
HAL Id: hal-00706005
https://hal.univ-brest.fr/hal-00706005v1

Submitted on 8 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Component based Testing Technique for a MANET
Routing Protocol.

Fatiha Zaïdi, Mounir Lallali, Stephane Maag

To cite this version:
Fatiha Zaïdi, Mounir Lallali, Stephane Maag. A Component based Testing Technique for a MANET
Routing Protocol.. The ACS/IEEE International Conference on Computer Systems and Applica-
tions (AICCSA’10), May 2010, Hammamet, Tunisia. pp.1-7, �10.1109/AICCSA.2010.5587040�. �hal-
00706005�

https://hal.univ-brest.fr/hal-00706005v1
https://hal.archives-ouvertes.fr

A Component based Testing Technique

for a MANET Routing Protocol

Fatiha Zadi∗† and Mounir Lallali∗†

∗Univ. Paris-Sud, LRI, UMR 8623, Orsay F-91405, France
†CNRS, Orsay, F-91405, France.

Email: {Zaidi, Lallali}@lri.fr

Stephane Maag‡

‡TELECOM SudParis

CNRS UMR 5157, Evry Cedex, F-91011, France.

Email:Stephane.Maag@it-sudparis.eu

Abstract—This paper deals with the crucial challenging issue
of testing the conformance of the MANET routing protocols.
Indeed, because of the inherent constraints of such networks
such as a dynamic topology, to formally test these protocols
becomes a tough problem. Most of the studies taking into account
a formal model of the protocol is faced to the combinatorial
state space explosion issue when deploying and analyzing that
model. In our work we present how to cope with that problem by
drawing inspiration of the model-checker research domain and
an integration of a component-based testing algorithm dedicated
to the automatic generation of OLSR test sequences from a
formal model written in Promela.

Index Terms—MANET, Routing Protocols, Conformance Test-
ing, Model-checker, SPIN.

I. INTRODUCTION

A wireless mobile ad hoc network (MANET) is a collection

of mobile nodes that communicate each other. This kind

of network is self-organizing and does not depend on any

predefined infrastructure neither centralized administration.

By this way, the network may rapidly be deployed. Every

node participates to the communication establishment as well

reliable operations. Nevertheless, the nodes movement may

lead to a volatile topology providing then numerous intercon-

nections. Since the network is infrastructureless, some of the

nodes have to behave as routers by interacting using their radio

range with open transmission medium in order to establish

end-to-end communications. Therefore, due to the inherent

constraints of such networks as well the limited resources of

the nodes, reliable and efficient routing protocols are needed

leading then to the challenging issue of testing the MANET

routing protocols.

Many protocols to route the packets through a MANET have

now been proposed and several implementations have been

provided. Besides, many works proposing testing techniques

have been published. However, most of them are related with

simulation or emulation testbeds in order to check performance

aspects of these protocols. Very few of them take into ac-

count their functional properties as well by applying formal

approaches. But as established in [1], simulators such as NS-2

may contain erroneous implementations (in their case AODV)

on which many studies are based, illustrating by this manner

that formal testing techniques are crucial to test such routing

protocols.

From that observation, conformance testing techniques that

ensure correct protocol implementations have become more

and more essential for the development of reliable commu-

nicating systems. Due to the complexity to test the systems

whose the size becomes huge, the designers use some mod-

ularity concepts to model them. Indeed, in many cases and

more specifically with the formal model of a MANET whose

the topology may be often modified, the analysis of its formal

specification may be difficult failing to reach a test objectives

and then to generate the test sequences.

That is why component-based testing approach has become

a main research area. Its main goal is to generate test se-

quences for a component embedded in a whole system. The

techniques are known for several years now [2], [3] but the

constraints occurring when testing a MANET routing protocol

lead most of the times to the combinatorial explosion of

the model [4]. That is why some efforts have been done to

combine techniques provided by both the testing and model-

checking communities.

A. Related Works

Although there are many works about testing and verify a

MANET [5], from our knowledge, there is no publication on

the generation of test sequences from the model of a MANET

routing protocol by using model-checking techniques. Never-

theless, we may cite the following works from which we draw

inspiration.

For instance, the authors of [6] propose to use the model-

checker SPIN [7] in order to automatically generate regression

tests. The technique is dedicated to the test of software.

Nevertheless, the case study as well the model is very simple

and since the model-checker is not modified, the approach is

not scalable. In [8], the model-checker Blast is applied [9].

