D. J. Demaster, The supply and accumulation of silica in the marine environment, Geochimica et Cosmochimica Acta, vol.45, issue.10, pp.1715-1732, 1981.

O. Ragueneau, A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy, Global and Planetary Change, vol.26, issue.4, pp.317-365, 2000.

P. Tréguer, The silica balance in the world ocean -a reestimate, Science, vol.268, issue.5209, pp.375-379, 1995.

D. M. Nelson, Production and Dissolution of Biogenic Silica in the Ocean -Revised Global Estimates, Comparison with Regional Data and Relationship to Biogenic Sedimentation, Global Biogeochemical Cycles, vol.9, issue.3, pp.359-372, 1995.

O. Ragueneau, Si and C interactions in the world ocean: Importance of ecological processes and implications for the role of diatoms in the biological pump, Global Biogeochemical Cycles, vol.20, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00473808

D. J. Conley, Terrestrial ecosystems and the global biogeochemical silica cycle, Global Biogeochemical Cycles, vol.16, 2002.

P. Pondaven, Resolving the 'opal paradox' in the Southern Ocean, Nature, vol.405, issue.6783, pp.168-172, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01872082

E. Koning, Selective preservation of upwelling-indicating diatoms in sediments off Somalia, NW Indian Ocean. Deep Sea Research Part I: Oceanographic Research Papers, vol.48, pp.2473-2495, 2001.

J. Mcmanus, Early diagenesis of biogenic opal: Dissolution rates, kinetics, and paleoceanographic implications, Deep Sea Research Part II: Topical Studies in Oceanography, vol.42, pp.871-903, 1995.

, Silicon, vol.4, pp.7-22, 2012.

D. B. Ryves, Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Paleogeography, Paleoclimatology, Peleoecology, vol.172, pp.99-113, 2001.

P. Barker, Differential diatom dissolution in Late Quaternary sediments from Lake Manyara, Tanzania: an experimental approach, Journal of Paleolimnology, vol.7, issue.3, pp.235-251, 1992.

A. F. Lotter, Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps, Climate. Journal of Paleolimnology, vol.1, issue.4, pp.395-420, 1997.

A. Abelmann, R. Gersonde, and V. Spiess, Pliocene -Pleistocene paleoceanography in the Weddell Sea -Siliceous microfossil evidence, Geological history of the polar oceans: Arctic versus Antarctic, pp.729-759, 1988.

C. L. Rocha, Opal-based isotopic proxies of paleoenvironmental conditions, Global Biogeochemical Cycles, issue.GB4S09, p.20, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00467266

V. Martin-jezequel, H. M. , and M. A. Brzezinski, Silicon metabolism in diatoms: implications for growth, Journal of Phycology, vol.36, pp.821-840, 2000.

M. A. Brzezinski, R. A. Olson, and S. W. Chisholm, Silicon availability and cellcycle progression in marine diatoms, Marine Ecology Progress Series, vol.67, pp.83-96, 1990.

D. M. Nelson and Q. Dortch, Silicic acid depletion and silicon limitation in the plume of the Mississippi River: evidence from kinetic studies in spring and summer, Marine Ecology Progress Series, vol.136, pp.163-178, 1996.

E. Paasche, Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrient, Marine Biology, vol.19, issue.2, pp.117-126, 1973.

P. Claquin, Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen, and phosphorous control, Journal of Phycology, vol.38, issue.5, pp.922-930, 2002.

C. O. Davis, Continuous culture of marine diatoms under silicate limitation. II. Effect of light intensity on growth and nutrient uptake of Skeletonema constantum, Journal of Phycology, vol.12, issue.3, pp.291-300, 1976.

N. J. Taylor, Silica incorporation in the diatom Coscinodiscus granii as affected by light intensity, British Phycological Journal, vol.20, pp.365-374, 1985.

E. G. Durbin, Studies in the autoecology of the marine diatom Thalassiosira nordenskioeldii. II. The influence of cell size on growth rate and carbon. nitrogen, chlorophyll a and silica content, Journal of Phycology, vol.13, pp.150-155, 1977.

E. Paasche, Silicon Content of Five Marine Plankton Diatom Species Measured with a Rapid Filter Method, Limnology and Oceanography, vol.25, issue.3, pp.474-480, 1980.

