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Abstract: Interleavers are key devices in most digital transmission systems. An 

approach for blind estimation of the interleaver length, as well as the encoder 

rate and constraint length, is proposed in this paper. The approach is based on 

linear algebra. We show that the rank of a matrix built from the intercepted 

interleaved stream falls when the number of rows of this matrix is a multiple of 

the interleaver length. Furthermore, the values of the ranks allow to estimate 

the encoder rate and constraint length. Typical applications are transmission 

surveillance and self-recovering receivers. 

Keywords: cognitive-radio applications, convolutional encoder, interleaver, blind 

estimation, non-cooperative communications, interception. 

1. Introduction  

As shown on figure 1, in many digital transmission systems, the binary 

data stream is first encoded for sparse error protection (using, for instance a 

block code or convolutional code). Then the binary stream is interleaved by 

reordering the bits of the stream in a certain way. The same permutation is 

usually made on blocks of length 
e

l  bits, where 
e

l  is called the length of the 

interleaver. The interleaved binary data is finally fed to a digital transmitter 

which performs the carrier modulation, filtering and amplification [17]. 
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Figure 1. Principle of a digital transmission chain 

 

On the receiver side, the signal is demodulated to recover the interleaved 

binary data. Then the data is de-interleaved and decoded. In cooperative 

applications, the classical receiver can perform data de-interleaving because it 

knows the permutation to apply on the received data. On the contrary, in non-

cooperative applications, the interleaver is unknown and it is necessary to 

recover its parameters. Typical applications are multistandard adaptive receivers 

and spectrum surveillance [19] but the literature about self-recovering receivers 

is not very rich. In [8], we have proposed a self-recovering receiver for encoded 

and scrambled binary data streams. In this paper, we propose a method which is 

able to recover the length of the interleaver and also the parameters of the 

encoder used by the transmitter. These parameters are very important to 

characterize the interleaver and also the encoder.  

Interception of communications is attempted for a variety of reasons 

including reconnaissance, surveillance, and other intelligence gathering 

activities, as well as position fixing, identification, and communications 

jamming [7]. For example, an aircraft might attempt to intercept the 

communications between a submarine or ship and a satellite, or a satellite might 

attempt to intercept ground-to-ground communications. Typically, the 

interceptor has no knowledge of modulation, encoder and interleaver 

characteristics [6].  

In the context of interception, techniques that automatically identifiy the 

modulation type of a received signal have been proposed [12] [16]. The complex 

problem of detecting the presence of direct sequence spread-spectrum signals 

hidden in noise was also considered [13] [15] [18], either using techniques based 

on cyclostationarity or on statistical fluctuations of correlation estimators [5]. In 

[4] we have proposed an approach which is able to estimate the spreading 

sequence used by the transmitter. An algorithm for blind spreading sequence 

discovery for DS-CDMA signal interception has also been proposed in [9]. A 

cyclostationarity-based method for estimation of the spreading sequence was 

described in [19]. Once spreading sequences and modulation are estimated, the 

interceptor is able to despread, synchronize, and demodulate the signal. 

Software Defined Radio architectures for electronic signal interception, 

identification and jamming are now considered [20].  

To go further, there is a need for techniques to determine which encoder 

and which interleaver were used by the transmitter, in order to decode and to de-
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interleave the binary data. For the moment, there is still little published work in 

this area. In [2] an efficient algorithm for recovery of unknown constraint length 

and generator polynomials for linear convolutional encoders was proposed, and 

extended to noisy data in [3]. The algorithm is powerful, but its complexity 

increases exponentially with the encoder constraint length ( K ), because it 

requires construction and manipulations of a transition table with 2 12 K −  rows and 
22 K  columns. The algorithm could probably be extended to global estimation of 

the encoder-interleaver block. However, in that case, its complexity would 

increase exponentially with the length of the interleaver 
e

l  (instead of K ). Even 

with very short interleavers, such a complexity is orders of magnitude above the 

capabilities of today available hardware. This is the reason why, in this paper, 

we propose a different approach, which is based on linear algebra instead of 

manipulation of transition tables.  

