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INTRODUCTION

Nutrient limitation in phytoplankton communities
is commonly observed and may eventually lead to
growth constraints (Hessen et al. 2004), as well as
stoichiometric changes in phytoplankton biomass
(Klausmeier et al. 2004a). While nutrient limitation in
freshwater lakes is mainly associated with phospho-
rus (Schindler 1977, Hecky & Kilham 1988, Elser &
Hassett 1994), nutrient limitation in marine environ-
ments is not focused on just one nutrient (Hecky et al.

1993). Nitrogen (N), phosphorus (P) and iron can
potentially limit the primary productivity of oceans
(Boyd et al. 2000, Wu et al. 2000, Sañudo-Wilhelmy et
al. 2001, Brzezinski et al. 2011). However, the type of
nutrient limitation is dependent on the temporal and
spatial distribution of dissolved nutrients (e.g. Tyrrell
1999, Weber & Deutsch 2010), in addition to species-
specific requirements of phytoplankton (Quigg et al.
2003, Lagus et al. 2004). Seasonal variations in the
nutrient limitation of phytoplankton can be high in
coastal areas that are affected by river runoff and
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ABSTRACT: Zooplankton nutrient recycling has been shown to substantially affect nutrient avail-
ability for phytoplankton . However, investigations are required to determine whether zooplank-
ton also influence nutrient limitation in marine phytoplankton communities, and whether grazing
by different zooplankton groups results in different patterns of phytoplankton nutrient limitation.
We performed laboratory experiments under different nutrient supply conditions on a variety of
phytoplankton communities with natural densities of copepods and rotifers, and tested phyto-
plankton nutrient limitation in bioassays for nitrogen, phosphorus, and the combination of the two.
After 5 d incubation with zooplankton, we observed a significant increase in phytoplankton bio-
mass in the zooplankton treatments. We relate this largely to nutrient recycling effects, which are
amplified through possible trophic cascade effects. In copepod treatments, the highest phyto-
plankton biomass was reached under Redfield and nitrogen excess nutrient supply conditions,
while the highest biomass in rotifer treatments was registered under phosphorus excess con -
ditions. In most cases, nutrient limitation assays revealed a co-limitation of phytoplankton by
nitrogen and phosphorus. With increasing nitrogen supply, we observed an increase in phospho-
rus limitation in the copepod treatments and a decrease in nitrogen limitation in the rotifer treat-
ments. The phytoplankton community was driven into phosphorus limitation under nitrogen
excess conditions in copepod treatments. Our results indicate that natural densities of zooplankton
are able to promote nitrogen and phosphorus co-limitation in phytoplankton communities.
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turnover events, which cause seasonally changing
ratios of dissolved nutrients, notably N and P (e.g.
Fisher et al. 1992, Beman et al. 2005).

In general, the stoichiometric composition of phyto-
plankton is dependent on the rate of carbon fixation
per assimilated nutrient and can be characterised
as the atomic carbon to nitrogen to phosphorus
(C:N:P) ratio. The average relationship between
C:N:P in seston is found to be relatively stable, rang-
ing between 106:16:1 (Redfield 1958, Copin-Mon-
tegut & Copin-Montegut 1983) and 166:20:1 (Sterner
et al. 2008). Alterations of phytoplankton C:N:P ratios
can be caused by changes in various factors, such as
growth rates (Klausmeier et al. 2004a), light intensity
(e.g. Healey 1985, Sterner et al. 1997, Diehl 2002,
Klausmeier et al. 2004b), and dissolved nutrient con-
centrations (Klausmeier et al. 2004a).

It has further been shown that the availability of
dissolved nutrients is also affected by the nutrient
recycling of zooplankton (Sterner et al. 1992, Urabe
1993, Elser & Hassett 1994). Since consumer bodies
have relatively conservative stoichiometric composi-
tions and specific nutrient requirements (Sterner et
al. 1992), the ratio of excreted nutrients is altered
through the nutrient demands of the consumer.
Hence, the withdrawal of nutrients from zooplankton
in ratios required by consumers may consequently
affect the nutrient limitation of phytoplankton (Elser
et al. 1988, Andersen & Hessen 1991, Urabe 1993,
Elser & Hassett 1994). This concept of phytoplankton
stoichiometry being affected by a feedback mecha-
nism of zooplankton consumer grazing is termed
consumer-driven nutrient recycling (CNR; Sterner
1990, Elser & Urabe 1999).

