
HAL Id: hal-00664435
https://hal.univ-brest.fr/hal-00664435v1

Submitted on 28 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Forward engineering and early model validation with
Smalltalk

Alain Plantec, Frank Singhoff, V Gaudel, Vincent Ribaud

To cite this version:
Alain Plantec, Frank Singhoff, V Gaudel, Vincent Ribaud. Forward engineering and early model
validation with Smalltalk. 5th Argentine Smalltalk Conference., Nov 2011, Buenos Aires., Argentina.
�hal-00664435�

https://hal.univ-brest.fr/hal-00664435v1
https://hal.archives-ouvertes.fr

Forward engineering and earlymodel validation with Smalltalk

A. Plantec F. Singhoff V. Gaudel V. Ribaud
LISyC, Université de Bretagne Occidentale, UEB, Brest, France

Abstract

Since more than two decades, a lot of work has been achieved around Model Driven Engineering (MDE). One of the main goals of
MDE is to improve the software development process productivity thanks to a generative approach.

Many MDE environments are available today. These environments allow a designer to specify object oriented meta-models.
Meta-models structure can be specified through the definition of statically typed entities and entities relationships. Even if some
of these environments also enable specifying meta-model invariants and behavior, two important issues remain unsolved:
– regarding meta-model execution, only limited capabilities are exhibited and the development process still relies on code generation

into a mainstream language for validation;
– because of the generative approach, no causal connection is possible between a meta-model and its conforming models.
To deal with these issues, we decided to use Smalltalk as a MDE environment mainly because it provides us with a way of imple-
menting meta-model execution. A Smalltalk system can be used as a modeling system providing out-of-the-box an infrastructure
for meta-modeling, browsing, and testing. It also provides a rich system which enables implementing realistic prototypes. Moreover
Smalltalk implements a Meta Object Protocol which maintains a causally connected modeling architecture.

Smalltalk is known as very powerful for the agile implementation of systems, for continuous testing and finally for early validation
through prototyping. Unfortunately, Smalltalk is not a mainstream language and can be rarely used as the final platform. This
article shows that it is possible to successfully use Smalltalk as a MDE environment even if the target system is not implemented in
Smalltalk. Indeed, the software development process can be adapted to benefit from early validation and to be able to automatically
produce or update a target system. For validation purpose, we have developed the Platypus tool, which enables static typing in
Smalltalk and makes this MDE approach possible.

Key words: Model Driven Engineering, Smalltalk, Early validation, Prototyping, Code generating, Interoperability

1. Introduction

Since more than two decades, a lot of work has been
achieved around Model Driven Engineering [1] (MDE). One
of the main goals of MDE is to improve the software de-
velopment process productivity. Despite a lot of work and
a huge number of publications, it remains very difficult to
conclude on the concrete benefits of the MDE [2, 3].

Models quality and accuracy are very important issues.
Because, predominantly, the cost of the software implemen-
tation comes from validation, the software development
process must be adapted to enable early validating of mod-
els. In [4], Osterweil considers that verification and valida-
tion can consume from 50% to 60% of the software produc-

Email addresses: alain.plantec@univ-brest.fr (A. Plantec),

frank.singhoff@univ-brest.fr (F. Singhoff),
vincent.gaudel@univ-brest.fr (V. Gaudel),

vincent.ribaud@univ-brest.fr (V. Ribaud).

tion cost and naturally, these values can increase a lot for
critical systems. A part of this cost is due to the inaccuracy
of test and validation infrastructures [5, 2]. In [6], the au-
thors argue that 60% of development efforts are related to
models design and that an half of these efforts are due to
models simulation implementation. Thus, improving simu-
lation implementation as well as model validation remain
vital stakes.

MDE development process is technically based on a gen-
erative approach. The executable system is the final re-
sult of the process. From the high level models to the final
code, the production chain can be time and resource con-
suming. This development process does not facilitate agile
implementation [7], continuous testing and early validation
through simulation and prototyping.

The lack of velocity of the MDE software process is
pointed-out by an increasing number of authors. They ex-
hibit the benefit of executable meta-models [8, 9, 10, 11,
12, 13, 14] to fulfil the software developers need for an agile

Preprint submitted to Elsevier 31 October 2011

development process.
Many MDE environments are available today, but they

do not offer very early validation because they are mainly
based on a generative approach. Examples of such en-
vironments are EMF/Ecore [15], MetaGME [16], AM-
MA/KM3 [17] and Kermeta [9]. All these environments
are based on an object oriented approach for meta-models
specification and rely on a standard for the specification of
meta-models. The MOF [18] and ECORE [15] are the most
used standards. This kind of language mainly allows a de-
signer to specify the structure of meta-models through the
definition of statically typed entities and entities relation-
ships. As an example, with the Kermeta environment [9] it
is possible to specify entities behavior with the help of as-
pects. These environments are most often integrated within
Eclipse [19].

These specifications can be enriched with the definition
of models and entities invariants and with the expression
of entities behavior.

Two important issues remain unsolved in these environ-
ments :
– regarding meta-model execution, they exhibit only lim-

ited capabilities and the development process still relies
on code generation in a mainstream language for valida-
tion; for instance, assuming we expect to design a mail
client specific system language, it will be very difficult to
prototype and test it with these environments because
its validation requires a network protocol stack;

– there is no causal connection [20] between a meta-model
and its conforming models : changes in a meta-model do
not automatically cause the adaptation of conforming
models; this implies a long delay between a change and
a test [12].