P. J. Harrison, H. L. Conway, and R. C. Dugdale, Marine diatoms grown in chemostats under silicate or ammonium limitation. I. Cellular chemical composition and steady-state growth kinetics of Skeletonema costatum, Marine Biology, vol.35, issue.2, pp.177-186, 1976.

P. J. Harrison, Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida, Marine Biology, vol.43, issue.1, pp.19-31, 1977.

D. J. Conley and S. S. Kilham, Differences in silica content between marine and freshwater diatoms, Limnology and Oceanography, vol.34, issue.1, pp.205-213, 1989.

P. Pondaven, Grazing-induced Changes in Cell Wall Silicification in a Marine Diatom, Protist, vol.158, issue.1, pp.21-28, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00472048

P. Van-cappellen, S. Dixit, and J. E. Van-beusekom, Biogenic silica dissolution in the oceans: Reconciling experimental and field-based dissolution rates, Global Biogeochemical Cycles, vol.16, 2002.

S. Dixit, P. Van-cappellen, and A. J. Van-bennekom, Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments, Marine Chemistry, vol.73, issue.3-4, pp.333-352, 2001.

S. Loucaides, T. Behrends, and P. Van-cappellen, Reactivity of biogenic silica: Surface versus bulk charge density, Geochimica et Cosmochimica Acta, vol.74, issue.2, pp.517-530, 2010.

M. A. Brzezinski, The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables, Journal of Phycology, vol.21, issue.3, pp.347-357, 1985.

E. G. Vrieling, Nanoscale uniformity of pore architecture in diatomaceous silica: A combined small and wide angle X-ray scattering study, Journal of Phycology, vol.36, issue.1, pp.146-159, 2000.

A. E. Kemp, Production of giant marine diatoms and their export at oceanic frontal zones: Implications for Si and C flux from stratified oceans, Global Biogeochemical Cycles, issue.GB4S04, p.20, 2006.

A. E. Kemp, The "Fall dump" --a new perspective on the role of a "shade flora" in the annual cycle of diatom production and export flux, Deep Sea Research Part II: Topical Studies in Oceanography, vol.47, pp.2129-2154, 2000.

V. Smetacek, Oceanography: The giant diatom dump, Nature, vol.406, issue.6796, pp.574-575, 2000.

F. T. Mackenzie, M. Stoffyn, and R. Wollast, Aluminum in Seawater: Control by Biological Activity. Science, vol.199, issue.4329, pp.680-682, 1978.

D. W. Menzel, E. M. Hulburt, and J. H. Tyther, The effects of enriching Sargasso sea water on the production and species composition of the phytoplankton. Deep Sea Research and Oceanographic Abstracts, vol.10, pp.209-219, 1963.

M. Stoffyn, Biological Control of Dissolved Aluminum in Seawater: Experimental Evidence. Science, vol.203, issue.4381, pp.651-653, 1979.

R. W. Gensemer, Role of aluminum andgrowth rate on changes in cell size and silica content of silica-limited populations of Asterionella ralfsii var, Americana (Bacillariophyceae) Journal of Phycology, vol.26, issue.2, pp.250-258, 1990.

P. Van-cappellen, S. Dixit, and M. Gallinari, Biogenic silica dissolution and the marine Si cycle: kinetics, surface chemistry and preservation. Océanis, vol.28, pp.417-454, 2002.

J. E. Van-beusekom, Wechselwirkungen zwischen gelösten Aluminium und Phytoplankton in marinen Gewässern, p.164, 1989.

E. G. Vrieling, W. W. Gieskes, and T. P. Beelen, Silicon deposition in diatoms: Control by the pH inside the silicon deposition vesicle, Journal of Phycology, vol.35, issue.3, pp.548-559, 1999.

A. J. Van-bennekom, B. A. , and N. R. , Dissolved aluminium in the Weddell-Scotia Confluence and effect of Al on the dissolution kinetics of biogenic silica, Marine Chemistry, vol.35, pp.423-434, 1991.

R. E. Hecky, The amino acid and sugar composition of diatom cell-walls, Marine Biology, vol.19, issue.4, pp.323-331, 1973.

K. D. Bidle and F. Azam, Bacterial Control of Silicon Regeneration from Diatom Detritus: Significance of Bacterial Ectohydrolases and Species Identity Limnology and Oceanography, vol.46, pp.1606-1623, 2001.