According to the nutrient demands of herbivorous
consumers, recycled food should have different
 effects on the nutrient budget of an aquatic system.
Hypothetically, since copepods have a relatively high
N demand (Andersen & Hessen 1991, Gismervik
1997, Hassett et al. 1997), they should excrete less N,
and consequently drive the system towards N limita-
tion (Sterner & Hessen 1994, Walve & Larsson 1999).
Conversely, consumers with low N:P ratios and/or
higher growth rates (Main et al. 1997), such as
 daphniids, rotifers (Stemberger & Miller 1998) or ap-
pendicularians (Sommer 2003), tend to manoeuvre
the system towards P limitation due to higher P de-
mands. Such effects have been observed and de-
scribed in freshwater lakes (cf. Table 1 in Elser &
Urabe 1999), but are more difficult to detect in marine
environments. The effects of nutrient recycling are
presumed to be weaker in marine systems, due to a
smaller stoichiometric mismatch between phyto-

plankton and consumers (Elser & Hassett 1994). Until
now, only one study has attempted to investigate the
effect of zooplankton on phytoplankton stoichiometry
and nutrient limitation in a marine environment
(Sommer et al. 2004). Sommer et al. (2004) performed
mesocosm experiments in Atlantic waters off Norway
to investigate the influence of density-manipulated
copepod and appendicularian communities on phyto-
plankton nutrient limitation using bioassays. In the
appendicularian treatments, nutrient limitation of
phytoplankton was not detected. The authors attrib-
uted the absence of phytoplankton nutrient limitation
in these treatments to the low densities of appendicu-
larians. However, as the employed concentrations re -
presented natural densities, the authors concluded
that appendicularians would not be able to drive
phytoplankton into nutrient limi tation in the natural
environment. In the copepod treatments, Sommer et
al. (2004) found that N limi tation was primarily en-
hanced through a trophic  cascade effect. Ciliates
were reduced through copepod  grazing, releasing
nano phytoplankton from  ciliate grazing pressure,
while at the same time reducing the amount of N-rich
ciliate excretions. As a con sequence, nano phyto -
plankton was affected by N limit ation due to the
 re duced amount of ciliate excretions.

In terms of ecological modelling, 2 studies (Toura -
tier et al. 2001, Nugraha et al. 2010) have specifically
approached the question of how herbivorous zoo-
plankton may influence N and P distributions in
aquatic systems. Both studies are based on the model
of Sterner (1990) and extend the understanding of
the relationship between the N:P ratio of zooplank-
ton excretions and the quality of the phytoplankton
food (the phytoplankton N:P ratio). Touratier et al.
(2001) showed that the type of nutrient limitation in a
phytoplankton community is dependent on the zoo-
plankton group (in their case copepods and cladocer-
ans), and its stoichiometric requirements. The model
of Nugraha et al. (2010) was specifically designed for
marine systems, and predicts that global primary
productivity would be significantly affected by her-
bivorous zooplankton. The model also shows that if
zooplankton had a higher N:P ratio than phytoplank-
ton, global primary productivity would increase in
the presence of herbivorous zooplankton. The result-
ing low N:P re-supply ratio from zooplankton would
favour the growth of P-limited nitrogen-fixing phyto-
plankton, which in turn would promote the growth of
N-limited phytoplankton (Nugraha et al. 2010).

However, the influence of zooplankton on nutrient
limitation and growth of phytoplankton in marine
systems has never been tested under controlled labo-
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ratory conditions. Therefore, we performed a labora-
tory study to investigate the short-term effects of
 natural zooplankton densities on nutrient limitation
patterns of phytoplankton communities. We investi-
gated whether zooplankton is able to affect the nutri-
ent limitation of phytoplankton on an ecologically
reasonable timescale of 5 d. In highly variable envi-
ronments, such as the Bay of Biscay, longer periods of
stable oceanographic conditions for plankton are
unlikely to occur (e.g. Koutsikopoulos & LeCann
1996). In addition, we examined whether different
zooplankton groups (copepods and rotifers in our
case) can cause different nutrient limitation patterns
in phytoplankton communities. To obtain a wide
range of responses, we investigated the nutrient lim-
itation patterns in different phytoplankton communi-
ties arising from a common natural community, and
under different nutrient supply conditions.

MATERIALS AND METHODS

Experimental design

The experiment was performed in the laboratory
facilities of the European Institute for Marine Studies,
Plouzané, France, using 6 mesocosm tanks (350 l) at
constant temperature (~18°C), and 17 h light expo-
sure (60 µmol quanta m−2 s−1) with natural spectrum
fluorescence tubes.

The tanks were filled in late February 2010 with
1 µm filtered sea water. The natural phytoplankton
community of the Bay of Brest on the Atlantic coast of
Brittany, France, served as initial phytoplankton
community. To obtain a range of different phyto-
plankton communities, a different amount (10, 5, 1,
0.1, 0.01, 0.001 ml) of a Bay of Brest water sample
(250 µm pre-filte red) was added to each of the 6

mesocosm tanks. The intentionally introduced higher
level of environmental noise across the tanks allows
the ob servation of broad instead of community-
 specific res pon ses. Phytoplankton communities in
the tanks re  presented different combinations of spe-
cies originating from a single sample of the Bay of
Brest community and were therefore treated as repli-
cates. The tanks served as growth chambers for the
phytoplankton communities, as well as incubation
basins for the zooplankton experiments and nutrient
bioassays. To attain similar phytoplankton biomasses
before zooplankton inoculation, 4 wk of growth was
allowed. Aeration of the mesocosms was provided by
constant air bubbling.

