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Abstract 

 

Collision Induced Dissociation tandem mass spectrometry experiments were performed to 

unequivocally separate compounds from an isobaric mixture of two products. The Survival Yield 

curve was obtained and, is shown to consist in a linear combination of the curves corresponding 

to the two components separately. For such a mixture, a plateau appears on the diagram in lieu of 

the continuous decrease expected allowing for the structural study of the two components 

separately. The width of the plateau critically relates to the fragmentation parameters of the two 

molecular ions, which need to be structurally sufficiently different for the plateau to be observed. 

However, at constant fragmentation parameters, we have observed the width significantly 

increases at large m/z. This makes the separation more and more efficient as isobars have larger 

m/z and the technique complementary to those applicable at low m/z only. We have observed the 

vertical position of the plateau relates linearly to the relative concentration of the two compounds 

that may be useful for quantification. Repeatability was estimated at 2% on a quadrupole ion 

trap. An advantage of using Survival Yield curves only, is that a priori knowledge of the 

respective fragmentation patterns of the two isobars becomes unnecessary. Consequently, similar 

performances are obtained if fragments are isobaric, which is also demonstrated in our study. 

The critical case of reverse peptides, at low m/z and similar fragmentation parameters, is also 

presented as a limitation of the method.  
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Introduction. 

 

There is a growing demand on mass spectrometric techniques for high-throughput 

analysis, to perform more reliably and provide more information on increasingly complex 

samples: the analysis of compounds in biological samples[1], in the field of petroleomics[2,3], to 

study isomers[4,5] or simply for separating unresolved peaks due to technical limitations[6]. 

With this respect, the identification and quantification of isobars remain challenging tasks for 

mass spectroscopists. The identification and, possibly, elimination of an isobar becomes essential 

in order to perform the structural analysis, ultimately to quantify, a compound of interest. This 

may require a tedious preparative work, coupling with chromatographic separation techniques or 

more recently ion mobility spectrometry, possibly combined with complex procedures[7,8]. 

Simpler and faster alternative consists in using Collision Induced Dissociation tandem mass 

spectrometry experiments combined with the kinetic method. Using this technique, mixtures of 

chiral or isomeric peptides may bind to transition metals allowing for quantitative analysis[9,10]. 

This is, however, limited to low mass compounds. A number of techniques utilizing branching 

ratios of product ions were also developed[6,11,12]. Alternatively, MS/MS spectra obtained at 

“low” and at “high” collision energies may be used to make this structural analysis. The latter 

procedures rely on the fact that fragment ions of the two isobars are formed at different collision 

energies according to differences in the structures of the isobaric components. More precisely 

different fragmentation parameters (activation energy and entropy) may be associated to the 

formation of fragment ions due to differences in the nature of the fragmentation or dissociation 

processes. However, when monitoring branching ratios, one needs to have an a priori knowledge 

of MS/MS spectra for both isobars. Moreover, in the case fragment ions are also isobaric, tandem 

MS technique does not allow even for the qualitative identification of the presence of two 

components. In this paper we present a simple MS/MS based method, using the Survival Yield 
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technique, to overcome these issues. This allows for qualitative identification of the mixture even 

when fragments are also isobars without a priori knowledge of fragment ions. MS/MS spectra for 

two isobaric homopolymers obtained at relatively large polymerization degree are presented both 

separately and in mixtures. The main features observed are discussed in details, in particular 

which structural information can be obtained for both components from this procedure. The 

possibility for quantitative analysis is presented as well as the performance of the method and 

how it is affected by mass to charge ratio. Finally, a critical case consisting of two reverse 

peptides is also discussed in details. 

 

Experimental. 