 

The paper is organized as follows. In Section 2, the proposed method is 

described. Then, in Section 3, experimental results using standard encoders and 

interleavers are provided to illustrate the approach. Finally, a conclusion is 

drawn in Section 4.  

In the sequel, for illustration purpose, we provide examples related to 

HIPERLAN Type 2 and CDMA2000 standards. However, the method is not 

limited to these particular protocols.  

2. Proposed method  

2.1. General idea 

The basic idea of the method is first of all to use some classical linear 

algebra properties to determine the length of the interleaver and then to take 

profit of redundancy of the encoded data stream to determine the encoder rate. 

For instance, consider an 
e

N -dimensional vector containing 
e

N  successive 

encoded and interleaved bits. The principle of our approach is to reshape 

columnwise the interleaved data stream vector to obtain matrices 
i

H  for 

different number i  of rows and to compute for each matrix its rank in Galois 

Field GF(2). For each matrix 
m

H  with 
e

m q l= ×  multiple of 
e

l  (the length of the 

interleaver) and under some hypotheses detailed in Subsection 2.2, the rank is 

min( 1 )m r K m× + − ,  (with r  the encoder length and K  its constraint length, see 

2.2), while it is m  for the other values not multiple of 
e

l . The first fall of rank 

occurs for 
e

m l=  (if 1m m r K> × + − ) which gives the length of the interleaver. 

The rate and the constraint length of the encoder is obtained by linear regression 

from different values of the rank of 
m

H  for 
e

m q l= × , where 
e

l  is the length of the 

interleaver just estimated.  
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2.2. Mathematical model and hypotheses  

Let us note 
e

N  the number of observed binary symbols, k
n

r =  the encoder 

rate with k  the length of a binary message word, n  the length of the code words 

and K  the encoder constraint length if we consider a convolutional encoder (for 

a classical block encoder 1K = ). Consider the binary vectors below:  

h  : the vector containing 
e

N  samples of the interleaved data stream ;  

g  : the corresponding outputs of the encoder (dimension 
e

N ) ;  

0g  : the corresponding unknown information data (dimension 1
e

N r K× + − ) ; 

 

From the principle of linear encoders and interleavers, it can be shown 

that there exist matrices G  and E  such that 0G=g g  and =h Eg . According to 

figure 2, which summarizes the mathematical model, we have: 

 

 0G=h E g  (1) 

 

 

Figure 2. Mathematical model 

 

If we know the encoder, we can compute the matrix G  as described in the 

Appendix where a practical example taken from the CDMA2000 Standard is 

used to explain the construction of G . In our approach the encoder is unknown 

so that parameters n , k  or K  are also unknown. Nevertheless, the two important 

hypotheses are:  

• These encoders add redundancy such that n k>  ;  

• The encoder is generally well chosen which implies that matrix G  

is of full rank in GF(2).  

 

The matrix E  is only a permutation matrix. In this study, we only 

consider block interleavers in which the interleaver does not operate globally on 

all the encoded data stream bits, but only block by block. In each block (
e

l  bits), 

the permutation made on the data bits is the same and the size 
e

l  of each block is 

named the length of the interleaver and has to be recovered in our case. We can 

represent the interleaver as a square matrix E  which is constructed as a square 

block diagonal matrix where each block is a permutation matrix 0E  ( 0( )
e

dim E l= ) 

as it is shown below: 
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⋯

⋯

⋮ ⋱ ⋱ ⋱ ⋮

⋯

⋯

 (2) 

 

Interleavers are used to increase burst error correction capability of a 

simple code which is generally designed for sparse errors correction. If we 

consider a linear code ( )C n k,  in GF(2) and an integer 
e

n , we can show that the 

set of 
e

n  interleaved code words is a code of length 
e

n n× , with dimension 
e

k n×  

in GF(2), which is able to correct burst errors of length 
e

t n×  if the code C  

corrects burst errors of length t . According to this property, the length 
e

l  of the 

interleaver is a multiple of k , because it operates on a block of code words and 

not on a block of individual bits to respect this property.  

In our non cooperative context, only vector h  given by equation 1 is 

observed. Vectors 0g , g , matrix G  and submatrix 0E  (also matrix E  which is 

based on submatrix 0E ) are unknown. To estimate the length of the interleaver, 

we have to determine the size of 0E .  