This latter has been modified in order to generate test suites

guaranteeing a full coverage of the software. Nevertheless,

in this approach no formal specification is performed and it

is much more dedicated to the software testing rather than

to the routing protocol one. Indeed, it seems difficult with

that technique to observe or control (as needed in a testing

architecture) interfaces between some protocol layers.

The same issues are met with the work presented in [10].

The authors apply the Nu-SMV model-checker [11] in order

to test the conformance of different kinds of interfaces of

Web Services. They use unit and integration testing technique

through interfaces between the formal specifications and the

data flow. However for a MANET routing protocol, the spec-

ification represents several different topologies and to access

interfaces embedded in a wireless and mobile node may be

difficult. Another interesting work is the one published by

Heimdahl et al. [12] where several case studies are analyzed

through the application of Nu-SMV. The approach is inter-

esting and original providing relevant results but the model

can not contain any variables which significantly reduce the

usability in the MANET because of the packet exchanges as

well the important flows.

In this paper we cope with these constraints and bridge the

existing gap in order to automatically generate test sequences

for the conformance of the routing protocols in a MANET.

B. Contributions of this Paper

• While most of the works on MANET routing protocol

testing is performed through simulator and emulator, we

apply a formal testing approach based especially on the

automatic generation of test scenarios from a formal

model.

• Taking into account the IETF RFC, we specified a formal

model of the OLSR protocol [13] in Promela [14] allow-

ing to provide an OLSR network containing any number

of nodes (because of the instantiation of a node process).

• Due to the mobility of the nodes, most of the common

testing techniques are irrelevant for the MANET. We

draw therefore inspiration from model-checking methods

where deployed state compression techniques are reliable.

• We adapt the model-checker SPIN with an efficient gen-

eration testing algorithm by developing a tool prototype.

Indeed, as mentioned above, several studies tackled that

problem but no one applied a component-based testing

approach to a model-checker in order to take into account

the inherent constraints of a MANET and then avoid the

state space explosion issue.

• We automatically generate test sequences for some OLSR

test objectives showing by the way that our adaptation is

more efficient in some cases than the originating model-

checker.

The rest of the paper is organized as follows. In the

Section II, we present the main characteristics of OLSR, the

concept of component-based conformance testing, the OLSR

formal model as well the language utilized to specify the

protocol and the SPIN model-checker. Then our test sequence

generation approach is illustrated in the Section III. In the

Section IV, OLSR test objectives are defined and designed

from which test sequences are generated by SPIN and our tool.

We comment the results in the Section IV-B before concluding

in Section V.

II. OLSR COMPONENT-BASED TESTING

This section introduces the protocol OLSR on which our ex-

periments are conducted. We define the concept of component-

based conformance testing, present the SPIN model-checker

and illustrate the Promela model of OLSR.

A. The Optimized Link State Routing Protocol

The Optimized Link State Routing Protocol (OLSR) [13] is

a proactive protocol that needs to react quickly to topology

changes and find alternative paths consequently. For that

purpose, it maintains several routing tables and exchanges

topology information between nodes of the network. OLSR

uses specialized aggregation nodes in order to reduce the

number of packets used in the flooding of neighborhood

information. These nodes are the Multipoint Relay (MPR).

They are selected as MPR by some neighbor nodes and

they announce periodically the topology information through

Topology Control (TC) messages to the nodes which have

selected it as MPR. In route calculation the MPR are also

used to form the route from a given node to any destination

in the network.

B. Component-based Conformance Testing

Conformance testing establishes the conformance of an

implementation to its specification. In other words, confor-

mance testing is devoted to the implementation behaves as it

is expected by the specification. Commonly, specification is

used to generate the tests for observable interactions of the

implementation. Those tests are then executed against the real

implementation and we observe if the outputs of this one are

the expected ones. Accordingly, a verdict is emitted, a PASS

when the outputs are those expected, a FAIL in the other case

and an INCONCLUSIVE when non determinism is observed.

In case of component-based testing, the accent is put on

the interactions of a particular implementation component

in the context of the other components. This kind of test

is also known as embedded component testing. Indeed, no

direct access is given to the component to be tested. To

perform component testing, a method is needed to drive the

derivation of tests, i.e., to reach in the whole specification the

transitions of the component to be tested. In our methodology,

the component is characterized by its behavior in terms of in-

teraction with its environment. The behavior of the component

is expressed as test objectives to cover.