 

Chemicals 

 

Samples of synthetic polymers poly(lactic acid) –PLA, HO-(C3H4O2)n-H– and 

poly(tetramethylene glycols) –PTMEG, Terathane® or PTHF for poly(tetrahydrofuran), HO-

(C4H8O)n-H– both with number-average molecular weight 1000 g/mol were used. PTMEG was 

purchased from Sigma-Aldrich and PLA was kindly provided by J. De Winter (Mass 

Spectrometry Research Group of UMONS, Mons, Belgium). Peptides with inverted sequences 

H-(SDGRGAF)-NH2 (reverse 1) and H-(FAGRGDS)-NH2 (reverse 2) were synthesized in our 

lab (Nanobio Platform). They were assembled on an ABI433 peptides synthesizer following 

Fmoc strategy. The following side chain protected amino acids were used: Ser(tBu); Arg(pbf) 

and Asp(tBu). Rink Amide resin, loaded to 0.79 mmol/g, was used. Synthesis were performed on 

a 0.1 mmol scale using 10 equivalents aminoacids dissolved in 2 mL NMP, 9.5 equivalents 

HBTU and 20 equivalents DIEA. Deprotection was performed by a NMP/piperidine (4:1) 

solution and monitored by UV. Final deprotection was achieved by shaking resin in 50 mL 
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TFA/H2O/TIS (95:2.5:2.5) during 2 hours. Deprotection solution was evaporated to dryness and 

the resulting oily residue was precipitated in Et2O (40 mL) and centrifuged. White precipitate 

was washed by Et2O (3 x 30 mL). Crude mixture was purified by RP-HPLC on a Gilson GX-281 

apparatus. Eluent A is a 0.1% TFA solution and eluent B is 0.1% TFA solution in MeCN/H2O 

(9:1). Peptide reverse 1 was separated from small amount of -branched peptide resulting from 

aspartimide formation using the following gradient: 10% of eluent B for 2 minutes, followed by 

10% to 40% in 15 minutes. Reverse 1 peptide was isolated at 10.94 min and base-to-base 

resolved from its main impurity (tR=11.30 min). Peptide reverse 2 was purified using the 

following gradient: 0% of eluent B for 2 minutes, followed by 0% to 100% in 15 minutes. 

Peptide was isolated at 8.60 min. Fractions were gathered and lyophilized to afford white powder 

in ca. 60% yield. 

 

ESI quadrupole ion trap MS/MS experiments 

 

The experiments were performed on a Bruker Esquire 3000plus ion trap mass 

spectrometer. Samples of synthetic polymers were dissolved in pure MeOH at 5.10
-5

M, LiCl was 

added at 10
-5

M. Peptides were dissolved in water/acetonitrile 1:1 with 0.1% formic acid to 

generate protonated signal. The settings of the instrument were the following: capillary voltage 2 

kV; nitrogen nebulizer pressure 11 psi; nitrogen dry gas flow 5 L/min; dry gas temperature 

300°C; He collision gas was used at an average pressure in the ion trap of 1.25×10
-5

 mbar 

(uncorrected gauge reading). The number of trapped ions was approximately 10,000 and was 

kept constant by using the ion charge control (ICC) option throughout all measurements. 

Isolation was performed using a 0.8 Th window and followed immediately by a 50 ms cooling 

period (fragmentation delay). Molecular ions were fragmented by applying an excitation voltage 

during 100 ms (fragmentation time) over a 10 Th mass to charge window (fragmentation width). 
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SmartFrag option was turned off and the 27% default mass cut-off was applied. Recorded mass 

spectra were analyzed using Data Analysis 3.3 software (Bruker Daltonics, Bremen, Germany). 

During tandem MS (MS/MS) experiments, one minute acquisition was performed at each 

excitation voltage. For an improved statistic and repeatability, data are further summed up over 

the last 30 seconds of the acquisition stage in order to generate a MS/MS spectrum from which 

peaks intensities can be further extracted. For accurate quantitative analysis the duration of 

acquisition may be increased and data summed up over a minute or more in order to reduce error 

bars. 

 

Results and discussions. 

 

MS/MS spectra of lithium cationized PLA and PTMEG and of their mixture 

 

We have performed tandem mass spectrometric analysis of lithium cationized PLA and 

PTMEG homopolymers, both separately and in mixtures. These homopolymers have different 

structures but monomers are essentially isobaric. Our analysis was performed with degree of 

polymerization varying from 14 up to 23. The corresponding m/z range goes approximately from 

m/z 1000 up to m/z 1700, and has been selected to avoid overlapping of multiply charged ions 

distributions, which would complicate the picture, and to assess the technique on large mass to 

charge ratio. In Fig.1 tandem mass spectra were obtained at two excitation voltages: at 0.8 Volt 