2.3. Mathematical description of the method  

For pedagogical purpose, suppose that we decide to reshape columnwise 

the interleaved data stream in such manner to obtain a matrix 
el

H  of 
e

l  rows and 

so 
e e

N l/  columns. By construction each column vector of this matrix is always 

the product of a certain matrix F  of size ( 1)
e e

l l r K, × + −  and a vector consisting 

of a block of original data stream bits of size 1
e

l r K× + − . The rank in GF(2) of 

the matrix 
el

H  is therefore equal to the minimum between 1
e

l r K× + −  and 
e

l  if 

el
H  is not degenerate (which is the case when G  is full rank). More generally, 

we can say that, if we reshape columnwise the interleaved data stream in such 

manner to obtain a matrix with a number of rows multiple of the size of the 

interleaver 
e

q l× , the rank in GF(2) of this matrix 
eq lH × will be 

min( 1 )
e e

q l r K q l× × + − , × , because all the columns of this matrix are the product of 

the different vectors of the original data stream by a same matrix F  of size 

( 1)
e e

q l q l r K× , × × + − .  

In the other cases, with a number of rows 
e

i q l≠ ×  , no matrix F  exists 

such that each column vector of matrix 
i

H  is always the product of F  and a 

vector consisting of a block of original data stream bits. So, in these cases, the 

rank of 
i

H  is equal to i  (the number of rows of 
i

H ).  

To determine the length of an interleaver, we only have to construct the 
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matrices 
jH  by reshaping columnwise the interleaved data stream bits for all j  

(number of rows) in the interval [1 ]
max

nb, , with 
max

nb  sufficient and to compute 

for each matrix 
jH  its rank in GF(2).  

If the encoder rate r  and the constraint length verify (1 ) 1
e

K l r< × − + , the 

length of the interleaver is obtained at the first fall of rank. If it is not the case, 

the length of the interleaver is equal to the difference between the respective 

number of rows corresponding to two consecutive falls of rank of 
jH . Finally, 

we can also determine the encoder rate and its constraint length by linear 

regression from values of the rank of 
m

H  for 
e

m q l= × , with [1 ]e

e

N

l
q ∈ , , because 

( )
m

rank H  is given by the equation below: 

 

 ( ) 1mrank H m r K= × + −  (3) 

if (1 ) 1K m r< × − + .  

3. Simulation results  

First of all, we illustrate the method by showing the content of various 

matrices for a given encoder and interleaver (Subsection 3.1). Thereafter, in 

Subsections 3.2 and 3.3 we give some simulation results in the context of 

HIPERLAN/2 and CDMA2000 standards. The choice of these standards is for 

illustration purpose only: it is clear that blind estimation is not required in these 

cases because the interleaver characteristics used by these standards are in the 

public domain. Obviously, in the interception context, the transmitter is not 

likely to use a public domain interleaver. However, our blind approach would 

still work, because it is not based on particular characteristics.  

3.1. Illustration of the method using matrices graphical 

representations 

Let us consider a rate 1 2/  convolutional encoder with constraint length 

6K =  and the two generating polynomials below ([14] p.907): 

 

 
1 0 1 0 1 1 53

1 1 1 1 0 1 75
octal

polyG
   

= =   
   

 (4) 

 

This yields to matrix 
sub

G  shown on figure 3 (black=1, white=0). 

 

  

Figure 3. Graphical representation of 
sub

G
 

 



Blind Estimation of Block Interleaver Length and Encoder Parameters 7

For illustration purpose, we consider an particular block interleaver 

named usually “rows/columns interleaver”. This name comes from the 

construction of this interleaver where the inputs data are written row by row in 

an array of 1N  rows and 2N  columns, and read column by column to form the 

interleaved data stream. This interleaver has a length equal to 1 2N N× . Note that 

four different interleavers can be obtained depending of the beginning array 

corner of reading. Others conventions are used in the literature to construct such 

block interleavers (see [14] p. 374-388, p. 398-407 or [10] p. 35-63 for 

example).  