To deal with these issues, we decided to use Smalltalk as
a MDE environment mainly because it provides us with a
way of implementing meta-model execution. A Smalltalk
system can be used as a modeling system providing out-
of-the-box an infrastructure for meta-modeling, browsing,
and testing them. It also provides a rich system which al-
lows a designer to implement realistic prototypes. Moreover
Smalltalk implements a Meta Object Protocol [21] which
maintains a causally connected modeling architecture.

This article presents our iterative software design and
coding process together with our tool Platypus allowing
early validation of meta-models within an MDE environ-
ment implemented with Pharo [22].

The particularity of our process is to consider the
MDE environment and the target system as tightly inter-
connected. Models built within the target system are used
to further validate the meta-models within the MDE envi-
ronment and with realistic conforming models.

While a target system is automatically generated from
the MDE environment, meta-models must be statically
typed to be able to build code generators with Smalltalk.
Because Smalltalk is a dynamically typed language, a

mean to statically specify types of meta-models elements
must be integrated. We also present the modeling tool
Platypus[23, 24] that we use to statically type our meta-
models.

The paper is structured as follows. A glossary is given in
Section 2, then our approach is presented in Section 3. The
approach is illustrated with an end-to-end simple example
in Section 4. The implementation of the core component,
Platypus, is explained in Section 5. We discuss related work
in Section 6 and we conclude in Section 7.

2. Glossary

In this Section we give some explanations of terms that
we use in the paper. The following definitions must be un-
derstood in the context of Model Driven Engineering.

2.1. Model

Despite there is no clear and universal definition of what
a model is, a model can be considered as a simplification of
a system built with an intended goal in mind [25]. A model
needs to meet three criteria [26]: (1) a model is a mapping
based on a subject :the system that the model simplifies;
(2) a model is a reduction or a simplification of a system
because some aspects of the system are omitted; (3) a model
must be usable in some context in place of the system. The
software engineering lifecycle is made of consecutive steps,
each step aims at producing one or several models. The
goal of a model at a step N is to describe what we expect
to produce at step N + 1. For example, an early step of
the lifecycle is the requirement analysis step which aims at
producing the requirement specification model. This model
describes what we expect to produce at the Architecture
specification step (see [26] to get more details about what
is a model).

2.2. Meta-model

A meta-model is itself a model which describes the lan-
guage used to specify a model. A meta-model specifies con-
structs and rules within a domain of interest. A well formed
model is said as conforming-to its meta-model. It means
that the model is well specified according to the authorized
constructs and rules of its meta-model.

A meta-model is also specified using a particular lan-
guage which is itself specified with a model. The model
that specifies the meta-modeling language is called a meta-
meta-model.

2.3. The four level architecture

A model and its meta-model are specified at two levels
of a conceptual architecture.

2

This architecture is often represented as a four level
model architecture [25, 27]. In this architecture, the system
is at the M0 level. The model which is describing the sys-
tem is at the M1 level. The M2 and the M3 levels hold re-
spectively the meta-model and the meta-meta-model. Gen-
erally, the meta-meta-model is auto-described.

2.4. Model transformation

A model transformation is an operation that can be ap-
plied to a model to produce another model. A model trans-
formation is also a model which is conforming to a model
transformation meta-model. In other word, a model trans-
formation is a program written in a model transformation
language. Two kinds of model transformation can be pro-
grammed. (1) A model to model transformation is intended
to transform a source model conforming to a source meta-
model in a target model conforming to a target meta-model.
(2) A model to text transformation is intented to transform
a source model in a textual representation. Model to text
transformations are usually implemented with code gener-
ators.

2.5. MDE workbench

A MDE workbench is a tool based on the implementa-
tion of a modeling language. It allows a designer to specify
models within the workbench’s modeling language. Tech-
nically, a workbench is based on the implementation of
the meta-model that is specifying the workbench’s model-
ing language. Usually, a workbench enables model to text
transforming using a built-in set of code generators. A
workbench may also provide the user with the implemen-
tation and the running of user defined model transforma-
tions. In that case, it implements a model transformation
language and is able to run model transformations written
in its model transformation language.

2.6. MDE meta-workbench

A MDE meta-workbench is a tool which provides facil-
ities to build and run specialized MDE workbenches. It is
based on the implementation of a meta-meta-model which
is specifying the meta-modeling language. MetaEdit+ [28]
is an example of a meta-workbench using visual program-
ming. Primarily, it enables specifying domain graphical lan-
guages. For a particular domain language, it allows a de-
signer to specify conforming models and enables running
of model transformations.

2.7. Model Driven Engineering

Main goals of Model Driven Engineering (MDE) are to
improve the software development process productivity, to

facilitate software portability and interoperability and fi-
nally to improve maintenance and documentation of soft-
ware components. As an example, the Model Driven Ar-
chitecture [29] (MDA), defined by the Object Management
Group (OMG), is a well-known MDE framework. The MDA
development life cycle is globally defined as a classical de-
velopment life cycle. The originality lies on the nature of the
artifacts that are always models. These models can be auto-
matically understood and transformed by computers. Soft-
ware systems are made of models and early defined meta-
models describe them at a very high level of abstraction. As
such, these models are independent of any implementation
technology and of any execution platform. These high level
models are then automatically transformed in more specific
models, taking care of a particular platform and of a set
of target technologies. Finally, platform specific models are
automatically transformed in code which can be compiled,
executed and tested in the target environment.