(spectra d, e and f) and at 1.3 Volt (spectra a, b and c). They were obtained for pure 

homopolymers, [PLA23+Li]
+ 

(spectra a and d) and [PTMEG23+Li]
+
 (spectra c and f), and for a 

5:1 mixture of PLA/PTMEG (spectra b and e). A 5:1 ratio was found more suitable for 

illustrative purposes; a detailed analysis of this aspect is presented in the following section 

discussing quantitative information. For convenience, and without loss of information, those 
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spectra are presented on the same mass range going from m/z 1350 up to m/z 1700; spectrum for 

[PLA23+Li]
+ 

is flat outside this m/z range and the same series of peaks for [PTMEG23+Li]
+ 

extend down to approximately m/z 1000 from which fragment ions are minor. Spectra a and c 

clearly exhibit similarities: indeed, the same series of peaks regularly spaced by 72 Th from 

molecular ions peak is observed, although peaks intensities from [PLA23+Li]
+ 

tend to decrease at 

low m/z. One also notices an additional series present in the MS/MS spectrum of 

[PTMEG23+Li]
+ 

that is actually missing for [PLA23+Li]
+ 

and is shifted from the aforementioned 

series by -18 Th (for detailed discussions of fragmentation mechanisms and MS/MS spectra 

interpretations, one may refer to recent publications[13,14]). However, in the case of a mixture 

of PTMEG samples with PLA, which we may refer to as contamination throughout the 

discussion, visual inspection is not sufficient to distinguish between fragment ions (spectrum b in 

Fig.1). Clearly, in spite of their structural differences, tandem mass spectra of this mixture of 

homopolymers does not allow even for a qualitative identification of contamination. At this 

point, it is important to note the large difference in the degree of fragmentation achieved between 

the two homopolymers at the same excitation voltage: at 0.8 Volt almost the whole population of 

[PLA23+Li]
+ 

molecular ions have already fragmented (spectrum d), when on contrary tandem 

mass spectrum f of [PTMEG23+Li]
+ 

does not exhibit a single fragment ion. This striking 

difference suggests the fragmentation parameters (activation energy and entropy) are 

significantly different and that these homopolymers may be separated according to this criterion. 
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Fig. 1: MS/MS spectra for [PLA23+Li]
+ 

(spectra a and d), [PTMEG23+Li]
+ 

(spectra c and f) and a 

5:1 mixture (spectra b and e), obtained at 0.8 Volt (spectra d, e and f) and 1.3 Volt (spectra a, b 

and c) excitation voltages. 

 

Structural analysis of isobaric compounds in a mixture using the Survival Yield technique 

 

The Survival Yield technique uses Survival Yield (SY) ratio which is a convenient 

quantitative measure of the fragmentation degree that is defined according to:  

 M

M F

I
SY

I I



 (1) 

where IF stands for the intensities of fragment ions peaks and IM for the molecular ions peak 

intensity. Using this definition, one may record and plot the value of this ratio as a function of 
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the excitation voltage: this leads to the SY curve. This technique has already been used in 

fundamental studies[15,16,17,18] but also to discriminate molecular ions according to their 

structures[19,20,21]. When doing so in the same experimental conditions for both homopolymers 

separately and for a mixture of 5:1 (PLA/PTMEG), one obtains the curves displayed in Fig.2. In 

the case of a pure homopolymer, the SY curve has the shape of a sigmoid starting from 1 at low 

excitation voltages (no fragment ions observed) decreasing continuously to zero at higher 

excitation voltages (no molecular ions remain). An important point is that, at the same molecular 

ion mass, the SY curve obtained for lithium cationized PTMEG is shifted to much higher 

excitation voltages as compared to the one obtained for PLA. This is in agreement with our 

recent observation that polyethers do fragment at significantly higher excitation voltages as 

compared with polyesters[19]. On contrary, the SY curve obtained for a mixture of the two 

samples exhibits a plateau in place of the continuous decrease with the excitation voltage. After 

the [PLA23+Li]
+ 

component has fully fragmented to form fragment ions (at approximately 0.8 

Volt according to the curve obtained for pure [PLA23+Li]
+
), only lithium cationized PTMEG 

molecular ions remain and do not fragment until a 1 Volt excitation voltage is applied. 