To investigate nutrient limitation patterns of phyto-
plankton under different nutrient supply ratios, the
following nutrient fertilisation ratios were selected
(based on natural dissolved P concentrations): Red-
field conditions (16:1 N:P ratio with addition of
8 µmol l−1 N and 0.5 µmol l−1 P) for a balanced envi-
ronment, N excess conditions (48:1 N:P ratio with
addition of 24 µmol l−1 N and 0.5 µmol l−1 P) for a P-
depleted environment, and P excess conditions
(5:1 N:P ratio with addition of 8 µmol l−1 N and 1.5
µmol l−1 P) for a N-depleted environment (Fig. 1). N
was added as 1:1 molar solution of KNO3 and
(NH4)2SO4 and P was added as KH2PO4 solution. For
each nutrient supply condition, 3 bottles (800 ml) per
mesocosm tank were filled with tank water, fertilised
and incubated in the respective tanks. To ensure reli-
able handling of the manipulation procedure, sam-
ples for the 3 nutrient supply conditions were taken
out one after the other.

Two days after the initiation of phytoplankton
growth in the fertilised 800 ml bottles, copepods and
rotifers were each added to 1 bottle per nutrient con-
dition at similar concentrations (~200 µg zooplankton
carbon l−1). The third bottle served as the control
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Fig. 1. Experimental design: 3 differ-
ent N:P nutrient supply conditions
(16:1, 48:1, 5:1) were combined with
3 zooplankton treatments (control,
copepods, rotifers) using samples
from 6 tanks. Tanks were treated as
replicates. After 5 d zooplankton in-
cubation, the phytoplankton from
each experimental unit (n = 54) was
tested for nutrient limitation in a
bioassay experiment. Bioassays for
each treatment comprised no nutri-
ent addition (C), nitrogen addition
(+N), phosphorus addition (+P), and
combined nitrogen and phosphorus 

addition (+NP)
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without zooplankton (Fig. 1). For zooplankton treat-
ments, the copepod Acartia tonsa and the rotifer
 Bra chionus plicatilis were used, since both are well
established experimental zooplankton species. B. pli -
ca  tilis lives mainly in coastal waters and salt lakes
and was chosen for practical culturing reasons.
Rotifers were fed with a mixture of Rhodomonas sp.
and Dunaliella sp. and were washed over a 63 µm
gauze and put into filtered sea water before being
transferred into the experimental units. Numbers
were estimated by averaging 4 counts of 1 ml each.
Cope pods were hatched from eggs in filtered natural
sea water, fed with Rhodomonas sp. and cultured
until adult stages were reached. They were trans-
ferred into the experimental units by individual hand
picking after being kept for 1 night in fresh filtered
sea water without food algae. After zooplankton
addition, the bottles were incubated for 5 d in the
respective tanks, and subsequently sub-sampled for
stoichiometric analysis and nutrient limitation bio -
assay (Fig. 1). Altogether, the experiments consisted
of 54 experimental units with 9 factor combinations
(3 nutrient con ditions × 3 zooplankton treatments)
per tank (n = 6).

Sampling procedure

To ensure the elimination of rotifers and copepods
from the samples, the water from all 800 ml bottles
was filtered through a 63 µm mesh. For the determi-
nation of seston particulate organic carbon (POC), ni-
trogen (PN), and phosphorus (PP), 50 ml (for POC and
PN) and 20 ml (for PP) of the residual water was fil-
tered onto pre-combusted acid-washed glass fibre fil-
ters (GF/C, Whatman). POC and PN were measured
with a CHN-Elemental Analyzer (CE Instruments),
while PP was measured via a molybdate reaction
 following sulphuric acid digestion. To deter mine the
 elemental composition of the zooplankton species, 2 ×
10 adult Acartia tonsa and 2 × ~1000 Brachionus
 plicatilis were brought onto pre-combusted acid-
washed glass fibre filters, and analysed accordingly.

The next step in the experimental analysis was to
test the phytoplankton for potential nutrient limitation
in each of the 54 experimental units in a bioassay ex-
periment. For these bioassays, 4 × 20 ml of the filtered
water were filled into small sub-sample bottles (Fig.
1). In 3 of the sub-samples, the nutrients N, P, and a
combination containing N and P (NP) were added as
nutrient pulses (24 µmol l−1 N, 1.5 µmol l−1 P). One
sub-sample served as a control without nutrient addi-
tion. In all bioassays, chlorophyll fluorescence was

measured with an AquaPen-C AP-C 100 (Photon Sys-
tems Instruments) fluorometer at 455 nm excitation
wavelength. Integrated raw fluorescence served as
proxy for the chlorophyll a content. Measurements
were performed immediately after the addition of the
nutrient pulse (0 h) and subsequently at 2, 24, 48 and
72 h after the nutrient pulse (±30 min).

Calculations

To identify cases of nutrient limitation in each
bioassay, the slopes of linear regressions of chloro-
phyll a versus time (h) were calculated and tested for
significant differences between sub-samples with
nutrient addition (N, P, NP) and the control (5% level
1-sided t-test). The presence of significant differ-
ences were then classified either as no limitation (no
differences from control), P limitation (P or P + NP
different from control), N limitation (N or N + NP dif-
ferent from control), or co-limitation (NP or N + P +
NP different from control). Following Tamminen &
Andersen (2007), we used bootstrapping in our nutri-
ent limitation classification by the random selection
of slopes within factor combinations. Analyses of
variance (ANOVAs) were performed on the inte-
grated raw fluorescence data (as proxy for chloro-
phyll a content) to highlight significant differences
(p < 0.05) among tanks and experimental units.