2.8. The STEP standard and the EXPRESS language

STEP, namely the STandard for the Exchange of Prod-
uct model data is the ISO 10303 standard [30]. Its main
goal is to facilitate product data models exchange between
heterogeneous systems. To define data models and to im-
plement data exchange, a rich set of technical standards has
been implemented. Mainly, the EXPRESS data modeling
language is used for data model specification and the STEP
neutral data encoding format is used for data exchange.

EXPRESS is the ISO-10303 standard data modeling lan-
guage [31]. With EXPRESS, a data model is specified with
a set of schemas that can reuse each-other. A schema is
made of types, entity hierarchies and constraints declara-
tions. Functions and procedures can also be defined for the
formal specification of constraints. EXPRESS makes very
precise cardinality constraint specifications possible with
the help of inverse relation declarations. A constraint can
be either global to a model or local to an entity.

Regarding the four levels architecture, a data model and
a set of STEP encoded data instances are at the M1 level.
The EXPRESS language and the STEP neutral formatting
language are at the M2 level. The EXPRESS language is
used to specify itself as well as the STEP neutral formatting
language. Thus, EXPRESS constitutes also the meta-meta-
model at level M3.

2.9. Modelling an example

Figure 1 shows an EXPRESS example which is specify-
ing domain entities for a very simple mail sender. More ac-
curately, the schema St11MailBox declares which data are
to be exchanged in the system, two kind of entities in our
case. The St11Mail specifies a mail to be sent, represented
by a target mail address, a subject, and the content of the
mail. The St11MailBox entity contains the sender mail ad-
dress and a list of St11Mail instances (mails to be sent).

3

SCHEMA St11MailBox;

ENTITY St11MailBox;
owner : STRING;
mai l s : LIST [0 : ?] OF St11Mail;

END ENTITY;

ENTITY St11Mail;
ta rget : STRING;
sub ject : STRING;
content : STRING;

DERIVE
sender : STRING := box. owner;

INVERSE
box : St11MailBox f o r mai ls ;

WHERE
adrRule : (sender > ’’) and (ta rget > ’’) ;

END ENTITY;

ENDSCHEMA;

Fig. 1. An EXPRESS example

The St11Mail entity is declared also with two computed
attributes. The attribute sender is a derived attribute: an
expression is given to compute its value. The box attribute
is an inverse attribute. It links a mail to its sender and
specifies what is the inverse cardinality for the associa-
tion between an St11MailBox and its St11Mail instances.
In this example, a St11Mail belongs to one and only one
St11MailBox.

#100=ST11MAIL(’apl@lob.fr’ ,’demo’ ,’test1’) ;
#110=ST11MAIL(’apl@lob.fr’ ,’demo’ ,’test2’) ;
#300=ST11MAILBOX(’vr@re.fr’,(#100,#110));

Fig. 2. STEP encoded data instances

Figure 2 shows a set of data instances encoded with the
STEP neutral format. These data instances are valid ac-
cording to the specification given in Figure 1. Each instance
is encoded with an unique identifier (e.g. #100) followed by
the name of the entity and the attribute values. If a value is
a reference to an instance, then the encoded value is made
of the referenced instance unique identifier (e.g. the #100
list element value in the #300 encoded instance).

3. An approach for early verification and
validation of meta-models

Our approach is intended to make easier the verification
and the validation of a meta-model as soon as it has been
changed. This capability is called early verification and val-
idation. We will use the Unified Process [32] terminology
to describe our approach.

This idea is not new. Recent software life cycles are using
iterations to adapt the target system as soon as a source
artifact has been updated. For instance, while a program
is being coded, design and requirement problems can be

found. Once the problem has been detected, an iterative cy-
cle should to correct the design or update the requirements.

After a brief presentation of the Unified Process, in this
Section we presents our iterative meta-modeling process
allowing early validation with the help of the target system
under construction.

3.1. Verification and validation during an Unified Process
iterations

This Section describes the operations to yield for verifi-
cation and validation during an Unified Process iteration.
We first give the terminology, and then, we briefly explain
what has to be done, how and when.

3.1.1. The unified Process iteration

Fig. 3. The unified process iteration

Figure 3 depicts an Unified Process iteration. Each it-
eration is managed as a software project and is made of
two main stages, called the Engineering and the Produc-
tion stages:
– the Engineering stage consists of the inception and elab-

oration phases; schedule and technical feasibility are the
main artifacts of the inception phase whereas the analysis
and design are produced during the elaboration phase;

– the Production stage consists of the construction and
transition phases; implementation, integration and test
of meta-models are achieved during the construction
phase and the transition phase includes code generation
and integration of the generated code in the target sys-
tem.

3.1.2. Verification and validation
For a given iteration, implementation or evolutions of

meta-models are performed during the production stage.
Especially during the construction phase, models conform-
ing to the meta-models under elaboration are intensively
used for the evaluation of the meta-models. The goal is to
enhance the reliability and the usability of meta-models for
the domain and to put on the test functional requirements
under consideration. Two kinds of work are performed.

4

– A two-step verification. A first step verifies the structural
characteristics of the meta-models. The designer evalu-
ates their capacities according to the preliminary analy-
sis and according to the domain rules. In a second step,
the designer evaluates the invariants or constraints which
are specified in the meta-models;

– Validation. Validating the meta-models according to the
functional requirements; it might use testing, type check-
ing or prototyping.

3.1.3. An usual approach using a meta-workbench for
verification and validation

Fig. 4. Classical approach for verification and validation

With the usual MDE approach, the first step is the build
of the target system. The target system is generated from
meta-models that are specified within a meta-workbench
(transition phase).