Consequently, from 0.8 up to 1 Volt the excitation process does not lead to the formation of 

additional fragments and the ratio expressed in equation 1 remains constant on that range of 

excitation voltages. Starting from 1 Volt, the SY ratio starts to decrease again as [PTMEG23+Li]
+ 

is fragmenting, to finally reach zero value at high excitation voltages (complete fragmentation of 

both cationized homopolymers). 
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Fig. 2: Survival Yield curves for [PLA23+Li]
+ 

(filled squares with dotted line) and 

[PTMEG23+Li]
+ 

(filled triangles with dotted line) and a 5:1 mixture of [PLA23+Li]
+
/ 

[PTMEG23+Li]
+ 

(filled stars with dot dashed line). 

 

Following this reasoning three regimes can be identified: a “low excitation regime” with 

spectra obtained at excitation voltages lower than 0.8V, an “intermediate excitation regime” that 

consists in a plateau (from 0.8 up to 1V) and, a “high excitation regime” corresponding to the 

second decrease of the SY curve from 1 up to 1.4V. Combining this nomenclature with previous 

qualitative arguments, the content of structural information of tandem MS spectra obtained at 

each regime may now be discussed in more details. Fragment ions that are formed at the low and 

at the intermediate excitation regimes are obviously produced by the first component only, that is 

[PLA23+Li].
+ 

Hence, MS/MS spectra are characteristic of this isobar only and, by doing mass-
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selection of fragment ions obtained at voltages lower than 1 Volt, multistage mass spectrometry 

can be performed on this component only, avoiding isobaric contamination and ambiguous 

structural analysis. Complementarily, molecular ions surviving the excitation process at the 

intermediate and at the high excitation regimes are clearly of the second type, that is 

[PTMEG23+Li].
+
 This is obviously the case as the whole population of molecular ions of the first 

component has been discarded from the MS/MS spectrum through fragmentation. Similarly, a 

second isolation stage of molecular ions may then be performed to study the structure of the 

second component as if there were no isobaric contaminant. Clearly, using this technique 

separation and structural analysis of isobars can be performed using multistage mass 

spectrometric experiments only. Results are clearly unequivocal and do not depend on the a 

priori knowledge of the SY curves of pure analytes. However, the presented strategies critically 

rely on the identification of a plateau that enables to clearly distinguish between excitation 

regimes. 

 

Quantification of contaminant and tandem mass spectra correction 

 

An important feature is that at the intermediate regime one simultaneously observes 

fragment ions of the first component and molecular ions of the second. Therefore, after an 

excitation voltage corresponding to this regime has been applied, between 0.8 and 1 Volt in our 

case, the two isobars are completely separated. By reckoning the ratio of molecular ions peak 

intensity over the sum of fragment ions peaks intensities (more rigorously, the value of the SY 

ratio normalized to its maximum value, which is simply unity), one would thus expect the 

relative proportion of the two components to be unambiguously determined. To assess this 

anticipation, mixtures of PLA/PTMEG with ratio 1:1, 3:1, 5:1, 7:1, 8:1, 9:1 and 11:1 were 

prepared and, the corresponding SY curves measured to be compared with SY curves for pure 
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oligomers (ratio 1:0 and 0:1). Results are presented in Fig.3. Clearly, increasing the quantity of 

PLA relative to PTMEG leads to a shift of the plateau to lower values of the SY ratio, which 

feature does agree with our previous understanding of the SY curve behaviour. Furthermore, this 

qualitative finding can be supplemented by quantitative estimations: the inverse of SY ratio can 

be linearly related with the ratio of the two components (inset of Fig.3) with very good 

approximation. The correlation coefficient R
2
 was found to be 0.983 if the curve was enforced to 

go through (0;1) and R
2
=0.992 with a standard deviation of 0.041 when the intercept was 

allowed to vary (in such case the curve goes through y=0.94 in place of 1). The value of the 

intercept corresponds to the position of the SY curve in the absence of the first contaminant (that 

is for a sample of pure PTMEG), it is thus a good sign as it goes smoothly through this value. 