A. Kamatani and J. P. Riley, Rate of dissolution of diatom silica walls in seawater, Marine Biology, vol.55, issue.1, pp.29-35, 1979.

D. Rickert, M. Schluter, and K. Wallmann, Dissolution kinetics of biogenic silica from the water column to the sediments, Geochimica et Cosmochimica Acta, vol.66, issue.3, pp.439-455, 2002.

S. Patrick and A. J. Holding, The effect of bacteria on the solubilization of silica in diatom frustules, Journal of applied bacteriology, vol.59, issue.1, pp.7-16, 1985.

K. D. Bidle and F. Azam, Accelerated dissolution of diatom silica by marine bacterial assemblages, Nature, vol.397, issue.6719, pp.508-512, 1999.

D. M. Ward, A Natural View of Microbial Biodiversity within Hot Spring Cyanobacterial Mat Communities, Microbiology and Molecular Biology Reviews, vol.62, issue.4, pp.1353-1370, 1998.

C. Tamburini, Pressure effects on surface Mediterranean prokaryotes and biogenic silica dissolution during a diatom sinking experiment, Aquatic Microbial Ecology, vol.43, issue.3, pp.267-276, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00702531

L. C. Broughton and K. L. Gross, Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field, Oecologia, vol.125, issue.3, pp.420-427, 2000.

V. Roubeix, S. Becquevort, and C. Lancelot, Influence of bacteria and salinity on diatom biogenic silica dissolution in estuarine systems, Biogeochemistry, vol.88, issue.1, pp.47-62, 2008.

A. Corzo, J. A. Morillo, and S. Rodríguez, Production of transparent exopolymer particles (TEP) in cultures of Chaetoceros calcitrans under nitrogen limitation, Aquatic Microbial Ecology, vol.23, pp.63-72, 2000.

D. T. Drapeau, H. G. Dam, and G. Grenier, An Improved Flocculator Design for Use in Particle Aggregation Experiments, Limnology and Oceanography, vol.39, issue.3, pp.723-729, 1994.

U. Passow, Transparent exopolymer particles (TEP) in aquatic environments, Progress In Oceanography, vol.55, issue.3-4, pp.287-333, 2002.

U. Passow, A. Engel, and H. Ploug, The role of aggregation for the dissolution of diatom frustules, FEMS Microbiology Ecology, vol.46, issue.3, pp.247-255, 2003.

A. Malej and R. P. Harris, Inhibition of copepod grazing by diatom exudates: a factorin the development of mucus aggregates, Marine Ecology Progress Series, vol.96, pp.33-42, 1993.

N. Staats, Oxygenic photosynthesis as driving process in exopolysaccharide production of benthic diatoms, Marine Ecology Progress Series, vol.193, pp.261-269, 2000.

U. Passow, The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter, Continental Shelf Research, vol.21, issue.4, pp.327-346, 2001.

A. L. Alldredge and C. Gotschalk, Situ Settling Behavior of Marine Snow. Limnology and Oceanography, vol.33, pp.339-351, 1988.

A. L. Alldredge and M. W. Silver, Characteristics, dynamics and significance of marine snow, Progress In Oceanography, vol.20, issue.1, pp.41-82, 1988.

B. Moriceau, Evidence for reduced biogenic silica dissolution rates in diatom aggregates, Marine Ecology Progress Series, vol.333, pp.129-142, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00381254

A. L. Alldredge and Y. Cohen, Can Microscale Chemical Patches Persist in the Sea? Microelectrode Study of Marine Snow, Fecal Pellets, Science, vol.235, issue.4789, pp.689-691, 1987.

A. L. Alldredge, The Physical Strength of Marine Snow and its Implications for Particle Disaggregation in the Ocean, Limnology and Oceanography, vol.35, issue.7, pp.1415-1428, 1990.

M. Simon, Microbial ecology of organic aggregates in aquatic ecosystems, Aquatic Microbial Ecology, vol.28, pp.175-211, 2002.

C. E. Hamm, Architecture and material properties of diatom shells provide effective mechanical protection, Nature, vol.421, issue.6925, pp.841-843, 2003.