As it is shown in Figure 4, verification and validation
(construction phase) mainly occur after the target system is
ready to run. This implies the following four operations: (1)
the target code is generated from the source meta-models,
(2) the target code is compiled, (3) the target system is
initialized and configured with appropriate instances and
(4) the system runs.

Depending on the application size, these operations can
be very tedious and time consuming. Thus, several min-
utes to hours can be necessary before to run verifications
and validations. For sure, a few part of early verification
is achieved in the meta-workbench. For instance, when the
modeling language is statically typed, static type verifica-
tion might be performed in the meta-workbench.

In next Section we describe our meta-modeling process
which enables early checking of meta-model constraints and
early validation with tests and prototypes within the meta-
workbench.

3.2. Outline of our meta-modeling process

A part of verifications and validations do not need a com-
plete target system. We consider the two following cases:

(i) verifications that may require to verify types but also
constraints that are specified within the meta-model.

(ii) validations that may not need the target system in-
frastructure to be programmed or generated then ex-
ecuted.

If the meta-workbench provides the user with executable
meta-models, a part of verifications and validations can be
performed in the meta-workbench before the code genera-
tion.

Fig. 5. Construction and transition phases

Figure 5 represents an iteration. From the meta-
workbench point of view, inner circles represent the con-
struction phase that is achieved in the meta-workbench
without any direct impact on the target system. The outer
circle represents the transition phase. It is also implemented
in the meta-workbench but results in an update of the tar-
get system.

Very important validations have to be performed in the
target system. The target system code might be only par-
tially generated. The integration of the generated code as
well as the functional requirements have to be validated in a
running target system. Indeed, the generated code remains
the main artifact and final validations should be achieved
on it.

3.3. Using the target system for verification and validation
within the meta-workbench

Although some verifications and validations can be
achieved within the meta-workbench, the target system re-
mains very important. Indeed, for the verification and the
validation of a meta-model, it is desirable to be able to get
realistic and rich models. But, producing such models in
the meta-workbench might be very difficult and imply a

5

waste of time. Compilers or advanced user interfaces might
be necessary to produce them.

Often, facilities to produce realistic models are already
available in the target system. Thus, it might be very help-
ful to benefit in the meta-workbench from the models that
will be produced for the target system. These models can be
exchanged from the target system to the meta-workbench
by file exchange. In our implementation, we are using the
STEP technology to automatically generate a model ex-
change component from the domain meta-model. This ex-
change component implements an automatised serializa-
tion/materialization of conforming models into/from a file.
Given a meta-model, such exchange component is inte-
grated into the meta-workbench as well as into the target
system. Then, a conforming model built into the target
system can be serialized into a exchange file. This file can
be read from the meta-workbench to materialize the ex-
changed conforming model.

Using the exchange component, a target system of the
version N can always produce and send to the workbench
conforming models which are used for the evaluations done
during the elaboration of the N + 1 release.

4. Using Platypus

In this Section, after a brief presentation of what is Platy-
pus, we are illustrating our approach with an end-to-end
small example.

4.1. Basic principles behind Platypus

Smalltalk is a dynamic language [33], without any static
typing capability. Regarding the MDE context of our works,
static types are useful for documentation, type checking
and code generators building.

The idea behind Platypus is to offer to designers the en-
richment of Smalltalk models with static type declarations.
Then, dedicated tools can use type declarations. Types are
considered as additional and optional annotations which
are used only when they are required. The immediate ben-
efit of optional types is that it is possible to freely elaborate
a meta-model in Smalltalk, to implement tests and vali-
dations and to evaluate them immediately into the meta-
workbench.

When types are specified, type declarations can be used
to improve the validation with type checking or to imple-
ment code generators. When a new release is to be imple-
mented, the Smalltalk meta model can evolve without any
constraint regarding the type descriptions which was given
during the previous iteration. Of course, when the new ver-
sion is considered as stable again, it is possible to update the
type descriptions to fit the new release of the meta-model.

Another benefit is that types are only required where
they are useful.

Platypus is a Pharo tool that enables the static typing
of Smalltalk models with the help of the EXPRESS lan-

guage [31]. The STEP data encoding standard [34] is also
implemented for the exchange of conforming models.

Fig. 6. Using of Pharo with Platypus

Figure 6 depicts how Pharo and Platypus are used for
the verification and the validation of a meta-model. From
the inner to the outer cycle:

(i) according to the domain, meta-models are imple-
mented using Smalltalk classes; prototypes and tests
are implemented regarding the functional require-
ments;

(ii) when the meta-model is mature and stable enough,
property types, association cardinalities and invari-
ants can be declared using the EXPRESS language;

(iii) additional static type checking tools can be imple-
mented to enforce the meta-model validation and
code generators can be built upon the meta-model.

4.2. A first meta-model in Smalltalk

As a starting point, we are building a St11MailBox
meta-model with the unique class St11Mail. The meta-
model is declared into Pharo as the St11MailBox pack-
age. The declaration of the St11Mail class within the
St11MailBox package is shown in Figure 7. A mail con-
sists of four attributes: the sender and target mail addresses
(sender and target attributes), the subject and the content
of the mail (subject and content attributes). All getter and
setter accessors for these attributes are also implemented.
Accessors for the sender attribute are shown in Figure 8.

