapped Web service and publish-
ing its WSDL description in an application server. The Web services composi-
tion testing approach is a used in this step to discover the execution failures of
the wrapper Web service (e.g. unexpected output responses), unidentified Web
pages, etc.

6 Conclusion

We have presented in this chapter two approaches to test a Web-based system. We
have dealt with Web services composition and Web applications. We have proposed
a stepwise methodology that consists first to describe formally the system that re-
sponds to the requirement information; then from the model we have developed
methods to generate the tests and finally we have executed thetests on a real imple-
mentation, an e-learning platform.

The modeling step has been performed with two dedicated languages, i.e. WS-
BPEL for the Web services composition and UML for Web applications. We have
defined rules of mapping from WS-BPEL towards a formal specification, i.e. the
Timed Extended Finite State Machines for Web Services (WS-TEFSM). The objec-
tive of this mapping is twofold: to give a semantic to the WS-BPEL composition
and to dispose of a model from which the tests have been generated. For the Web
applications, we have made the choice of UML as modeling language. This latter is
well-suited to cope with object oriented applications and to model the test cases by
means of sequence diagrams and also to represent the dynamicnavigation between
pages of the Web application.

Together with the formal models of the web systems, we have presented meth-
ods for conformance and non-regression test generation. The conformance is estab-
lished by a conformance relation between an implementationand a specification.
Two techniques have been developed for tests generation purpose, one to handle
WS-BPEL specification and one for the UML model.

Finally, we have exercised the proposed methodology on a real case study, an
open source e-learning platform dotLRN. We have carried on conformance and non-
regression tests with the formal approach and also with a hand crafted methods
based on TCL scripts. We have presented how to provide a Web service from a Web
application. The obtained Web services can be composed withother available Web
services and the WS-BPEL testing methods can be thus applied.

38 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

References

1. Alalfi, M.H., Cordy, J.R., Dean, T.R.: A survey of analysis models and methods in website ver-
ification and testing. In: Proc. Seventh International Conference on Web Engineering ICWE
2007, pp. 306–311 (2007)

2. Basanieri, F., Bertolino, A., Marchetti, E.: The cowsuite approach to planning and deriving
test suites in UML projects. In: J.M. Jéźequel, H. Hussmann, S. Cook (eds.) UML 2002 -
The Unified Modeling Language. Model Engineering, Languages, Concepts, and Tools. 5th
International Conference, Dresden, Germany, September/October 2002, Proceedings,LNCS,
vol. 2460, pp. 383–397. Springer (2002)

3. Bayse, E., Cavalli, A., Ńuñez, M., Zaidi, F.: A passive testing approach based on invariants:
application to the wap. Comput. Netw. ISDN Syst.48(2), 247–266 (205)

4. Cambronero, M.E., Diaz, G., Pardo, J.J., Valero, V., Pelayo,F.L.: Rt-uml for modeling real-
time web services. In: Proc. IEEE Services Computing Workshops SCW 2006, pp. 131–139
(2006)

5. Cardoso, J.: Approaches to developing semantic web services. International Journal of Com-
puter Science (IJCS)1(1), 8–21 (2006)

6. Cavalli, A.R., Lee, D., Rinderknecht, C., Zaı̈di, F.: Hit-or-jump: An algorithm for embedded
testing with applications to in services. In: FORTE XII / PSTV XIX 1999: Proc. of the IFIP
TC6 WG6.1 Joint International Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols (FORTE XII) and Protocol Specification, Testing and
Verification (PSTV XIX), pp. 41–56. Kluwer, B.V., Deventer,The Netherlands, The Nether-
lands (1999)

7. Christensen, Curbera, F., Meredith, G., Weerawarana, S.: Web services description language
wsdl ver. 1.1 (March 2001). http://www.w3.org/TR/wsdl

8. Christopher A. Jones & Fred L. Drake, J.: Python & XML, 1st edition edn. O’Reilly &
Associates (2001)

9. Cockburn, A.: Writing Effective Use Cases, 1st edition edn. Addison-Wesley (2000)
10. CollabNet: Argouml (2008). http://argouml.tigris.org/
11. Community, O.: Openacs. http://openacs.org
12. Community, O.: Selenium ide. http://www.openqa.org/selenium-ide/
13. dotLRN: Learn, research, network. http://www.dotlrn.org
14. EVIWARE: soapui: the web services testing tool (2009). http://www.soapui.org/
15. Farahbod, R., Glasser, U., Vajihollahi, M.: Specificationand validation of the business process

execution language for web services. In: Abstract State Machines, pp. 78–94 (2004)
16. Fouchal, H., Petitjean, E., Salva, S.: Testing timed systems with timed purposes. In: Proc.