RESULTS

Similar phytoplankton biomasses were observed in
the tanks after 4 wk of growth and remained in the
same order of magnitude among nutrient treatments
throughout the experimental duration (n = 18; chloro-
phyll a values among tanks over time, Kruskal-Wallis
ANOVA p = 0.344; starting chlorophyll a values
among the 3 nutrient approaches over all tanks,
Kruskal-Wallis ANOVA p = 0.505). The phytoplank-
ton communities in the tanks represented typical
phytoplankton communities that can be found in the
Bay of Brest (e.g. Del Amo et al. 1997) and were dom-
inated by diatoms (Nitzschia sp., Chaetoceros sp.)
and dinoflagellates (Gymnodinium sp.).

All 54 experimental units (800 ml bottles) were
 successfully analysed, and the respective type of nu-
trient limitation in phytoplankton communities could
be determined. All nutrient limitation assays were
analysed; 72 measurements (2 h measurement under
N excess conditions) of the total 1080 measurements
could not be performed due to technical  problems.
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Zooplankton effects on algal biomass

We observed significant differences between zoo-
plankton treatments averaged over all nutrient con-
ditions (2-way ANOVA p < 0.001), expressed as en -
hanced phytoplankton biomass in the copepod and
rotifer treatments after 5 d of incubation compared to
the control treatment without zooplankton (Fig. 2a).
The effect of the zooplankton was dependent on the

applied nutrient conditions (2-way ANOVA zoo ×
nutrient interaction p < 0.001). In the control as well
as in the rotifer treatments, the highest phytoplank-
ton biomass was found under P excess conditions. In
the copepod treatments, the Redfield nutrient condi-
tions promoted the highest phytoplankton biomass.

 Nutrient limitation assay results

In the bioassays, the highest growth rates (indicated
by the slopes in the nutrient limitation assays) were
reached under P excess conditions, and the lowest
growth rates were reached under Redfield conditions
(Fig. 3; same pattern for each zooplankton treatment,
not shown separately). A significant in crease in total
phytoplankton abundance related to the addition of
nutrients was determined in over 75% of all cases.
The biomass of phytoplankton communities in -
creased significantly in 76% of the control treatments,
in 80% of the copepod treatments, and in 87% of the
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not shown separately

Zooplankton              Bioassay nutrient limitation cases
treatment                 00               N                P               NP

Control                   23.9            19.6            25.9            30.7
Copepods              20.3            18.4            26.0            35.3
Rotifers                   13.1            23.7            19.0            44.2

Table 1. Frequencies (%) of nutrient limitation cases (1000
bootstrap probabilities) in zooplankton treatments averaged
over all nutrient conditions: no limitation (00), P limitation
(P), N limitation (N), NP co-limitation (NP). Highest frequen-

cies are highlighted in bold
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rotifer treatments (Table 1). The largest increase in
phytoplankton biomass occurred in the zooplankton
treatments as a result of combined NP addition, indi-
cating a prevalent NP co-limitation. Under Redfield
conditions, nutrient addition did not increase the
phytoplankton biomass in most cases (no limitation in
66% of cases in control, 38% in copepod and 61% in
rotifer treatments; Table 2). Under N excess condi-
tions, most cases in the control treatment were also
classified as not being nutrient limited, closely fol-
lowed by those classified as P limited. Under P excess
conditions, phytoplankton communities in the control
treatments were most frequently classified as NP co-
limited (38%) and P limited (36%). In the copepod
treatments, phytoplankton was classified as being NP
co-limited under P excess (46%) and P limited under
N excess conditions (37%). In the rotifer treatments,
phytoplankton was classified as NP co-limited under
P excess and N excess conditions (45% and 47%,
 respectively; Table 2).

Phytoplankton stoichiometry

In our experiments, mean C:N ratios of the phyto-
plankton biomass (control treatment without zoo-
plankton) ranged around 4.3 (average ratio of col-
umn 1 in Table 3). These C:N ratios were clearly

below the mean seston stoichiometry in marine and
freshwater environments described by Sterner et al.
(2008; ratio 8.3) and Redfield (1958; ratio 6.63). These
results indicate N excess conditions as prevalent
under all initial nutrient conditions (Redfield condi-
tions as well as N excess and P excess fertilisation).
Phytoplankton C:N ratios in the copepod treatments
(average 5.6; Table 3) were slightly higher (statisti-
cally not significant) than in the control treatments
and the biomass C:N ratio of the copepods (4.5;
Table 4). This discrepancy between the C:N ratios
may indicate that copepods draw an high amount of
N from the system into their bodies, resulting in
higher phytoplankton C:N ratios. In the rotifer treat-
ments, the phytoplankton C:N ratios were also
higher than in the control treatments (Table 3), also
indicating a significant use of N by rotifers. In the
rotifer treatments, the mismatch between the phyto-
plankton C:N ratio (average 5.6) and the rotifer C:N
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N:P supply                         Control                                                 Copepods                                                  Rotifers
condition          00            N            P           NP              00            N            P           NP               00            N            P            NP