Object subc lass : #St11Mail
instanceVariableNames: ’sender target subject content’

classVariableNames: ’’

poo lDict ionar ies : ’’

category: ’St11MailBox’

Fig. 7. First version of the St11Mail class

So far, we can generate the corresponding Java compo-
nent to implement the target system. But, it might be time

6

St11Mail>>sender
ˆ sender

St11Mail>>sender: aStr ing
sender := aStr ing

Fig. 8. The set and get accessors for the sender attribute

consuming to generate code, to implement the email send-
ing function, to set up a test and to run it.

The basic function of our mail client is sending mail.
Thus before the Java package generation and the target
system implementation, we would ensure that sending mail
is running as expected with our meta-model.

Using Pharo, we can implement the simple script shown
in Figure 9. This validation script builds the mails ar-
ray with several St11Mail instances. Then, with each
St11Mail, a MailMessage is instantiated and really sent
with the help of the Pharo MailSender class.

| mai ls |
mai ls := {

(St11Mail new sender: ’apl@univ-brest.fr’;
ta rget : ’fsi@univ-brest.fr’;
sub ject : ’Smalltalk 2011’;
content: ’Are you ready for Bueno Aires ?’;
y ou r s e l f) .

St11Mail new . . . } .
mai l s

do: [: m | | mes mime |
mes := MailMessage empty.
mes s e tF i e l d : ’from’ toStr ing: m sender.
mes s e tF i e l d : ’to’ toStr ing: m target .
mes s e tF i e l d : ’subject’ toStr ing: m subject .
mime := MIMEDocument

contentType: ’text/plain’

content: m content.
mes body: mime.
MailSender sendMessage: mes] .

Fig. 9. A script to early evaluate the mail system

Running this script, we are noticing that sending mail
is possible. Thus we can decide with some degree of confi-
dence, to generate the Java code and to build a first version
of our target system.

This validation script exhibits an important gain using
Smalltalk as a meta-workbench. Indeed, the designer ben-
efits from a very rich system allowing meaningful valida-
tions to be implemented. For example the MailMessage,
MailSender and MimeDocument classes as well as a net-
work layer are supplied by the Pharo system. Validation
scripts and test cases can be implemented and run at each
time a meta-model is updated.

4.3. Declaring and manipulating types

To generate the Java code, we need first to implement a
Smalltalk to Java code generator. To implement this gen-
erator, we have to declare the static types of StMail at-
tributes and to browse the types graph of the meta-model.

With Platypus, this is achieved with a separate EXPRESS
schema. The first version of the EXPRESS schema for our

SCHEMA St11MailBox;

ENTITY St11Mail;
sender : STRING;
ta rget : STRING;
sub ject : STRING;
content : STRING;

END ENTITY;

ENDSCHEMA;

Fig. 10. First EXPRESS schema for the mail sending application

sending mail system is shown in Figure 10. It consists in
a single St11Mail entity. The correspondence between the
St11Mail entity and the related Smalltalk class is straight-
forward. When the EXPRESS schema is compiled, Platy-
pus automatically reifies the EXPRESS entity St11mail in
a Smalltalk representation that is directly accessible from
the St11Mail class itself. Thus, we can browse the EX-
PRESS declarations. For instance, the script of Figure 11
prints the type of the sender attribute.

| a t t r |
a t t r := St11Mail platypusMetaData exp l i c i tA t t r i bu t e s

detect: [: a | a name = ’sender’] .
Transcr ipt show: a t t r domain asClearText.

Fig. 11. Accessing an EXPRESS attribute description with Smalltalk

4.4. Generating the code

To generate parts of the target system, we must imple-
ment a code generator. The code generator can be built
wile browsing the EXPRESS declarations as explained in
the previous Section.

In Section 3.3, we explained that the target system and
the meta-workbench can exchange models for validation
purpose. Platypus comes with an EXPRESS to Java code
generator that produces the java domain meta-model and a
STEP file exchange component 1 . Using the code generator,
the generated code is a package that contains:
– a Java domain meta-model with each entity translated

as a Java class (e.g. St11Mail Java class);
– a STEP file exchange component with a dedicated repos-

itory class (e.g. St11MailBoxStepRepository class).
The Java sending mail system is implemented us-
ing the generated package. While the package runs,
it builds St11Mail instances. The instances can
be registered into a St11MailBoxStepRepository. A
St11MailBoxStepRepository can produce a STEP file
through a serialization of its contents. The file contains a
St11MaibBox conforming model. It can be read from our

1 Currently, an EXPRESS to c++ code generator is also available

7

meta-workbench and used to further validate the corre-
sponding St11MailBox meta-models.

4.5. Using conforming models produced from the target
system

Let us suppose that we generated the Java component
from the St11MailBox EXPRESS schema and that the
target system has been built with the generated component.
The running target system has to manage its own St11Mail
instances. A STEP exchange file can be produced from the
target system and materialized in Pharo. The script given
in Figure 12 shows how to read an exchange file and how
to use the materialized instances.

| repo |
” Creation o f the repos i to ry ”
repo := St11MailBoxRepository new.
” mate r ia l i za t ion from the ’mai ls . step ’ f i l e ”
repo s t epF i l e I n : ’mails.step’.
repo

a l l Ins tancesOf : St11Mail
do: [: m | | mes mime |

mes := MailMessage empty.
mes s e tF i e l d : ’from’ toStr ing: m sender.
mes s e tF i e l d : ’to’ toStr ing: m target .
mes s e tF i e l d : ’subject’ toStr ing: m subject .
mime := MIMEDocument

contentType: ’text/plain’

content: m content.
mes body: mime.
MailSender sendMessage: mes] .