The same linearity would be obtained by plotting the SY ratio as a function of PTMEG/PLA 

ratio (in place of PLA/PTMEG), since the position of the plateau (brutto value) corresponds to 

the amount of the second component (PTMEG) relative to the amount of the first component 

(PLA). One may also note there is not a one to one correspondence between the SY ratio at the 

plateau and the PLA/PTMEG quantities introduced in the mass spectrometer. For example, when 

a 1:1 mixture of PLA/PTMEG was analyzed, the SY ratio determined was close to 0.92. The 

slope of the linear fit with intercept (0;1) is 0.164, when one would appreciate to have unity for 

straight quantitative analysis. Obviously differences in the lithium cation affinity, in the 

ionization or isolation efficiency or in the excitation efficiency (theoretically, there is 0.2 Th 

difference between these two isobars) may be responsible for this discrepancy. Moreover, 

controlling the initial concentration for single oligomers is not feasible as the concentration 

reflects only the number-average molecular weight of the polymer mass distribution not the one 

of a single oligomer. In spite of all these complications, we still observe a linear tendency that is 

very encouraging, and allows for using this methodology for quantitative purposes using e.g. the 

standard addition method or a priori calibration. In order for these observations to be more 
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practical, one may use the following strategy: at first, the compound of interest must be studied 

by means of drawing SY curve for the existence of a plateau to be evidenced. This demonstrates 

the isobaric contamination. Then, MS/MS spectra must be acquired at a single voltage 

corresponding to the intermediate regime (at the plateau) for different concentrations of the 

analyte or of the contaminant. The monitoring of the SY ratio at this unique excitation voltage at 

different concentrations, allows for drawing a titration curve as presented in the inset of Fig.3. 

This way, the drawing of multiple SY curves, which is rather time-consuming, is avoided and 

quantification can be quickly obtained following an experimental sequence similar to the 

standard addition method. 

 

Fig. 3: SY curves for PLA/PTMEG mixtures at relative concentrations 0:1, 1:1, 5:1, 8:1 and 1:0, 

in the same experimental conditions. The inset shows the correlation between the inverse of the 
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SY ratio at the plateau (R) and the ratio PLA/PTMEG from sample preparation 0:1, 1:1, 5:1, 7:1, 

8:1, 9:1 and 11:1. 

 

For quantitative purposes, it is important to have an evaluation of the performance of the 

proposed methodology. To this end, we have performed stability as well as a repeatability 

analysis of tandem MS spectra acquired for the mixture at an excitation voltage of 0.9 Volt (at 

the middle of the plateau). The same spectrum has been recorded separately 10 times 

successively in the same experimental conditions and following the same methodology 

(acquisition and data treatment methods) on three different days. From the combination of these 

stability and repeatability analysis, we obtained at most 2% deviation from the average value. 

Using this quantitative estimate, one may try recovering “pure” MS/MS spectra for both 

homopolymers at any excitation voltages using information obtained at the intermediate 

excitation regime. We have observed that, by applying simple spectral subtraction using Eqs. S-1 

or S-2 according to the excitation regime (see Supplementary Material), corrected SY curves 

compare very well to SY curves for pure analytes. Those results must be combined with the fact 

that the position of the plateau scales linearly with the relative quantities of the two components 

(see above). By doing so, SY curve of the mixture can be considered as a linear combination of 

the curves of the two analytes along the y-axis, while it is not sensitive to contamination along x-

axis. Simply, the nature and quantity of molecular ions do not affect the fragmentation energetic 

behaviour of the other isobaric compounds and, at constant experimental conditions, the shape 

and position of the SY curve characterize the compound. However, details of MS/MS spectra, 

more precisely peaks relative intensities, are significantly different. The latter results 

demonstrate consecutive fragmentations constitute an important part of the fragmentation 

processes in our experimental conditions. Details of this part of the study, containing graphs and 

formulas, are presented in the Supplementary Material.   
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Size effect on the separation power 

 

The technique presented requires that isobars fragment at different excitation voltages. In 

other terms, parameters associated to the fragmentation processes observed should have 

sufficiently different values to observe a plateau (intermediate regime). We have recently 

demonstrated[15] the collision energy necessary to achieve a certain degree of fragmentation 

increases linearly with the mass to a very good approximation (R
2 

> 0.996). This analysis was 

performed on another polyether, namely poly(ethylene glycols), and tested on a wide variety of 

conditions (different instruments, data statistical treatment, experimental conditions …). 