C. Promela and the Model-Checker SPIN

Promela (PROcess MEta LAnguage) [14] is the modeling

language supported by the model-checker tool SPIN. Promela

is a high-level description language derived from the C lan-

guage to specify communication systems. In Promela, system

components are described as processes that can interact either

by message passing, via channels, or memory sharing via

global variables. The communication can be synchronous or

asynchronous. Processes specify behavior of the concurrent

entities of the distributed system. These processes can be

instanciated such that wireless mobile nodes may be obtained

from a single process. Channels and global variables define

the environment in which the process run.

SPIN can be used for formal verification of distributed

communication systems. The system description is given in

Promela and requirements to be verified can be directly

written as assertions in the code or by specifying properties

as formulas in propositional linear temporal logic PLTL [15].

SPIN works on-the-fly, it means that the tool does not need

to construct the complete state space to verify a property;

instead it is done dynamically during processing. SPIN pro-

vides abstraction techniques such as states fusion, partial order

reduction or BDD-like storage techniques.

D. Formal Model of OLSR

To generate the tests, we first need to model in a formal way

the protocol. OLSR was specified in Promela which can be

viewed as a transition system. This choice has been motivated

especially because of the efficient model-checker SPIN and the

existing related works. Our specification is devoted to the test

of the OLSR implementation embedded in one single node in

the context of other OLSR nodes. Besides, we need to take

into account the constraints inherent to such networks.

We have to consider the mobility of nodes, the broadcast-

ing of control messages such as HELLO messages and the

dynamic modifications of the topology. These aspects raise

challenges for the modeling. In our specification, we have

made some choices:

• Broadcast: In our specification, broadcast is specified by

unicasting the packets to every node taking into account

a matrix of connectivity. By unicasting we mean that

all packets are sent before enabling any other action. In

Promela, the messages are sent to all neighbors through

channels associated to the nodes.

• Connectivity: In our specification, the communications

between the nodes are specified in using a dynamic matrix

(the number of nodes varies), symmetrical of size N×N

where N is the node number in our network. The matrix

is symmetrical because we suppose that all links are

bidirectional. This assumption allows to rapidly observe

the routes creation and the packets sending as well.

Nevertheless, unidirectional links are easily specifiable

in using an asymmetric matrix. In addition, in order to

reduce the complexity, we suppose that the nodes are

connected or not connected (1 or 0 in the matrix). We

do not design intermediate state connection as we could

have with the protocols of the lower layers (link/MAC).

Indeed, our objective is the test of routing functionalities

and not the physical or link layer studies. We use a global

variable MaxNodes that instantiates the maximum number

of nodes to be created.

• Topology: The topology can change in the specification

by applying modification on the connectivity matrix ei-

ther manually in having beforehand chosen the different

moves of the nodes, or randomly.

To cope with a reasonable model, we did some abstractions.

First, we do not consider the extensions that are mentioned

for IPv6, we only consider IPv4. To simplify, we also do

not take into account the HNA (Host Network Association)

which is used to have a link to the other networks. We

have also simplified the number of interfaces of each node

by considering a node with a single interface characterizing

its main address. Short pieces of the OLSR specification are

illustrated by the Part 1 and Part 2 of Section IV-A.

III. COMPONENT TESTS GENERATION AND SPIN

MODEL-CHECKER ALGORITHMS

In this section, we present an embedded test generation

method, the Hit-or-Jump (HoJ) algorithm [16] which is inte-

grated into the model-checker SPIN [7]. The integration of our

algorithm in the SPIN tool permits to obtain a guided random

walk to generate OLSR test sequences. We propose a new

algorithm to adapt the acceptance cycle detection algorithm

of SPIN by using the HoJ method. Test objectives are used to

describe finite behavior and accept state detection algorithm.

A. Outline of the HoJ Algorithm

The HoJ algorithm [16] introduced in SPIN allows to cover

all the interactions of the component in its context. The essence

of our approach is as follows. At any moment, we conduct

a local search from the current state in a neighborhood of

the deployed Promela transition system. If an untested part

of the component is found (a Hit, i.e., an interaction that has

to be tested), we keep it for the final test sequence, and then

continue the search process from there. Otherwise, we move

randomly to the frontier of the neighborhood searched (Jump),

and resume the process from there. This procedure avoids the

building of a whole system accessibility graph. Accordingly,

the space required is determined by the user, e.g., a depth

limit or a maximum number of states, and it is independent of

the system under consideration. On the other hand, a random

walk may get trapped at certain part of the component under

test [17]. Our algorithm is designed to jump out of the trap

and pursue the exploration further. We build at each step a

partial accessibility graph to avoid the state-number explosion

problem mentioned before. The algorithm finally produces a

test sequence as a transition tour of the component in its

context.