Fig. 12. Evaluating the mail system with instances produced from

the target system

4.6. Improving the meta-model

While a system is under implementation, the meta-model
is continuously evolving. Producing a new version of the
meta-model implies that the Smalltalk implementation and
the corresponding EXPRESS specification are updated.

For a basic evolution, the EXPRESS specification can be
directly changed. Then, the Smalltalk code is automatically
updated accordingly.

A problem may arise while using a conforming model
produced from the target system. Regarding to the sending
mail system example, some instances of St11Mail might
have been created with a misformed sender or target mail
address. A possible problem fix would be to better specify
the concept of mail adress. Figure 13 shows a new version
of the meta-model using the St11MailAddress concept.

From the meta-workbench point of view, the immedi-
ate benefit is that validations can be enforced with further
checking. Indeed, rules and derived attributes can be used
by validation script.

SCHEMA St11MailBox;

ENTITY St11Mail;
senderAdr : St11MailAddress;
targetAdr : St11MailAddress;
subject : OPTIONAL STRING;
content : STRING;

DERIVE
sender : STRING := senderAdr. address;
ta rget : STRING := targetAdr. address;

END ENTITY;

ENTITY St11MailAddress;
loca lPart : STRING;
domain : STRING;

DERIVE
address : STRING := loca lPar t + ’@’ + domain;

WHERE
localPartRule : loca lPart > ’’;
domainRule : domain > ’’;

END ENTITY;

ENDSCHEMA;

Fig. 13. A new version of the St11MailBox meta-model

| repo |
” Creation o f the repos i to ry ”
repo := St11MailBoxRepository new.
” mate r ia l i za t ion from the ’mai ls . step ’ f i l e ”
repo s t epF i l e I n : ’mails.step’.
repo

a l l Ins tancesOf : St11MailAddress
do: [: m |
(m platypusMetaData whereRules

c o l l e c t : [: wr | wr l a b e l asSymbol])
do: [: r | s e l f a s s e r t : (m perform: r)]] .

Fig. 14. Checking meta-model rules in Smalltalk

For instance, the script given in Figure 14 imple-
ments a checking of all local rules specified into the
St11MailAddress entity. This validation script works as
follow:
– first, a STEP file is read by a repository, as a result,

the repository contains St11Mail and St11MailAddress
instances;

– for each St11MailAddress, the names of the local rules
declared in the St11MailAddress entity are collected;
each of this name is also the name of a St11MailAddress
instance method which has been automatically generated
by Platypus;

– for each collected rule name, send the corresponding se-
lector to the current St11MailAddress; if the result of
the method execution is false, then raise and exception.

From the target system implementation point of view,
the designer can use the new Java functions which are gen-
erated according to the derive attributes and the rules. As
an example, the St11MailAdress rules can be invoked from

8

the user interface to validate the user input 2 .

5. An implementation with Pharo and Platypus

Platypus consists in the implementation of a STEP/EX-
PRESS environment in Smalltalk. In this Section we ex-
plain how it is implemented and especially how static types
are internally managed.

5.1. Two modeling levels

Domain modeling is achieved with Pharo. During an it-
eration, we are handling domain concepts and elaborating
(or re-elaborating) the domain model according to the func-
tional requirements. We call prototyping level the level of
abstraction whereas this kind of modeling is performed.

When a domain model reaches a mature state according
to the iteration goals, then the domain types are declared
separately with the help of a set of EXPRESS schemas.
Only types of the meta-model that are shared with the
target system are declared.

In Pharo, additional checkers can use declared types and
constraints to enforce the validation of the domain meta-
models. This additional work is done at a lower level of ab-
straction that we call the typing level of abstraction. Fig-
ure 15 depicts these two modeling levels.

Fig. 15. Prototyping and typing levels

When an EXPRESS schema is integrated, then the cor-
responding Smalltalk representation is built or updated.
Each first-class EXPRESS element is represented as a cor-
responding Smalltalk class. Thus, these two levels of ab-
straction are causally connected.

Any change in an EXPRESS schema is automatically re-
ported on the Smalltalk representation. Specific behaviors
and specific states that can are added in the Smalltalk rep-
resentation for test or prototyping purpose are preserved
when the Smalltalk representation is updated 3 .

A designer is not constrained to start from the proto-
typing level. In fact, we noticed that it is often very con-

2 Our Smalltalk code generator actually generates code for derived

attributes and for rules but currently, our Java code generator do
not and the generated has to be manually updated
3 We are currently working on the inverse causal connection, from

the Smalltalk representation to the EXPRESS schemas

fortable to start a design from the typing level by directly
integrating an EXPRESS schema.

Let us take again the example of the entity St11Mail
of Figure 15. When the EXPRESS schema is compiled,
a St11Mail class is created or updated. This class is the
Smalltalk representation of the St11Mail EXPRESS entity.

5.2. Internal representation of types

As depicted in Figure 16, the two modeling abstrac-
tion levels are also implemented at the meta-meta-model
architecture level. Indeed, the meta-model of Platypus is
specified itself as an EXPRESS schema and also managed
by Platypus. The Platypus meta-model describes all EX-
PRESS elements and also all concepts for the handling of
STEP instances. Thus, it provides a description of the ab-
stract syntax tree (AST) which is built when an EXPRESS
schema is compiled. A part of the Platypus implementation
is generated thanks to this meta-model.