Moreover, when structurally different compounds are studied, the same linearity is observed but 

with different rate of increase[19]. Combining these two observations suggests the shift of the 

SY curves observed for isobars would increase with their mass providing the fragmentation 

parameters remain independent of the molecular ion mass. Consequently, the width of the 

intermediate regime observed in Fig.2 must increase with masses of the isobars due to molecular 

ions masses (as a consequence of the Degrees of Freedom effect and invariability of 

fragmentation parameters[15,22]). To assess this prediction, we have reproduced the SY curves 

as presented in Fig.2 for lithium cationized PLA and PTMEG with polymerization degree 

varying from 14 up to 23 (from approximately m/z 1000 up to m/z 1700) in the same 

experimental conditions (see Fig.4). The widths of the plateaus, which may be called the isobaric 

resolving power, have been estimated using SY curves for pure homopolymers, considering 

voltages necessary to achieve more than 99% of [PLA23+Li]
+
 and less than 1% of 

[PTMEG23+Li]
+
. Error bars were over-estimated considering 0.02 Volt uncertainties when 

determining the latter voltages. The linear fit is in agreement with our expectation and 

demonstrates that the resolving power of the technique can increase significantly with molecular 
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ion mass (the width is doubled between m/z 1000 and m/z 1700). Considering the fragmentation 

parameters remain constant with respect to the polymerization degree, this technique allows for 

an efficient separation of isobars and may enable refined structural characterization according to 

the fragmentation parameters at large m/z. If the linearity observed can be explained as a 

consequence of the Degrees of Freedom effect, the negative intercept suggests that PLA/PTMEG 

mixtures with masses below m/z 500 cannot be resolved. The negative values are associated with 

the fact that [PTMEGn+Li]
+
 would simply start fragmenting before [PLAn+Li]

+
 has fully 

decomposed. Obviously, experimental conditions may modify these features; the mass-limit 

separation may be shifted to higher or lower masses and the resolving power increased at the 

same molecular ion mass. 

 

Fig. 4: Width of the plateau (intermediate excitation regime) as a function of molecular ions 

mass for a mixture of [PLAn+Li]
+
/[PTMEGn+Li]

+
. Details on calculations and estimation of 

error bars are presented in the text. 
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Limits of the method 

 

For a mixture of compounds with very similar fragmentation parameters and low m/z, 

one would expect no intermediate regime and a SY curve with a modified shape but without any 

plateau. Trying to satisfy those two conditions, we have studied two protonated peptides with 

inverted sequences, H-(SDGRGAF)-NH2 (reverse 1) and H-(FAGRGDS)-NH2 (reverse 2), 

separately and in a 1:1 mixture. Due to little structural differences, fragmentation parameters 

have good chances to be also very close. Moreover, those peptides are exact isobars with m/z 

708.3 that is very close to the resolving limit identified for PLA/PTMEG mixtures (for which, in 

addition, fragmentation parameters may be significantly more different). Results are presented in 

Fig.5. As the first component has just started to fragment, the second component is seemingly 

fragmenting as well. Thus, concerning the equimolar mixture, the SY ratio as a function of 

excitation voltage consists in a curve with a continuous and smooth decrease but without any 

plateau, a shape that is expected for pure analytes. For an unknown mixture of isobars with a 

similar behaviour, visual inspection of tandem mass spectra does not help identifying the 

contamination, neither does the analysis of spectra at low and at high excitation voltages. 

MS/MS spectra are contaminated at all excitation voltages and, consequently, do not provide 

structural information on one compound only but rather give mixtures of fragments from both 

isobars. In the absence of such a plateau, identifying contamination, even qualitatively only, is 

not possible. This also illustrates the limit of the conventional comparison between tandem mass 

spectra obtained at high and at low energies for structural investigation of isobars. With that 

respect, it is however worth noting the curve for the mixture is located in a position that is 

intermediate to the two curves obtained for pure compounds. Modification of the SY curve shape 

or location seems to be a possible qualitative indicator of isobaric contamination, but this 
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requires a priori knowledge of the curve for at least one of the two pure components. Indeed, at 

constant experimental conditions, the SY curve for a given analyte has a shape and position that 

depend on the molecular mass as well as on the parameters associated to the fragmentation 

processes observed. These processes in turn depend on the details of the structure of the analyte, 

making the SY curve a kind of fingerprint of the compound. Thus, any deviation from the 

determined curve, in the same experimental conditions, demonstrates the presence of an isobaric 

contaminant. 