We have chosen to start reading the data in the interleaver array at the top 

left corner and to take 12
e

l =  for the interleaver length ( 1 4N =  and 2 3N = ). To 

see the effect of the interleaver, we can construct for example the matrix G  

shown in figure 4 to encode 3 18
e

l r× × =  bits (see the Appendix for more details 

about the construction of a matrix G ). 
 

  

Figure 4. Graphical representation of G  to encode 18  bits 

 

The permutation matrix 0E  of size 12 12×  representing one block of the 

interleaver is given graphically on figure 5 and the global interleaver matrix E  

on figure 6. 

 

  

Figure 5. Graphical representation of 0E  
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Figure 6. Graphical representation of E  

 

We can see on figure 7 the effect of the interleaver on the encoder matrix 

G , where the product GE  is plotted (compare to G  on figure 4). 
 

  

Figure 7. Graphical representation of the product GE   

 

We will try to estimate the interleaver length from 200 12 2400
e

N = × =  

interleaved bits. First of all, we construct successively the matrices 

[1 ]
i max

H i nb∀ ∈ ;  with max enb N= ∈ℕ , and to compute their ranks in GF(2) which 

is represented on figure 8. We can see that the first fall of rank is obtained for 
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12i =  which is exactly the length of the interleaver. Graphically we can also see 

on figure 8 that the line joining all the points for 
e

i q l= ×  has a slope equal to 1
2
 

and an intersection with the vertical axis (for 0i = ) equal to 5 , which give us 

from equation 3 the encoder rate 1
2

r = , and constraint length 6K =  (because 

1 5K − = ). These results are exactly the parameters of the encoder used. 
 

  

Figure 8. Represention of ( )i
rank H  versus i  

3.2. Example with HIPERLAN Type 2 Standard 

HIPERLAN Type 2 standard uses a rate 1/2 and constraint length 7K =  

convolutional encoder with the two generating polynomials below: 

 

 
1 0 1 1 0 1 1 133

1 1 1 1 0 0 1 171
octal

polyG
   

= =   
   

 (5) 

 

All encoded data bits are interleaved by a block interleaver with a block 

size corresponding to the number of bits in a single OFDM symbol which is 

given in [11] (p. 11). In this example we have taken 48
e

l = , but the method 

works with the others values of 
e

l  defined in this standard. The interleaver is 

defined by a two step permutation which is described in [11] (p. 16). The matrix 

0E  for the block interleaver with 48
e

l =  for the HIPERLAN Type 2 standard is 

represented graphically on figure 9.  
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Figure 9. Graphical representation of 0E  (Hiperlan2 example) 

 

We try to estimate the interleaver length from 400 48 19200
e

N = × =  

interleaved bits. The rank in GF(2) of the matrices 
i

H  [1 ]
max

i nb∀ ∈ ;  with 

138
max

nb =  is represented on figure 10. We can see that the first fall of rank is 

obtained for 48i =  which is the length of the interleaver. From the line joining 

all points for 
e

i q l= ×  (with 48
e

l =  just found), we can give the encoder rate 1
2

r =  

and its constraint length 7K = , which are exactly the parameters of the encoder 

used. 
 

  

Figure 10. Representation of ( )i
rank H  versus i  (Hiperlan2 example) 
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3.3. Example with CDMA2000 Standard 

For example, the Enhanced Access Channel for spreading rate 1 (for the 

Data) in the CDMA2000 standard uses a rate 1
4
 and constraint length 9K =  

convolutional encoder with generating polynomials below (see [1] p. 2-95): 

 

 

1 1 1 1 1 0 1 0 1 765

1 1 0 1 1 1 0 0 1 671

1 0 1 0 0 1 0 1 1 513

1 0 0 1 1 1 0 1 1 473
octal

polyG

   
   
   = =
   
   
   

 (6) 

 

In this standard, all the encoded data bits are interleaved by block with 

different block size specified in [1] (p. 2-107). We have taken 768
e

l =  and the 

matrix 0E  for the block interleaver with 768
e

l =  for the Enhanced Access 

Channel in the CDMA2000 standard is represented graphically on figure 11. 

This matrix can be computed from the rule described in [1] (p. 2-106 - 2-107). 
 