5:1                     5.1        21.0        36.3        37.6              3.2        33.5        17.5        45.8               9.6        28.8        16.9         44.7
16:1                 65.6        15.1        16.5          2.9            37.6          8.2        21.1        33.2             60.6        14.3        11.7         13.4
48:1                 35.8          9.7        31.6        22.9            22.0        16.6        36.8        24.6             21.2        12.0        20.3         46.5

Table 2. Frequencies (%) of nutrient limitation cases (1000 bootstrap probabilities) in all zooplankton treatments under N:P
 nutrient supply conditions (5:1 P excess, 16:1 Redfield, 48:1 N excess): no limitation (00), P limitation (P), N limitation (N), 

NP co-limitation (NP). Highest frequencies are highlighted in bold

N:P supply                              Control                                                  Copepods                                               Rotifers
condition C:N C:P N:P C:N C:P N:P C:N C:P N:P

5:1 4.1 90.8 22.4 4.4 115.1 26.5 5.9 122.2a 19.9a

(±1.0) (±32.3) (±7.3) (±1.4) (±35.9) (±5.2) (±1.3) (±79.0) (±10.3)
16:1 3.6 94.6 31.2 6.1 96.8 16.7 5.2 86.7 16.0

(±1.4) (±25.4) (±15.6) (±1.7) (±20.2) (±4.9) (±2.2) (±13.9) (±5.9)
48:1 5.2 93.4 18.9 6.4 102.8 16.1 5.8 82.4 14.0

(±2.2) (±61.4) (±8.4) (±1.5) (±49.9) (±5.5) (±1.6) (±34.8) (±3.2)
an = 5

Table 3. Mean (± standard deviation) of phytoplankton biomass stoichiometric ratios (n = 6) of all zooplankton treatments in
different N:P nutrient supply conditions (5:1 P excess, 16:1 Redfield, 48:1 N excess). Bold numbers mark ratios significantly
 different from the Redfield  relationship (106:16:1), italic numbers indicate ratios significantly different (p < 0.05) from that of 

Sterner et al. (2008) (166:20:1)

Zooplankton           C:N                   C:P                   N:P

Copepods           4.5 (±0.3)       77.6 (±33.7)      17.6 (±8.7)
Rotifers               5.9 (±0.1)       103.2 (±6.7)      17.4 (±0.9)

Table 4. Mean (± standard deviation) of zooplankton stoich -
iometric ratios (n = 2)
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ratio (5.9; Table 4) was smaller than in the copepod
treatments.

In general, phytoplankton C:P ratios fitted Redfield
conditions, and were significantly below 300 under
all nutrient conditions, which indicates the absence
of severe P limitation at any time (Table 3). The C:P
ratios of copepods were lower than those of the
rotifers (77.6 to 103.2; Table 4). The phytoplankton
N:P ratios were similar to the 20:1 relationship found
by Sterner et al. (2008), and were in 3 cases signifi-
cantly higher than the Redfield 16:1 ratio (Table 3).
The N:P ratios of copepods were similar to those of
rotifers (17.6 to 17.4; Table 4), also matching with the
biomass N:P ratios of phytoplankton (Table 3).

DISCUSSION

In our experiments, we observed, on average, posi-
tive effects of zooplankton presence on total phyto-
plankton abundances compared to the control treat-
ments (Fig. 2). In general, higher phytoplankton
biomass may result from nutrient recycling or trophic
cascade effects of selective grazing and compen-
satory growth. Compensatory growth has been ob -
served in freshwater lakes with low zooplankton
densities, where grazing caused a significant in -
crease in the biomass of grazing resistant algae (e.g.
Sommer et al. 2001). Since we were not analysing the
grazing efficiency on different phytoplankton spe-
cies, we cannot verify this hypothesis. A trophic cas-
cade effect was also considered to be responsible for
higher phytoplankton abundances in a mesocosm
study with North Atlantic phytoplankton (Sommer et
al. 2004). Since copepods fed on ciliates and released
nanophytoplankton from microzooplankton grazing
pressure, total phytoplankton increased in biomass.
This mechanism cannot be excluded for our experi-
ments, since large ciliates (>100 µm with abundances
<1 ml−1) were occasionally present, but may not
apply for the rotifer treatments. Although rotifers
may feed on small ciliates (<60 µm, Gilbert & Jack
1993), the upper natural limit of their food size is de-
termined by body size, and therefore would not in-
clude ciliates larger than 100 µm. In addition, the
abundance of rotifers in our experiments greatly ex-
ceeded that of ciliates (by a factor of 150). The release
of phytoplankton from the relatively low grazing
pressure of ciliates through rotifers would thus not
suggest a considerable effect on the phytoplankton
biomass. Therefore, we exclude a trophic cascade
 effect involving ciliates in the rotifer treatments. Al-
ternatively, an effect of compensatory growth could

be related to bacterioplankton. If roti fers focus on
bacteria as food, phytoplankton could increase due to
reduced grazing pressure, nutrient recycling of P-
rich bacterial food and less competition for nutrients.