B. SPIN and HoJ integration

SPIN considers undesirable properties to be checked, which

are defined either by Promela never claims (i.e., temporal

claims) or directly by a PLTL formula. SPIN transforms the

claim in a Bchi automaton and computes the synchronous

product of this automaton with the Bchi automaton of the

system (i.e., the Promela model). It means that the intersection

of these both automata languages is produced providing then

a scenario illustrating what should never happen.

In our method, the test objectives (i.e., the transitions of the

component to be covered) describe a finite desirable behavior.

Therefore, by considering the negation of these objectives (a

set of propositions (i.e., boolean expressions) on the system

states) and by processing the above mentioned product, we

provide a test sequence related to the test objectives.

To control the system execution, a synchronous product of

the sequence specified in the temporal claim with the inter-

leaving sequences specified in the OLSR Promela model is

provided. This synchronous product is a new Bchi automaton

in which every state is defined as a pair (s, n) where s

is a state from the system automaton, and n a state from

the never claim. Every transition in the new automaton is

defined by a pair of transitions (a, p), where a is an action

of the system, and p a proposition of the never claim. This

transition can only occur if the proposition p is valid in s (i.e.,

the source state of the transition). Note that an accept state

(s, n) is a state of the product automaton where s is a state

that corresponds to an uncovered component transition of the

system and n is a state of the claim automaton where a marked

proposition (by an accept label) is reached. Instead of seeking

an acceptance cycle as done in the nested depth-first search

(NDFS) algorithm of SPIN, our method search a path (without

cycles) going from the initial state of the product automaton

to the stop state (s, n) where n is a final state of the claim

automaton. This path must contains all the accept states of the

product automaton.

C. Accept State Detection Algorithm

As above mentioned, the main goal is to reach a stop state

of the synchronous product automaton. During this depth-

first search (DFS), all the accept states (describing the test

objectives) must be reached (cf. Figure 2). If a depth limit d

(defined by the user) is reached from a current state (initialized

to the initial state in line 1 of Figure 1) without detecting an

accept state or stop state, a jump of depth d is carried out by

building a partial search tree and by choosing uniformly and

randomly a leaf node of this tree (cf. lines 16–20 in Figure 1).

This tree has as root the current state and also has a depth

d. The selected leaf node will be the new current state (as

in line 21). From this later state, a new partial search (of

an accept state or stop state) is performed (as in line 22).

The algorithm terminates when a stop state is reached or

when the complete exploration of the state space is performed

(cf. line 7). Finally, the obtained path from the initial state to

the stop state, which contains all the accept states constitutes

the test sequence. The algorithm is depicted in the Figure 1

and illustrated by the Figure 2.

D. The Formulation of Test Objectives

The SPIN tool accepts correctness properties expressed in

PLTL or directly in Promela never claim. In SPIN, the never

claim must express a negative property. In our component test

generation method, we use the never claim to describe the test

objectives that model the OLSR component transitions to be

tested. These test objectives describe finite desirable behaviors.

Their formulation consists of a set of logical propositions on

the model state which can correspond to the triggering of

transitions or to the evaluation of variables. Every proposition

✄

1 current_state := initial_state;

2 dfs (current_state);

3

4 proc dfs(s)

5 if not(depth_limit reached) then

6 add(s) to stateSpace;

7 if stop(s) then report testSequence; exit();

8 else if accept(s) then current_state := s; fi

9 fi

10 for each(selected) successor s1 of s do

11 if (s1 not in stateSpace) then

12 add transition(s,s1) to

reachedTransitions;

13 dfs (s1);

14 fi

15 od

16 else if (s = current_state) then

17 Build from s a partial exploration tree having

depth limit;

18 Choose uniformly and randomly a leaf node of

this tree;

19 Initialize the partial stateSpace;

20 Update stateSspace, transitionsTable and

testSequence;

21 current_state := leafNode

22 dfs (leafNode);