J. T. Turner, Zooplankton feeding ecology: does a diet of Phaeocystis support good copepod grazing, survival, egg production and egg hatching success, Journal of Plankton Research, vol.24, issue.11, pp.1185-1195, 2002.

S. W. Fowler and N. S. Fisher, Viability of marine phytoplankton in zooplankton fecal pellets. Deep Sea Research Part A. Oceanographic Research Papers, vol.30, pp.963-969, 1983.

T. Platt, Photosynthetically-Competent Phytoplankton from the Aphotic Zone of the Deep Ocean, Marine Ecology Progress Series, vol.10, pp.105-110, 1983.

S. Schultes, The role of mesozooplankton grazing in the biogeochemical cycle of silicon in the Southern Ocean, Biology and Chemistry, p.172, 2004.

P. M. Dove and D. A. Crerar, Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor, Geochimica et Cosmochimica Acta, vol.54, issue.4, pp.955-969, 1990.

P. J. Heaney, Structure and chemistry of the low pressure silica polymorphs, in Silica: Physical behavior, geochemistry, and materials applications, P.J. Heaney, vol.4, pp.7-22, 2012.

C. T. Prewitt and G. V. Gibbs, , pp.1-40, 1994.

R. K. Iler, A. C. Lasaga, and G. V. Gibbs, Ab-initio quantum mechanical calculations of water-rock interactions: Adsorption and hydrolysis reactions, American Journal of Science, vol.866, pp.263-295, 1979.

J. D. Rimstidt and H. L. Barnes, The kinetics of silica-water reactions, Geochimica et Cosmochimica Acta, vol.44, issue.11, pp.1683-1699, 1980.

P. Van-cappellen and L. Qiu, Biogenic silica dissolution in sediments of the Southern Ocean, II. Kinetics. Deep Sea Research Part II: Topical Studies in Oceanography, vol.44, issue.5, pp.1129-1149, 1997.

P. J. Renders, C. H. Gammons, and H. L. Barnes, Precipitation and dissolution rate constants for cristobalite from 150 to 300[degree sign]C. Geochimica et Cosmochimica Acta, vol.59, pp.77-85, 1995.

D. M. Nelson and M. A. Brzezinski, Diatom growth and productivity in an oligotrophic midocean gyre: A 3-yr record from the Sargasso Sea near Bermuda, Limnology and Oceanography, vol.42, issue.3, pp.473-486, 1997.

E. Koning, Settling, dissolution and burial of biogenic silica in the sediments off Somalia (northwestern Indian Ocean), Deep Sea Research Part II: Topical Studies in Oceanography, vol.44, pp.1341-1360, 1997.

R. A. Jahnke, D. B. Jahnke, C. Rates-of, and N. , Si recycling and denitrification at the US Mid-Atlantic continental slope depocenter. Deep Sea Research Part I: Oceanographic Research Papers, vol.47, pp.1405-1428, 2000.

S. Dixit and P. Van-cappellen, Predicting benthic fluxes of silicic acid from deep-sea sediments, Journal of Geophysical Research, vol.108, 2003.

J. E. Greenwood, V. W. Truesdale, and A. R. , Biogenic silica dissolution in seawater --in vitro chemical kinetics, Progress In Oceanography, vol.48, issue.1, pp.1-23, 2001.

D. C. Hurd and S. Birdwhistell, On producing a more general model for biogenic silica dissolution, American Journal of Science, vol.283, issue.1, pp.1-28, 1983.

A. Kamatani, Dissolution rates of silica from diatoms decomposing at various temperatures, Marine Biology, vol.68, issue.1, pp.91-96, 1982.

, Silicon, vol.4, pp.7-22, 2012.

A. Kamatani, J. P. Riley, and G. Skirrow, The dissolution of opaline silica of diatom tests in sea water, Journal of the Oceanographical Society of Japan, vol.36, pp.201-209, 1980.

P. Tréguer, Kinetics of Dissolution of Antarctic Diatom Frustules and the Biogeochemical Cycle of Silicon in the Southern Ocean, Polar Biology, vol.9, issue.6, pp.397-403, 1988.

D. C. Hurd, Factors affecting solution rate of biogenic opal in seawater. Earth and Planetary Science Letters, vol.15, p.411, 1972.