Similar to the rotifer treatments, the copepod treat-
ments showed an increase in phytoplankton biomass
compared to the control treatments. Copepod graz-
ing on bacterioplankton and ciliates, which were as
equally low in abundance as in the rotifer treatments,
may have had a minor compensatory effect on the
total phytoplankton abundance in our experiments.
A more probable link in trophic cascades could
involve heterotrophic dinoflagellates, which have
been found to be high quality food for copepods
(Chen & Liu 2011). Since dinoflagellates were abun-
dant in our phytoplankton communities, their selec-
tive removal by copepods could release diatoms from
grazing pressure. However, since different effects in
different nutrient supply conditions were observed in
our experiments (Fig. 2), mechanisms other than
trophic cascades must have played a role in stimulat-
ing phytoplankton growth.

Another process that may have promoted phyto-
plankton growth in the zooplankton treatments is the
supply of trace metals through zooplankton excre-
tions. Although the input of trace metals in coastal
areas might be high, iron was found to limit phyto-
plankton growth even in nutrient-rich upwelling
regions (Fe up to 3 nmol l−1, Hutchins & Bruland
1998). It is known that zooplankton release trace
metals (Fowler 1977, Masuzawa et al. 1988) that
stimulate phytoplankton growth (Coale et al. 1996,
Boyd et al. 2000). For example, Sarthou et al. (2008)
showed that copepod grazing has a significant influ-
ence on iron recycling, and hence its residence time
in the water, and in turn, on phytoplankton produc-
tivity. However, it is doubtful that concentrations up
to 100 nmol l−1 total dissolved iron, as in the Bay of
Brest (Laes et al. 2005), are still limiting primary pro-
ductivity. Nevertheless, trace metals also appear to
influence the uptake and assimilation of macronutri-
ents in phytoplankton (Wu et al. 2000, Wang & Dei
2001, Wang 2002). Therefore, the release of trace
metals other than iron in the zooplankton treatments
through nutrient recycling could have supported
phytoplankton biomass growth, by promoting the
assimilation of the required macronutrients N and P.
As phytoplankton biomass almost doubled under
some nutrient conditions in the zooplankton treat-
ments, an increased nutrient use efficiency is possi-
ble since under zooplankton grazing only a fraction
of digested nutrients is excreted and made available
for the build-up of new phytoplankton biomass.

89



Mar Ecol Prog Ser 449: 83–94, 2012

The most prominent result of our experiments was
that highest total phytoplankton abundances were
observed in zooplankton treatments and differed
among nutrient supply conditions. This can only be
explained if consumer-driven nutrient recycling
comes into consideration as a driving factor for the
different total phytoplankton abundances, since
effects of trophic cascades or micronutrient release
should be comparable under all nutrient conditions.
The results indicate better phytoplankton fertilisa-
tion by nutrient recycling under N-enriched condi-
tions in the copepod treatments, and under P-
enriched conditions in the rotifer treatments (Fig. 2).
Differences become apparent when comparing N ex -
cess with P excess conditions: phytoplankton bio-
masses in the copepod treatments significantly
exceeded those in the rotifer treatments under N
excess (Fig. 2), and vice versa under P excess. These
results can only be explained by differences in con-
sumer-driven nutrient recycling, with respect to
growth rate differences of the 2 zooplankton groups.
Since copepods have a lower growth rate compared
to rotifers (Allan 1976), they should require less P and
excrete more P. Thus, under N-rich conditions,
P scarcity could be compensated by the P-rich ex -
cretions of copepods, consequently stimulating
phytoplankton growth and biomass accumulation.
P ex cretion of a copepod-dominated zooplankton
community has been estimated to account for 15 to
20% of the primary production requirements in the
north-western Mediterranean Sea, with seasonal
peaks up to 90% (Gaudy et al. 2003). Increased P
release by herbivorous zooplankton was also sug-
gested as a reason for increased primary productivity
by model results published by Nugraha et al. (2010).
Interestingly, nutrient limitation assays show P limi-
tation of phytoplankton under N excess conditions
(Table 2), which is not evident by the stoichiometry of
103:16:1 (Table 3) and may be related to higher
growth rates under N excess than under Redfield
conditions (Fig. 3). In contrast to the copepod treat-
ments, phytoplankton in the rotifer treatments
reached the highest biomass and growth under P ex -
cess conditions (Fig. 2d). Rotifers have higher growth
rates than copepods (Allan 1976) and an accordingly
higher P demand. Therefore, rotifer excretions con-
tain low P concentrations (high N:P ratio) and thus do
not stimulate phytoplankton growth in systems with
P scarcity (N excess) but do it under N scarcity. As
observed in our experiments, the relatively higher N
concentrations in rotifer excretions seem to have
stimulated phytoplankton growth and biomass accu-
mulation under P excess conditions (Fig. 2d).