23 fi

24 end dfs.
✂ ✁

Fig. 1. Accept State Detection Algorithm

S 0

S i

S j

S k

S l

J u m p

d

[p1 i s va l id]

A c c e p t S t a t e

A c c e p t S t a t e

S t o p S t a t e

[p2 i s va l id]

- D e p t h L i m i t = d
- T e s t O b j e c t i v e s = { p 1 , p 2 }
- T e s t S e q u e n c e : S 0 - - - > S i - - - > S j - - - > S k - - - > S 1

d’ < d

Fig. 2. Accept State Detection with HoJ

is marked by an accept label. We give below an example of

a never claim with one accept label (i.e., accept prop1 in

line 6 of the following claim) that identifies where the test

objective holds. The never claim is noted ¬(⋄ prop1) in PLTL.

In PROMELA, it is noted as in the following:

✄

1 never {
2 do

3 :: skip

4 :: prop1 −> break

5 od

6 accept prop1: skip

7 }
✂ ✁

The loop is left when all the propositions (i.e., test objec-

tives) are checked in order to finally reach the final state of the

never claim. For our experiments on OLSR (see Section IV),

we need to define a never claim with several accept label that

mark a set of propositions.

IV. EXPERIMENTAL RESULTS

Our experiments have been performed with a Processor Intel

Pentium 4 (CPU 2.4GHz, RAM 512MB, Cache size 512 MB).

The OLSR test sequences have been generated both by SPIN

and our prototype tool based on the model-checker in which

HoJ has been integrated, allowing then to compare the results.

A. OLSR Test Objectives

This section presents some examples of test objectives

formulation. For sake of simplicity, we only detail four OLSR

properties. The experiments are performed on a network

modeled with five nodes moving randomly. We nevertheless

assume that this random topology allows to observe the

following properties especially to generate the respected test

sequences. We formalize the test objectives for the node n1.

• Test Objective 1: To test the asymmetric link process.

A node n1 sends a HELLO message to its neighbors.

Then, it can declare that it has an asymmetric link with

a node if this node sends back a HELLO message with

the source n1 added in its ASYM set.

• Test Objective 2: To test the symmetrical link process.

A node n1 which has already a asymmetrical link with a

node n2, can declare to have a symmetrical link with n2
if it sends a HELLO message saying to n1 that it has a

symmetrical link with him.

• Test Objective 3: To test that only a node that is

established as a MPR can send TC messages (see Figure

3).

• Test Objective 4: To test that a HELLO message is sent

after a Hello interval.

n2n1

HELLO (n1, MPR_neigh, SYM_Link, n2)

TC (n1)

Fig. 3. MSC of the test objective 3

To perform our test generation, we express these test ob-

jectives inside the never claim. We identify in the formal

specification, the component involved in the design of the test

objectives. For that purpose, we label in the specification the

transitions to be reached. These transitions will belong to the

test sequence.

In order to generate the test sequence for the test objective

1, we put two (control-flow) labels in the specification, one in

the HELLO message generation part (cf. label L0 in line 4 of

the Part 1) and a second in the part devoted to the classification

of the links (cf. label L1 line 8 of the Part 2). We show below

how the labels L0 and L1 are put on the Promela specification.

✄

1 do

2 ::(i<NODES)−> if

3 :: (Node_1[id].Node_2[i] == UNSPEC_LINK) −> skip;

4 :: else −> L0 : Ch[i] ! HELLO_MESSAGE,sendMe;

5 fi ; i++;

6 :: else −> break;

7 od;
✂ ✁

Part 1: Promela Specification of HELLO Message

Generation with the Label L0

✄

1 inline calculLinkType(indice, linkCode_LT) {
2 if

3 :: ((LinkSet[indice].L_SYM_time.sec > timer.sec) ||
((LinkSet[indice].L_SYM_time.sec == timer.sec)

&& (LinkSet[indice].L_SYM_time.msec >=

timer.msec)))

4 −> linkCode_LT = SYM_LINK;

5 :: else −>

6 if

7 :: ((LinkSet[indice].L_ASYM_time.sec > timer.sec)

|| ((LinkSet[indice].L_ASYM_time.sec ==

timer.sec) &&

(LinkSet[indice].L_ASYM_time.msec >=

timer.msec)))

8 −> linkCode_LT = ASYM_LINK; L1 : skip;

9 :: else −> linkCode_LT = LOST_LINK;