V. Truesdale, J. Greenwood, and A. Rendell, The Rate-equation for Biogenic Silica Dissolution in Seawater -New Hypotheses. Aquatic Geochemistry, vol.11, pp.319-343, 2005.

P. Van-cappellen and L. Qiu, Biogenic silica dissolution in sediments of the Southern Ocean. I. Solubility. Deep Sea Research Part II: Topical Studies in Oceanography, vol.44, pp.1109-1128, 1997.

M. Gallinari, The importance of water column processes on the dissolution properties of biogenic silica in deep-sea sediments I. Solubility. Geochimica et Cosmochimica Acta, vol.66, pp.2701-2717, 2002.

M. Schmidt, Oxygen isotopes of marine diatoms and relations to opal-A maturation, Geochimica et Cosmochimica Acta, vol.65, issue.2, pp.201-211, 2001.

P. Van-cappellen, Reactive surface area control of the dissolution kinetics of biogenic silica in deep-sea sediments, Chemical Geology, vol.132, issue.1-4, pp.125-130, 1996.

S. Loucaides, P. Van-cappellen, and T. Behrends, Dissolution of biogenic silica from land to ocean: The role of salinity and pH, Limnology and Oceanography, vol.53, pp.1614-1621, 2008.

D. S. Lawson, D. C. Hurd, and H. S. Pankratz, Silica dissolution rates of phytoplankton assemblages at various temperatures, American Journal of Science, vol.278, pp.1373-1393, 1978.

J. P. Icenhower and P. M. Dove, The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength, Geochimica et Cosmochimica Acta, vol.64, issue.24, pp.4193-4203, 2000.

P. Jourabchi, P. Van-cappellen, and P. Regnier, Quantitative interpretation of pH distributions in aquatic sediments: A reaction-transport modeling approach, American Journal of Science, vol.305, issue.9, pp.919-956, 2005.

D. C. Hurd, Interactions of biogenic opal, sediment and seawater in the Central Equatorial Pacific, Geochimica et Cosmochimica Acta, vol.37, issue.10, p.2257, 1973.

, Silicon, vol.4, pp.7-22, 2012.

H. Ploug, Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: implications for the carbon cycle in the ocean, Marine Ecology Progress Series, vol.179, pp.1-11, 1999.

S. Dixit and P. Van-cappellen, Surface chemistry and reactivity of biogenic silica, Geochimica et Cosmochimica Acta, vol.66, issue.14, pp.2559-2568, 2002.

F. Fraysse, Surface properties, solubility and dissolution kinetics of bamboo phytoliths, Geochimica et Cosmochimica Acta, vol.70, issue.8, pp.1939-1951, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00316421

P. M. Dove and S. F. Elston, Dissolution kinetics of quartz in sodium-chloride solutions -analysis of existing data and a rate model for 25-Degrees-C

, Geochimica Et Cosmochimica Acta, vol.56, issue.12, pp.4147-4156, 1992.

G. S. Wirth and J. M. Gieskes, The initial kinetics of the dissolution of vitreous silica in aqueous media, Journal of Colloid and Interface Science, vol.68, issue.3, pp.492-500, 1979.

F. Fraysse, Aqueous reactivity of phytoliths and plant litter: Physicochemical constraints on terrestrial biogeochemical cycle of silicon, Journal of Geochemical Exploration, vol.88, issue.1-3, pp.202-205, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00316377

P. M. Dove and C. J. Nix, The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz, Geochimica et Cosmochimica Acta, vol.61, issue.16, pp.3329-3340, 1997.

J. D. Willey, The effect of pressure on the solubility of amorphous silica in seawater at 0[deg]C. Marine Chemistry, vol.2, p.239, 1974.

P. M. Dove, The dissolution kinetics of quartz in aqueous mixed cation solutions, Geochimica et Cosmochimica Acta, vol.63, issue.22, pp.3715-3727, 1999.

H. Kamiya and K. Shimokata, The role of salts in the dissolution of powdered quartz, International symposium on Water-Rock Interactions, 1976.

J. A. Van-lier, P. L. Debruyn, and J. T. Overbeek, The solubility of quartz, Journal of Physical Chemistry, vol.64, pp.1675-1682, 1960.

E. Lemaire, Distribution of phytoplankton pigments in nine European estuaries and implications for an estuarine typology, Biogeochemistry, vol.59, issue.1, pp.5-23, 2002.