Seventh International Conference on Real-Time Computing Systems and Applications, pp.
166–171 (2000)

17. Garca-Fanjul, J., Tuya, J., de la Riva, C.: Generating test cases specifications for bpel com-
positions of web services using spin. In: Proc. International Workshop on Web Services -
Modeling and Testing WS-MaTe 2006, pp. 83–94. Palermo, Italy (2006)

18. Group, O.M.: BPMN, business process modeling notation (2009). http://www.bpmn.org/
19. Hinz, S., Schmidt, K., Stahl, C.: Transforming bpel to petrinets. In: Business Process Man-

agement, pp. 220–235 (2005)
20. Holzmann, G.J.: The spin model checker: Primer and reference manual (2003)
21. Hong, H.S., Cha, S.D., Lee, I., Sokolsky, O., Ural, H.: Data flow testing as model checking.

International Conference on Software Engineering0, 232 (2003)
22. IBM: Rational rose. http://www-306.ibm.com/software/awdtools/developer/rose/index.html
23. Kazhamiakin, R., Pandya, P., Pistore, M.: Timed modelling and analysis in web service com-

positions. In: Proc. First International Conference on Availability, Reliability and Security
ARES 2006, pp. 7 pp.– (2006)

24. Krichen, M., Tripakis, S.: An expressive and implementable formal framework for testing
real-time systems. In: Proc. 16th IFIP International Conferenceon Testing of Communicating
Systems TestCom 2005, pp. 209–225 (2005)

Modeling and Testing of Web Based Systems 39

25. Kung, D.C., Liu, C.H., Hsia, P.: An object-oriented web test model for testing web applica-
tions. Asia-Pacific Conference on Quality Software0, 111 (2000)

26. Lallali, M., Zaidi, F., Cavalli, A.: Timed modeling of web services composition for automatic
testing. In: Proc. Third International IEEE Conference on Signal-Image Technologies and
Internet-Based System SITIS 2007, pp. 417–426 (2007)

27. Li, N., qin Ma, Q., Wu, J., zhong Jin, M., Liu, C.: A framework of model-driven web ap-
plication testing. Computer Software and Applications Conference, Annual International2,
157–162 (2006)

28. Liu, C., Kung, D., Hsia, P., Hsu, C.: Structure testing of webapplications. In: Proc. 11th
Annual International Symposium on Software Reliability Engineering, pp. 84–96 (October
2000)

29. Lorenzo, G.D., Fasolino, A.R., Melcarne, L., Tramontana,P., Vittorini, V.: Turning web ap-
plications into web services by wrapping techniques. WorkingConference on Reverse Engi-
neering0, 199–208 (2007)

30. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R.: Reference model for service
oriented architecture 1.0. oasis standard, 12 october 2006. http://docs.oasis-open.org/soa-rm/
v1.0/soa-rm.pdf

31. NAKAJIMA, S.: Lightweight formal analysis of web service flows. Progress in Informatics
2, 57–76 (2005)

32. OASIS: Organization for the advancement of structured information standards. http://www.
oasis-open.org/specs/index.php

33. OASIS: Universal description discovery and integration. http://uddi.xml.org/uddi-org
34. OASIS: Wsbpel ver. 2.0 (April 2007). http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.

0-OS.html
35. OMG: Unified modeling language (uml). http://www.uml.org/
36. OMG: Xml metadata interchange (xmi). http://www.omg.org/spec/XMI/2.1.1/
37. OpenSTA: Open system testing architecture. http://www.opensta.org/
38. P., E.J., la Fuente Valentn L, D., S, G., A, P., C, D.K.: Approaches to developing semantic web

services. International Journal of Computer Science1(1), 8–2 (2006)
39. Paradkar, A.M., Sinha, A., Williams, C., Johnson, R.D., Outterson, S., Shriver, C., Liang, C.:

Automated functional conformance test generation for semantic web services. IEEE Interna-
tional Conference on Web Services ICWS0, 110–117 (2007)

40. probleme: System modeling workbench tool. http://www.abo.fi/∼iporres/html/smw.html
41. Realfsen, A.S.: Tclwebtest recorder. http://www.km.co.at/km/twtr
42. Ricca, F., Tonella, P.: Analysis and testing of web applications. International Conference on

Software Engineering0, 0025 (2001)
43. Sheshagiri, M.: Automatic composition and invocation of semantic web services. Master’s

thesis, UMBC (2004)
44. SOASTA: Soasta cloudtest. http://www.soasta.com/
45. Softlogica: Wapt: Web application testing. http://www.loadtestingtool.com/
46. Software QA and Testing Resource Center: Web site test tools and site management tools.