10 fi ;

11 fi ;

12 }
✂ ✁

Part 2: Promela Specification of Links Classification with

the Label L1

In this test objective 1, first a HELLO message has to be sent

from n1 to n2 (cf. label L0 of the Part 1), then n2 receives it,

answers and n1 classifies its link to this node as asymmetric

(cf. label L1 of the Part 2). Two steps are needed in the never

claim and two global variables are defined as it follows:
✄

1 #define p1 (Node[1]@L0)

2 #define p2 (Node[1]@L1)
✂ ✁

Note that the variable p1, for instance, takes the value true

if its associated process instance (Node[1]) is currently in

the state marked by L0 which is the first step of the test

objective 1. Let checked be an array of boolean indexed by

the boolean variables p1, p2 such that checked(p1) = true

meaning as an example that the variable p1 takes true at

least once. These boolean variables p1, p2 are used in the

design of the test objective 1. Its associated never claim is de-

scribed by the two propositions: prop1 = p1∧¬checked(p1);
prop2 = p2∧¬checked(p2)∧ checked(p1). The never claim

of the test objective 1 is described as follows:

✄

1 never {
2 do

3 :: skip

4 :: prop1 −> checked(p1) = true;

5 :: prop2 −> checked(p2) = true; break;

6 od

7 accept objective1 : skip

8 }
✂ ✁

The never claim of the test objective 1

B. Results and Discussions

This section presents a comparative table (see Figure I)

between the results obtained by the original SPIN and by our

own prototype for the OLSR protocol in the same context.

We have exercised our method to test a specific node in the

context of four other nodes. The test objectives are expressed

in order to cover some OLSR properties. We compared the

stored states number (in data structures) and the stored or

matched transitions number.

We note that for the two tools (SPIN and our own pro-

totype), we obtained the same test sequence with the same

depth. We did not try to obtain different test sequences by

changing the depth of search. Our objective is to achieve to

reach the transitions in the OLSR Promela model. We can

notice that for the MPR with the SPIN tool, we did not achieve

to reach the test objective related to the computation of the

MPR. Nevertheless, with our prototype we obtain a result for

this test objective. We can explain these results by our efficient

strategy to explore the system. Indeed, we can get out a part

of the specification that is not relevant for our search with

the jump strategy. SPIN DFS carries out a back-tracking if

the maximum search depth is reached without reaching an

accept state or a stop state. Indeed, a maximal depth limit is

predefined and the value is high.

On the contrary, our prototype works on partial graph and

traverses shortest path due to the small depth limit set to

obtain a jump. In this case we only back-track to the root node

of the partial graph (i.e., current state) and executes a jump.

Moreover, the jump allows us to get out the trap and to search

our test objectives in other part of the graph. We can avoid

very long test sequences with uninteresting paths according

to a good depth search choice. To explain more precisely

the MPR test objective, we have to say that the other test

objectives are related to a subset of nodes as these properties

are computed locally for a node. On contrary, for the property

of MPR, the computation are done for all the nodes of the

network, there is no knowledge a priori of which node can be

computed as MPR. The flooding of HELLO messages and the

classification of links are performed for all the neighborhood.

This computation can explain the state space explosion even

if the network is reduced to five nodes. With our modified

version of SPIN, we obtain a result after a jump. In that work,

we generated the test sequences related to OLSR properties.

Since they were provided from a Promela model, they are

represented as input/outputs sequences. Therefore, a following

work is to formulate them in a executable manner and to apply

them on a real implementation under test of OLSR as it is

mentioned in a previous work [18] in which we define testing

architectures.

V. CONCLUSION

This paper discussed a new approach to generate test cases

for an embedded component, which is a MANET routing

protocol. This method conducts a search in the partial product

of the whole formally specified OLSR system and the automa-

ton of the formula that represents the test objectives, i.e., the

transitions of the component to cover.

We have implemented inside the model-checker SPIN an

efficient testing algorithm that allows to avoid the state space

explosion. Therefore, through an OLSR specification written

in Promela, we have exercised our prototype against SPIN.

While the results are quite similar if the component to reach

is not so deep into the model (that is, it does not need an

important testing coverage), they differ when many interac-

tions between the nodes are needed to observe a test objective.

Indeed, our approach may take into account the dynamic

topology of MANET networks and then provides test verdicts

whereas this is not the case for the model-checker.