Fig. 16. Platypus modeling levels

The compilation of an EXPRESS meta-model produces
the related Smalltalk code (Prototyping level) and also a
set of instances of the Platypus meta-meta-model. All the
types declarations of the Typing level can be queried from
the Prototyping level (introspection).

As explained in Section 4.3, the #platypusMetaData
message can be sent to a class that has been automati-
cally generated by Platypus. In fact, the sending of #platy-
pusMetaData to a receiver returns a Platypus meta-meta-
model instance which owns the description of the receiver.

Regarding the St11Mail example, sending #platy-
pusMetaData to St11Mail returns an instance
of PltEntityDefinition. PltEntityDefinition is
the Smalltalk class which is generated from the
entity definition entity specified in the Platypus meta-
meta-model. entity definition describes what an entity
is. For instance, it contains the entity attributes and the
local rules descriptions.

9

5.3. Specialization of Platypus

We may implement a specific behavior in the Platypus
meta-meta-model class. As an example, for implementing
a particular code generator, one can add specific methods
to the Platypus meta-meta-model classes. It is also possible
to implement a subclass of a Platypus meta-meta-model
class. This provides a system designer with the ability to
specialize the Platypus environement itself.

6. Related work

A lot of meta-modeling tools have been proposed to facil-
itate the specification and the verification of meta-models.
Dome [35], MetaEdit+ [28] and MetaGme [16] have been
developed to design domain specific meta-models. Dome is
implemented in Smalltalk and was initially dedicated to the
automatic building of Smalltalk components and of doc-
umentation. Meta-models are designed graphically and a
dedicated language (a Scheme like language) is available
for constraint specification and evaluation and also for code
generating. MetaEdit+ is also a graphical tool for the spec-
ification of domain specific graphical modeling language
and for code generating. As far as we know, it does not pro-
vide any way to express and evaluate domain constraints.
MetaGme is a more recent generic tool for the specifica-
tion of domain specific languages. MetaGme is based on an
UML notation and allows a designer to specify and evalu-
ate constraints.

These tools are suitable for domain specific modeling and
meta-models verification. However, tests and simulations
can not really be implemented because they do not provide
enough programming capabilities.

EMF/Ecore [15] and Kermeta [9] are two meta-modeling
frameworks based on Ecore. They are implemented within
Eclipse. EMF is made to efficiently design the structure
of meta-models. Many code generators are available and a
lot of modeling tools are build upon EMF. Kermeta is a
general purpose meta-modeling tools. The Kermeta meta-
modeling language is very similar to the EXPRESS lan-
guage. The behavior can be implemented with the help of
aspects which are reusable domain functions written with
a Java-like syntax. Kermeta also relies on code generation
for meta-models implementation and running. All these en-
vironments are using static typing for the specification of
meta-models.

As for our work, the motivation of Riehle and al. for
an UML virtual machine [12] was to bring early validation
for UML models. The goal was to build an environment
based on a Meta Object Protocol which benefits from a
causally connected modeling architecture. However, as far
as we know, the possibilities of this interpreter regarding
testing and prototyping were not explained.

The Moose [36] is a very powerful language-independent
environment for reverse-and re-engineering complex soft-
ware systems. Moose provides a set of services including a

common meta-model, metrics evaluation and visualization,
a model repository, and generic GUI support for querying,
browsing and grouping [36]. As our work, Moose is fully
integrated in Smalltalk. Moose can also be used for meta-
models verification and validation. The implementation of
Moose relies also on a four level modeling architecture and
our experiments showed us that Moose could be used for
our approach. The main difference concerns the ways meta-
models are integrated in a Smalltalk system. We are us-
ing the EXPRESS data modeling language whereas Moose
meta-models are declared with the help of method annota-
tions or via the analysis of Java or C++ source code.

7. Conclusion

In this paper, we have presented our motivations for
the use of Smalltalk as an MDE workbench. We have also
showed how an iterative software process can be adapted
to use Smalltalk together with an additional static typ-
ing capability for the very early validation of meta-models.
Static typing is available through the use of the modeling
language EXPRESS and a dedicated model compiler.

References
[1] D. C. Schmidt, Model-driven engineering, IEEE Com-

puter 39 (2).
URL http://www.truststc.org/pubs/30.html

[2] P. Mohagheghi, V. Dehlen, Where is the proof? - a
review of experiences from applying mde in industry,
in: Proceedings of the 4th European conference on
Model Driven Architecture: Foundations and Appli-
cations, ECMDA-FA ’08, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 432–443.
URL http://dx.doi.org/10.1007/

978-3-540-69100-6_31

[3] S. J. Mellor, Models. models. models. so what?, in:
Proceedings of the 12th International Conference on
Model Driven Engineering Languages and Systems,
MODELS ’09, Springer-Verlag, Berlin, Heidelberg,
2009, pp. 1–1.
URL http://dx.doi.org/10.1007/

978-3-642-04425-0_1

[4] L. Osterweil, Strategic directions in software quality,
ACM Comput. Surv. 28 (1996) 738–750.
URL http://doi.acm.org/10.1145/242223.

242288

[5] Research Triangle Institute, The Economic Impacts of
Inadequate Infrastructure for Software Testing, Spon-
sored by the Department of Commerce’s National In-
stitute of Standards and Technology (2002).