Under P excess conditions, rotifer biomass may also
have influenced nutrient recycling. Rothhaupt (1995)
found that Brachionus rubens reached highest bio-
mass under non P-limited food conditions, while
growth rates declined with P-limited food. In our
experiments, there is no indication of severe nutrient
limitation from phytoplankton N:P stoichiometry
(Table 3). However, since we did not monitor the
rotifer biomass after the start of the experiments, it is
not possible to estimate the excess of P supply
through higher rotifer biomass or the amount of P
withdrawal through higher growth rates. Neverthe-
less, we observed that P availability did play a signif-
icant role in our experiments, since the responses of
phytoplankton in the nutrient limitation assays were
highest under P excess conditions (Fig. 3; same pat-
tern for each zooplankton treatment, not shown).

Nutrient limitation patterns

The results of nutrient limitation bioassays indicate
NP co-limitation of phytoplankton in the zooplankton
treatments for all conditions other than Redfield
 (Tables 1 & 2). Averaged over all nutrient conditions,
the control treatments showed no clear dominance of
any limitation type; all frequencies ranged between
20% and 30% (Table 1). This indicates that zooplank-
ton in general increased the phytoplankton NP co-
limitation and that the macronutrients N and P had a
synergistic effect on the phytoplankton communities.

Nutrient limitation patterns for marine phytoplank-
ton are known to be heterogeneous and may change
over time (e.g. Karl et al. 2001b), and phytoplankton
appears to be less affected by nutrient limitation in
marine than in freshwater environments (Hecky &
Kilham 1988). In open oceans, phytoplankton growth
is predominantly P limited (Karl 1999, Wu et al. 2000,
Hannides et al. 2009, Weber & Deutsch 2010), where -
as in coastal areas, it is mainly N limited (Ryther &
Dunstan 1971, Beman et al. 2005) or subject to sea-
sonally changing nutrient limitation (Delmas et al.
1983, Fisher et al. 1992, Del Amo et al. 1997). How-
ever, metadata analyses have revealed combined NP
co-limitation as the most abundant nutrient limitation
type in both terrestrial and aquatic environments
(Elser et al. 1990, 2007, Harpole et al. 2011). These
studies imply that combined NP addition has the
highest synergistic effects on phytoplankton growth,
which coincides with our findings and seems espe-
cially promoted by zooplankton.

Besides the dominance of NP co-limitation in our
study, the data showed trends of increasing P limita-
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tion in the copepod treatments and decreasing N
limi tation in the rotifer treatments with increasing N
supply ratio (Table 2). Single nutrient limitation was
only found in 1 case (P limitation in copepod treat-
ments under N excess; Table 2). The nutrient limita-
tion patterns of phytoplankton influenced by zoo-
plankton nutrient recycling are dependent on
zooplankton densities and incubation time. Com-
pared to other mesocosm experiments (Sommer et al.
2001, 2004), the zooplankton densities employed in
our experiment fall within the lower range. Higher
zooplankton densities would certainly increase the
nutrient recycling effect, and force phytoplankton
into single nutrient limitation more quickly.

Concerning the incubation time, the increased
phytoplankton biomass in the zooplankton treat-
ments indicates a significant influence of zooplank-
ton during the 5 d incubation. In coastal pelagic envi-
ronments such as the Bay of Biscay, high temporal
and spatial small-scale variability of plankton is
 commonly observed (e.g. Koutsikopoulos & LeCann
1996). Our applied incubation time of 5 d without dis-
turbance is already an optimistic value for the inves-
tigation of ecologically reasonable short-term effects
of zooplankton on phytoplankton growth.

Another reason for the few cases of single nutrient
limitation of phytoplankton in the presence of zoo-
plankton may be related to the similar phytoplankton
stoichiometry under all applied nutrient conditions.
Phytoplankton biomass N:P ratios showed a conserv-
ative relationship compared to the initial N:P supply
conditions (Table 3). Despite the range of fertilisation
from 5:1 to 48:1 dissolved N:P, phytoplankton bio-
mass N:P ratios did not reflect these nutrient condi-
tions. The stoichiometry of our phytoplankton com-
munities differed from the classical Redfield ratio,
and were more similar to the findings of Sterner et al.
(2008; our Table 3), who observed an average N:P
ratio of 20:1 in particulate matter from a variety of
aquatic environments. In terms of nutrient limitation,
these stoichiometric ratios do not indicate severe sin-
gle nutrient limitation, fitting the overall NP co-limi-
tation pattern of our bioassays, and only tend towards
weak P limitation of the phytoplankton community.
Studies investigating seston C:N:P ratios have indi-
cated that nutrient limitation seems less pronounced,
and biomass carbon to nutrient stoichiometry less
variable in marine than in freshwater seston (Hecky
et al. 1993, Sterner et al. 2008). The biomass N:P
ratios of marine phytoplankton cultures can range
from <3:1 to >45:1 under extremely nutrient limiting
conditions only, while natural marine particulate
matter N:P ratios seem to be far less variable (Geider

& La Roche 2002). According to Geider & La Roche
(2002) and Guildford & Hecky (2000), critical ratios of
dissolved N and P for nutrient limitation in phyto-
plankton growth are found below 10 and above 22
N:P. Model predictions indicate that, depending on
ecological conditions, variations in phytoplankton
biomass N:P ratios in a range of 8 to 45 may be inter-
preted as optimal growth conditions (Klausmeier et
al. 2004b). Our results seem to support the predicted
modelled ranges, and show that marine phytoplank-
ton seem to be mainly NP co-limited in ranges
between 5 and 48 N:P.