An immediate line of future is to exercise our prototype

with different criteria of coverage. We present in the paper

a coverage criterion that is the transitions coverage in order

to produce a transitions tour of the component in its context.

This criterion can be rapidly changed, may one want only to

test some critical functionalities of a module. Specifically, it

would help to test the scalability of our approach with dozen of

nodes. Besides, it will be interesting to validate our approach

through complex OLSR testing objectives. For that aspect,

requirements such as HNA and two OLSR interfaces should

be added to the formal model.

REFERENCES

[1] K. Bhargavan, C. Gunter, I. Lee, O. Sokolsky, M. Kim, D. Obradovic,
and M. Viswanathan, “Verisim: Formal analysis of network simulations,”
IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 129–145, 2002.

[2] C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico, “A guided
incremental test case generation procedure for conformance testing for
CEFSM specified protocols,” in IWTCS’98, Tomsk, Russia, 1998.

[3] A. Cavalli, B. Defude, C. Rinderknecht, and F. Zadi, “A service-
component testing method and suitable CORBA architecture,” in Pro-

ceedings of the Sixth IEEE ISCC’01, Tunisia, 2001, pp. 655–660.
[4] S. Maag and F. Zadi, “Testing methodology for an ad hoc routing

protocol,” in Proc. of First ACM Workshop PM2HW2N, Torremolinos,
(Malaga), Spain, 2006.

[5] A. C. Viana, S. Maag, and F. Zaidi, “One step forward: Linking
wireless self-organising networks validation techniques with formal
testing approaches,” ACM Survey, vol. 41, no. 3, 2009.

[6] L. Xu, M. Dias, and D. Richardson, “Generating regression tests via
model checking,” in Proceedings of COMPSAC’04, 2004.

[7] G. J. Holzmann, The SPIN Model Checker - Primer and Reference

Manual. Addison-Wesley, Reading Massachusetts, 2004, 608 pgs.
[8] D. Beyer, A. Chlipala, T. Henzinger, R. Jhala, and R. Majumdar,

“Generating tests from counterexamples,” in Proceedings of ICSE’04,
2004.

[9] D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar, “The software model
checker blast: Applications to software engineering.” Int. Journal on

Software Tools for Technology Transfer, 2007.
[10] Y. Zheng, J. Zhou, and P. Krause, “A model checking based test case

generation framework forweb services,” in Proceedings of ITNG’07,
2007.

Invariant Violation Depth Stored States Stored + Matched Transitions Duration (s)

Spin Prototype Spin Prototype Spin Prototype Spin Prototype

Asymmetric link 732 732 328 328 328 328 3.31 3.28

Symmetric link 932 932 428 428 428 428 3.33 3.31

HELLO INTERVAL 691 691 310 310 310 310 3.30 3.28

MPR Election - 2022 - 905 - 905 - 7.46

TABLE I
DISCUSSIONS OF RESULTS

[11] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: a new
symbolic model verifier,” in Proceedings of CAV’99. Trento, Italy:
Springer, 1999, pp. 495–499.

[12] S. Rayadurgam and M. Heimdahl, “Generating mc/dc adequate test se-
quences through model checking,” in Proceedings of SEW’03 Workshop,
2003.

[13] T.Clausen and P.Jacquet, Optimized Link State Routing Protocol (OLSR)

- RFC3626, ietf ed., INRIA, 2003.
[14] R. Gerth, “Concise Promela Reference,” June 1997, http://www.spinroot.

com/spin/Man/Quick.html.
[15] A. Pnueli, “The temporal logic of programs,” Proc. 18th IEEE Sympo-

sium on Foundations of Computer Science, pp. 46–57, 1977.
[16] A. Cavalli, D. Lee, C. Rinderknecht, and F. Zadi, “Hit-or-Jump : An

algorithm for embedded testing with applications to IN services,” in
Proceedings of FORTE/PSTV’99, Beijing, China, 1999.

[17] D. Lee, K. Sabnani, D. Kristol, and S. Paul, “Conformance Testing
of Protocols Specified as Communicating Finite State Machines - A
Guided Random Walk Based Approach,” in IEEE Transactions on

Communications, vol. 44, No.5, 1996.
[18] S. Maag, C. Grepet, and A. Cavalli, “A formal validation methodology

for manet routing protocols based on nodes’ self similarity,” Computer

Communications, vol. 31, no. 4, pp. 827–841, 2008.