 

Fig. 5: Survival Yield curves for two protonated peptides with inverted sequences at m/z 708.3: 

H-(SDGRGAF)-NH2 (reverse 1) and H-(FAGRGDS)-NH2 (reverse 2). SY curve for a 1:1 

mixture is also presented. 
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With the SY curves of the two components at hands, we have tried to estimate the degree 

of contamination using a simple weighted combination. This way we could easily achieve at 

most 5% deviation from measured values. Such deviations, however, do not compare favourably 

to the shift of SY curves as they represent 10 to 40% of the corresponding distances between SY 

curves for pure protonated peptides. Although not very accurate at this stage, the method seems 

nonetheless promising for quantitative evaluation of isobars even in the absence of a plateau. The 

combination of low m/z and small differences in the fragmentation parameters leads to a 

negative value for the resolving power and thus, necessitates suspicion of isobaric contamination 

and a priori knowledge of the structure of one of the two components to unequivocally decide on 

the contamination. 

Conclusions. 

 

Results presented in this work show the Survival Yield curve of an isobaric mixture 

consists in a linear combination of Survival Yield curves for the two compounds separately. 

Moreover, the Survival Yield curve for a mixture was shown to exhibit a plateau. Combining the 

latter two observations leaded to the following conclusions: 1) the existence of a plateau 

demonstrates the sample is made up of a mixture of compounds and allows for studying the 

structure of the two components separately and unambiguously, 2) the vertical position of the 

plateau can be used for quantifying the two components of the mixture and there is no need for a 

priori knowledge of the respective fragmentation patterns. These results are however limited to 

compounds with sufficiently different fragmentation parameters, where “sufficiently” is not 

well-defined and is a priori not restrictive as it may partly be compensated by the size effect. 

This is well-demonstrated by the increase in the width of the plateau as m/z becomes larger. 
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Theoretically, the existence of such a plateau was never mentioned in the literature and, is 

a new feature of the Survival Yield technique that may lead to a better understanding of its 

physical and chemical information content (e.g. from the collisional or ionization processes).    

From practical point of view, the presented methodology for quantitation may be 

particularly interesting as polyethers are present in perfumes, plastic containers and also in 

various laboratory consumables. They are thus potential contaminants even during an analytical 

procedure. Using the proposed methodology, they may be easily traced for isobaric 

contamination even for large mass compounds. These synthetic oligomers are, indeed, known to 

fragment at much higher energies than biological compounds[15,19,22] that allow for using the 

methodology presented in this work. Similarly, polyethers are extensively used in packaging and 

must thus be tracked, in e.g. foodstuffs, for possible contamination. Alternatively, after an 

intermediate excitation regime, namely a plateau, has been identified, the methodology can be 

used for structural study and quantification of a compound of interest without the need for 

cleaning the sample from isobaric polyethers: this way, the purity of an analyte can be 

determined using MS/MS and the Survival Yield technique only, without necessarily using 

complex and tedious sample preparation or cleaning. 
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SUPPLEMENTARY MATERIAL: 

 

Fig. S-1: SY curves for a PLA/PTMEG mixture corrected from contamination in both the low 

and the high excitation regimes and compared to SY curves for « pure » homopolymers. 

 

Eqs. S-1 and S-2: Equations used to correct SY curves for contamination at low excitation 

regime (Eq. S-1) and at high excitation regime (Eq. S-2). 

 

1. Correction for contamination of SY curves in the low excitation regime. 

 

According to the performance of the technique for quantitative estimate of the 

contamination, we have tried to recover “pure” MS/MS spectra of [PLA23+Li]
+
 at any excitation 

voltages from information obtained at the intermediate excitation regime for a 5:1 mixture of 