  

Figure 11. Graphical representation of 0E  (CDMA2000 example) 

 

We try to estimate the interleaver length from 3100 768 2380800
e

N = × =  

interleaved bits. The rank in GF(2) of the matrices 
i

H  [1 ]
max

i nb∀ ∈ ;  with 
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1543
max

nb =  is represented on figure 12. The method provides a perfect 

estimation of the interleaver length, encoder rate and its constraint length which 

are 768
e

l = , 1
4

r =  and 9K = . 

 

  

Figure 12. Representation of ( )i
rank H  versus i  (CDMA2000 example) 

4. Conclusion  

In this paper, we have proposed an approach for blind estimation of the 

interleaver length and the encoder rate and constraint length. The intercepted 

data stream is written columnwise in a matrix and we have shown that the rank 

of this matrix falls when its number of rows is a multiple of the interleaver 

length. Furthermore, from the plot of the rank with respect to the number of 

rows of this matrix, we have shown that the encoder rate and constraint length 

can be determined.  

This approach provides essential data in the context of spectrum 

surveillance applications, as well as for the purpose of building a self-recovering 

receiver. Since it is based on linear algebra, it is easy to program using a matrix-

oriented language, such as Matlab. Further work will include evaluation of the 

robustness of the approach when the intercepted interleaved stream contains 

errors.  
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Appendix: Computation of matrix G  using the model 
of the linear encoder 

The objective of this appendix is to help understanding what is the matrix 

G  used in our mathematical model, and what is its content. Please note that 

computation of matrix G  by this mean is not used in our blind method, because 

the encoder is unknown.  

As an illustration, we will consider a convolutional encoder, but the 

method can be easily extended to any linear code, such as block codes 

(Hamming, BCH, etc.). A convolutional encoder is defined by its generating 

polynomials. For instance, the CDMA2000 Reverse Fundamental Channel (for 

Radio configuration 1) uses a rate 1 3/  convolutional code, with constraint length 

9K =  and the generating polynomials coefficients below ([1] p. 2-95 - 2-96): 

 
 1 (101101111)poly =  

 2 (110110011)poly =  (7) 

 3 (111001001)poly =  

 

The octal form is often used for concision: 

  

 

557

663

711
octal

polyG

 
 =  
 
 

 

 

The coded stream z  is then ([1] fig. 2.1.3.1.4.1.2-1 p. 2-96): 

 
 3 1 2 3 5 6 8n n n n n n n n

z y y y y y y y− − − − − −= + + + + + +  

 3 1 1 4 5 7 8n n n n n n n
z y y y y y y+ − − − − −= + + + + +  (8) 

 3 2 3 6 7 8n n n n n n
z y y y y y+ − − − −= + + + +  

 

 

where y  stands for the uncoded data stream.  

Let us note g  an 
e

N -dimensional vector containing 
e

N  successive samples 

of the coded stream and 0g  a vector containing the information sequence which 

generated g  (dimension 1
e

N r K× + − ). We can write: 

 

 0G=g g  (9) 

 

where 



ROLAND GAUTIER, GILLES BUREL, CREPIN NSIALA NZEZA 14

 

1 1 1 1 0 1 1 0 1

1 1 0 0 1 1 0 1 1

1 0 0 1 0 0 1 1 1

1 1 1 1 0 1 1 0 1

1 1 0 0 1 1 0 1 1

1 0 0 1 0 0 1 1 1

1 1 1 1 0 1 1 0 1

1 1 0 0 1 1 0 1 1

1 0 0 1 0 0 1 1 1

G

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 ⋮ ⋮

 (10) 

 

Note that G  contains the submatrices 
sub

G  below (dimension n K× ): 

 

 

1 1 1 1 0 1 1 0 1

1 1 0 0 1 1 0 1 1

1 0 0 1 0 0 1 1 1

subG

 
 =  
 
 

 (11) 

 

Each row of 
sub

G  contains the coefficients of a generating polynomial in 

reverse order. In our application, matrices G  and vectors g  and 0g  are unknown. 

But, only the linear algebra properties of such computed matrix are important in 

this case, without the exact knowledge of the generating polynomials.  
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