http://www.softwareqatest.com/qatweb1.html
47. W3C: extensible markup language xml. http://www.w3.org/XML
48. W3C: Ontology web language (owl). http://www.w3.org/TR/owl-features/
49. W3C: Resource definition framework (rdf). http://www.w3.org/RDF/
50. W3C: Web application formats working group. http://www.w3.org/2006/appformats/
51. W3C: Web ontology web language for services (owl-s). http://www.w3.org/Submission/

OWL-S/
52. W3C: Web service description language with semantics (wsdl-s). http://www.w3.org/

Submission/WSDL-S/
53. W3C: Web services modeling ontology (wsmo). http://www.wsmo.org/
54. W3C: The world wide web consortium. http://www.w3.org/
55. W3C: Simple object access protocol soap (version 1.1) (May 2000). http://www.w3.org/TR/

soap/

40 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

56. Wombacher, A., Fankhauser, P., Neuhold, E.: Transforming bpel into annotated deterministic
finite state automata for service discovery. In: Proc. IEEE International Conference on Web
Services ICWS 2004, pp. 316–323 (2004)

57. Xu, L., Xu, B., Chen, Z., Jiang, J., Chen, H.: Regression testing for web applications based on
slicing. Computer Software and Applications Conference, Annual International0, 652 (2003)

58. Yang, Y., Tan, Q., Yu, J., Liu, F.: Transformation bpel to cp-nets for verifying web services
composition. In: Proc. International Conference on Next Generation Web Services Practices
NWeSP 2005, pp. 6 pp.– (2005)

59. Yu, Y., Huang, N., Luo, Q.: Owl-s based interaction testingof web service-based system. Next
Generation Web Services Practices, International Conference on0, 31–34 (2007)

60. Zhang, R., Arpinar, I.B., Aleman-Meza, B.: Automatic composition of semantic web services.
In: International Conference on Web Services ICWS 2003, pp.38–41 (2003)

Modeling and Testing of Web Based Systems 41

Appendix

<process>
<sequence>

<receive name="receiveInput" partnerLink="client" portType="tn s:Pick"
operation="initiate" variable="input" createInstance= "yes"/>

<assign>
<copy>

<from variable="input" part="payload"/>
<to variable="request" part="payload"/>

</copy>
</assign>
<invoke name="invokeAsyncService" partnerLink="AsyncBPELServ ice"

portType="services:AsyncBPELService" operation="init iate"
inputVariable="request"/>

<pick name="receiveResult">
<onMessage partnerLink="AsyncBPELService"

portType="services:AsyncBPELServiceCallback" operati on="onResult"
variable="response">

<assign>
<copy>

<from variable="response" part="payload"/>
<to variable="output" part="payload"/>

</copy>
</assign>

</onMessage>
<onAlarm for="’PT30S’">

<t erminate/>
</onAlarm>

</pick>
<invoke name="replyOutput" partnerLink="client" portType="tns :PickCallback"

operation="onResult" inputVariable="output"/>
</sequence>

< /process>

Fig. 18 The WS-BPEL Description of The PICK Web Service

42 Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi

q q
1

c 1 < = r a n d (C l o c k)

< c < = r a n d (C l o c k) , c l i e n t ? i n i t i a t e (i n p u t) , _ >

P r i = l o w

0

q
2

< t r u e , _ , [r e q u e s t : = i n p u t , _] >

P r i = l o w

c 2 < = 0

c 3 < = 0

[c6 := 0]

[c1 := 0]

< c 3 = 0 , A s y n c B P E L S e r v i c e ! i n i t i a t e (r e q u e s t) , _ >

P r i = l o w

[c3 := 0]

q
3

c 4 < = 3 0

q
4

c 5 < = 0

[c4 := 0]

q
6

c 7 < = 0

< c 4 = 3 0 , _ , [_ , c 4] >

< c 4 < 3 0 , A s y n c B P E L S e r v i c e ? o n R e s u l t (r e s p o n s e) , [_ , c 4] >

q
s t o p

< _ , _ , [s t o p P r o c e s s : = t r u e ; _] >

P r i = l o w

P r i = h i g h

P r i = l o w

q

c 6 < = 0

< t r u e , _ , [o u t p u t : = r e s p o n s e , _] >

< _ , c l i e n t ! o n R e s u l t (o u t p u t) , _ >

[c2 := 0]

P r i = l o w

P r i = l o w

q
e n d

5

[c5 := 0]

[c7 := 0]

Fig. 19 The WS-TEFSM of the PICK Web Service without termination handling