PLA/PTMEG. More precisely, we have performed spectral subtraction of the molecular ions 

peak extracted from a reference spectrum at the intermediate regime to all spectra obtained at the 

low regime. After the application of a correction factor to account for signal intensity differences 

between MS/MS spectra, the subtraction has been completed (Eq. S-1, on the left). In order to 

make a clear comparison between MS/MS spectra of the pure analyte and contamination-

corrected MS/MS spectra, we have reckoned and plotted both SY curves using formula presented 

on the right: 
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where low

M
I  and int

M
I correspond to the intensities of molecular ions peak measured respectively at 

the low and intermediate regimes and int PTM EG

M M
I I . The ratio low

int

TIC

TIC
 accounts for signal 

intensity differences between spectra from the two excitation regimes; TIC being the Total Ion 

Count. Curves are presented on the left-hand in Fig. S-1. The two curves overlap with a very 

good approximation. Average discrepancy between data points (6 points measured at the same 

excitation voltages) was evaluated to be 1.3% with a standard deviation of 1.5. 

 

Fig. S-1: SY curves were obtained with pure homopolymers (crosses) of [PLA23+Li]
+
 (left) and 

[PTMEG23+Li]
+
 (right) and a 5:1 mixture of PLA/PTMEG (filled circles on both spectra). Peaks 

intensities for the mixture were corrected using Eq. S-1 in the low regime (left) and using Eq. S-

2 in the high regime (right). Curves were fitted using sigmoid functions (dashed lines). 

 

2. Correction for contamination of SY curves in the high excitation regime. 

 

Similarly, we have repeated this procedure in the high excitation regime. In this regime, 

molecular ions are lithium cationized PTMEG and fragment ions are composed of a mixture of 

the fragments ions from both synthetic polymers. On contrary to the low excitation regime, 
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contamination takes place among fragment ions rather than molecular ions. Thus, fragment ions 

peaks intensities from the reference spectrum must be subtracted to spectra from the high 

excitation regime if MS/MS spectra of the second component are expected. We have modified 

Eq. S-1 according to the above reasoning (Eq. S-2, on the left) and obtained the following 

expression:  

   
high

highPTM EG high int M

F F F

highhigh high intint

M F F

int

TIC I
I I I SY

TICTIC
I I I

TIC

 
     

  
   

 

 



     (Eq. S-2) 

where 
F

I  sums up intensities of fragment ions peaks at the high or intermediate regime and 

int PLA

F F
I I  . 

M
I  corresponds to molecular ions peak intensity and high

int

TIC

TIC
 accounts for 

the signal intensity difference between spectra from the two excitation regime; TIC being the 

Total Ion Count. Similarly, we have plotted the corrected SY curve along with the SY curve for 

pure [PTMEG23+Li]
+
 and again obtained an excellent agreement with a similar accuracy to the 

low regime (right-hand side Fig. S-1). These results demonstrate that for energetic studies and in 

spite of isobaric contamination, SY curves can be reproduced accurately in both high and low 

excitation regimes using this correction procedure. 

Going a step further, we have tried to recover fragment ions peaks intensities of pure 

oligomers from tandem mass spectra of mixtures. When inspecting in details those spectra and 

comparing fragment ions peaks intensities with reference spectrum, discrepancies appeared both 

in the low and in the high regimes. Peaks that were contaminated do not recover intensity values 

expected from MS/MS spectra of pure oligomers even after appropriate correction according to 

reference spectrum has been applied. At 1.2 Volt excitation voltage, a systematic enhancement of 

contamination at low masses was observed: 50% of fragment ions were missing at m/z 1610.5, 

when at m/z 1538.5 and m/z 1466.5 respectively 69% and 144% more fragments were obtained. 
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Although to a much lesser extent, this was also observed in the low regime. The overlap between 

SY curves from pure oligomers and from mixtures demonstrates the sum of fragment ions 

intensities remains the same, supporting the idea that only relative intensities of fragment ions 

peaks are modified. Obviously consecutive fragmentations take place altering MS/MS spectra 

and complicating the picture. Indeed, as compared with pure homopolymers, the resonant 

excitation of molecular ions is still effective in the case of a mixture even if the first isobar, 

[PLA23+Li]
+
 has been completely dissociated. [PTMEG23+Li]

+
 molecular ions are continuously 

accelerated and decelerated during the excitation process, leading to continuous collisional 

excitation of fragment ions from the first isobar and the appearance of consecutive fragments. 

This phenomenon precludes us from applying the simple subtraction procedure to recover 

detailed information on MS/MS spectra. 

 