Besides dissolved nutrient availability, factors that
affect the stoichiometric N:P composition of marine
phytoplankton include growth rates (Klausmeier et
al. 2004a) and genetic disposition (Quigg et al. 2003).
Highly taxon-specific biochemical requirements are
reflected in the N:P ratios of phytoplankton biomass
(Rhee & Gotham 1980, Hecky & Kilham 1988, Geider
& La Roche 2002, Quigg et al. 2003, Lagus et al. 2004),
and influence the dissolved nutrient distribution in
the oceans (Weber & Deutsch 2010). Experiments
have shown that the phytoplankton N:P ratio de-
creases with increasing growth rate (Goldman et al.
1979). Models suggest that under high growth rates,
phytoplankton assimilate nutrients in the ratio they
require, while changes in the phytoplankton N:P ratio
may only occur after a threshold in dissol ved N and P
availability is exceeded (Klausmeier et al. 2004a).

Another possible way in which stoichiometric
ratios and nutrient limitation patterns of phytoplank-
ton might be influenced concerns bacterioplankton.
By competing for dissolved nutrients and changing
the relative availability of nutrients, bacteria can
 promote nutrient limitation of autotrophs (Cherif &
Loreau 2009). Under certain circumstances, the influ-
ence of bacteria can cause changes in phytoplankton
stoichiometry. Danger et al. (2007) have shown that
in high N:P growth media (>95:1), bacteria contri -
bute to high C:N ratios in phytoplankton biomass and
promote P limitation in phytoplankton growth. Since
our plankton communities also contained the natural
bacterial populations, their potential influences on
the observed limitation patterns cannot be excluded.
Since we neither applied very high N:P conditions
nor used high zooplankton densities, the obtained
results should include only the natural and not an
artificially promoted influence of bacteria on the
phytoplankton community. The more or less homo -
genous stoichiometric ratios of the phytoplankton
communities over all applied nutrient conditions
(with or without zooplankton) may suggest that a
process smoothened potential stoichiometric differ-
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ences between the different N:P conditions (Table 3).
This process may be related to bacterioplankton
nutrient competition and nutrient recycling.

We conclude that zooplankton exerts most influ-
ence on the nutrient limitation patterns in our exper-
iment by nutrient recycling, leading to NP co-limita-
tion in phytoplankton communities. Trophic cascade
effects including bacteria and dinoflagellates could
have amplified the observed differences in total
phytoplankton biomass between treatments. Nutri-
ent recycling by bacterioplankton and the genetic
disposition of phytoplankton may be responsible for
the homogeneous phytoplankton stoichiometry over
all applied nutrient conditions.

Implications

Our findings suggest a strong impact of herbivo-
rous zooplankton on phytoplankton productivity and
biomass even at low zooplankton densities. In rela-
tively nutrient-rich environments, such as our meso-
cosm experiments or in coastal areas (Elser et al.
1990, 2007), the nutrient recycling of zooplankton
seems to lead to nutrient co-limitation patterns. How-
ever, this might not be valid in extreme nutrient-poor
marine regions, such as subtropical gyres, which oc -
cupy approximately 40% of the earth’s surface (Polo -
vina et al. 2008). In such ecosystems, the near-surface
concentrations of below 100 nmol for both inorganic
N and P in the euphotic zones (Karl 1999, Karl et al.
2001a) indicate that phytoplankton growth is
severely nutrient limited (e.g. Wu et al. 2000, Karl et
al. 2001b, Moutin et al. 2005), with zooplankton hav-
ing a measurable influence on nutrient availability
(e.g. Corner & Davies 1971, LeBorgne 1982, Stein-
berg et al. 2002, Hannides et al. 2009). Therefore, in
nutrient-poor marine regions, zooplankton might
drive phytoplankton communities into single nutrient
limitation, rather than nutrient co-limitation. For
example, Hannides et al. (2009) showed that the
active export of P from the euphotic zone by excre-
tions of migrant zooplankton has the same magni-
tude as the passive export of P through the settle-
ment of particles in the North Pacific Gyre. The same
effect of P removal appears to hold for fish: their high
demands for P can influence nutrient dynamics even
in nutrient-rich regions (Hjerne & Hansson 2002) and
may influence nutrient limitation patterns for phyto-
plankton through storage of P, mostly in fish bones,
and low P recycling (Czamanski et al. 2011). Thus,
active P removal from other trophic levels would cer-
tainly aggravate P scarcity and limitation of phyto-

plankton communities, and influence primary pro-
duction. To begin with, further experimental investi-
gations should include the effects of zooplankton on
nutrient limitation patterns in nutrient-poor environ-
ments to obtain more insights into the influence of
zooplankton nutrient recycling on phytoplankton
communities.
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