O. Ragueneau, Biogeochemical Transformations of Inorganic Nutrients in the Mixing Zone between the Danube River and the

, Estuarine, Coastal and Shelf Science, vol.54, issue.3, pp.321-336, 2002.

D. J. Conley, Riverine contribution of biogenic silica to the oceanic silica budget, Limnology and Oceanography, vol.42, issue.4, pp.774-777, 1997.

G. G. Laruelle, Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land-ocean transition, Global Biogeochemical Cycles, vol.23, issue.4, p.4031, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01071335

C. Rabouille, Biogenic silica recycling in surficial sediments across the Polar Front of the Southern Ocean (Indian Sector), Deep Sea Research Part II: Topical Studies in Oceanography, vol.44, pp.1151-1176, 1997.

J. E. Van-beusekom, Aluminium and silicic acid in water and sediments of the Enderby and Crozet Basins, Deep Sea Research Part II: Topical Studies in Oceanography, vol.44, p.987, 1997.

A. J. Van-der-weijden and C. H. Van-der-weijden, Silica fluxes and opal dissolution rates in the northern Arabian Sea. Deep Sea Research Part I: Oceanographic Research Papers, vol.49, pp.157-173, 2002.

B. P. Boudreau, Asymptotic Forms and Solutions of the Model for Silica-Opal Diagenesis in Bioturbated Sediments, Journal of Geophysical Research, vol.95, issue.C5, pp.7367-7379, 1990.

K. Khalil, Constraining biogenic silica dissolution in marine sediments: A comparison between diagenetic models and experimental dissolution rates. Marine Chemistry, vol.106, pp.223-238, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00635620

S. L. King, P. N. Froelich, and R. A. Jahnke, Early diagenesis of germanium in sediments of the Antarctic South Atlantic: in search of the missing Ge sink, Geochimica et Cosmochimica Acta, vol.64, issue.8, pp.1375-1390, 2000.

O. Ragueneau, The benthic silica cycle in the Northeast Atlantic: annual mass balance, seasonality, and importance of non-steady-state processes for the early diagenesis of biogenic opal in deep-sea sediments, Progress In Oceanography, vol.50, issue.1-4, pp.171-200, 2001.

P. Michalopoulos and R. C. Aller, Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage, Geochimica et Cosmochimica Acta, vol.68, issue.5, pp.1061-1085, 2004.

M. Presti and P. Michalopoulos, Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta, vol.28, pp.823-838, 2008.

A. J. Van-bennekom, Aluminium-rich opal: an intermediate in the preservation of biogenic silica in the Zaire (Congo) deep-sea fan, Deep Sea Research Part A. Oceanographic Research Papers, vol.36, pp.173-190, 1989.

M. Gehlen, Unraveling the atomic structure of biogenic silica: evidence of the structural association of Al and Si in diatom frustules, Geochimica et Cosmochimica Acta, vol.66, issue.9, pp.1601-1609, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00085369

E. Koning, Rapid post-mortem incorporation of aluminum in diatom frustules: Evidence from chemical and structural analyses. Marine Chemistry, vol.106, pp.97-111, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00311661

D. J. Demaster, The accumulation and cycling of biogenic silica in the Southern Ocean: revisiting the marine silica budget, Deep Sea Research Part II: Topical Studies in Oceanography, vol.49, pp.3155-3167, 2002.

F. T. Mackenzie and R. M. Garrels, Chemical mass balance between rivers and oceans, American Journal of Science, vol.264, issue.7, pp.507-525, 1966.

P. Michalopoulos, R. C. Aller, and R. J. Reeder, Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds, Geology, vol.28, issue.12, pp.1095-1098, 2000.

S. Loucaides, Seawater-mediated interactions between diatomaceous silica and terrigenous sediments: Results from long-term incubation experiments, Chemical Geology, pp.68-79, 2010.

D. C. Hurd and F. Theyer, Changes in physical and chemical properties of biogenic silica from the Central Equatorial Pacific. I. Solubility, specific surface area, and solution rate constants of acid-cleaned samples, pp.211-230, 1974.

A. Gendron-badou, Spectroscopic characterization of biogenic silica, Journal of Non-Crystalline Solids, vol.316, issue.2-3, pp.331-337, 2003.