[6] N. Melleg̊ard, M. Staron, Characterizing model usage
in embedded software engineering: a case study, in:
Proceedings of the Fourth European Conference on
Software Architecture: Companion Volume, ECSA

10

http://www.truststc.org/pubs/30.html
http://dx.doi.org/10.1007/978-3-540-69100-6_31
http://dx.doi.org/10.1007/978-3-540-69100-6_31
http://dx.doi.org/10.1007/978-3-642-04425-0_1
http://dx.doi.org/10.1007/978-3-642-04425-0_1
http://doi.acm.org/10.1145/242223.242288
http://doi.acm.org/10.1145/242223.242288

’10, ACM, New York, NY, USA, 2010, pp. 245–252.
URL http://doi.acm.org/10.1145/1842752.

1842800

[7] K. Beck, Embracing change with extreme program-
ming, Computer 32 (1999) 70–77.

[8] S. Ducasse, T. Girba, Using smalltalk as a reflective
executable meta-language, in: International Confer-
ence on Model Driven Engineering Languages and Sys-
tems (MODELS/UML 2006). volume 4199 of LNCS,
Springer-Verlag, 2006, pp. 604–618.

[9] P. Muller, F. Fleurey, J. Jézéquel, Weaving executabil-
ity into object-oriented meta-languages, in: in: In-
ternational Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS), LNCS 3713
(2005, Springer, 2005, pp. 264–278.

[10] R. F. Paige, Specification-driven development of an
executable metamodel, in: In Proc. Workshop in Soft-
ware Model Engineering 2004, co-located with UML,
2004.

[11] R. Paige, P. Brooke, J. Ostroff, Agile development of a
metamodel in eiffel, in: Proc. Fifteenth IEEE Interna-
tional Symposium on Software Reliability Engineering
2004, 2004.

[12] D. Riehle, S. Fraleigh, D. Bucka-Lassen, N. Omorogbe,
The architecture of a uml virtual machine, SIGPLAN
Not. 36 (2001) 327–341.
URL http://doi.acm.org/10.1145/504311.

504306

[13] O. Nierstrasz, M. Denker, L. Renggli, Model-Centric,
Context-Aware Software Adaptation., in: B. Cheng,
R. de Lemos, H. Giese, P. Inverardi, J. Magee (Eds.),
Software Engineering for Self-Adaptive Systems, Vol.
5525 of LNCS, Springer, 2009, pp. 128–145.
URL http://hal.inria.fr/inria-00532825/en/

[14] S. Sendall, W. Kozaczynski, Model Transformation:
The Heart and Soul of Model-Driven Software Devel-
opment, IEEE Software 20 (5) (2003) 42–45.

[15] F. Budinsky, S. A. Brodsky, E. Merks, Eclipse Model-
ing Framework, Pearson Education, 2003.

[16] J. Davis, Gme: the generic modeling environment, in:
Companion of the 18th annual ACM SIGPLAN con-
ference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’03, ACM,
New York, NY, USA, 2003, pp. 82–83.
URL http://doi.acm.org/10.1145/949344.

949360

[17] F. Jouault, J. Bézivin, KM3: a DSL for Metamodel
Specification, in: FMOODS’06, Vol. 4037, 2006, pp.
171–185.

[18] Object Management Group (OMG), Meta Object Fa-
cility (MOF) 2.0 Core Specification, OMG Document
ptc/03-10-04 (2003).
URL http://www.omg.org/docs/ptc/03-10-04.

pdf

[19] Eclipse project, http://www.eclipse.org/.
[20] B. Foote, Objects, Reflection, and Open Languages,

Workshop on Object-Oriented Reflection and Met-

alevel Architecture - ECOOP’92.
URL http://www.laputan.org

[21] G. Kiczales, J. D. Rivieres, The Art of the Metaobject
Protocol, MIT Press, Cambridge, MA, USA, 1991.

[22] Pharo.
URL http://www.pharo-project.org

[23] A. Plantec, V. Ribaud, PLATYPUS : A STEP-
based Integration Framework, in: 14th Interdisci-
plinary Information Management Talks (IDIMT-
2006), République Tchèque, 2006, pp. 261–274.
URL http://hal.univ-brest.fr/hal-00504325/

en/

[24] Platypus (2004).
URL http://cassoulet.univ-brest.fr/mme

[25] J. Bézivin, O. Gerbé, Towards a Precise Definition of
the OMG/MDA Framework, in: Automated Software
Engineering (ASE 2001), IEEE Computer Society, Los
Alamitos CA, 2001, pp. 273–282.

[26] K. Thomas, Matters of (Meta-)Modeling, Software
and Systems Modeling 5 (4) (2006) 369–385.
URL http://www-adele.imag.fr/users/German.

Vega/idm/seance4/MattersOfMetaModeling.pdf

[27] OMG, Model Driven Architecture (2003).
URL http://www.omg.org/mda

[28] MetaEdit+ Technical Summary.
URL http://www.metacase.com

[29] OMG, OMG Model Driven Architecture.
URL http://www.omg.org/mda/

[30] ISO 10303-1, Part 1: Overview and fundamental prin-
ciples (1994).

[31] ISO TC184/SC4/WG11 N041 WD, EXPRESS Lan-
guage Reference Manual (1997).

[32] I. Jacobson, G. Booch, J. Rumbaugh, The unified soft-
ware development process, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[33] L. Tratt, R. Wuyts, Guest editors’ introduction: Dy-
namically typed languages, IEEE Software 24 (5)
(2007) 28–30.

[34] ISO 10303-21, Part 21: Clear Text Encoding of the
Exchange Structure (1994).

[35] E. Engstrom, J. Krueger, Building and rapidly evolv-
ing domain-specific tools with dome, in: Proceedings of
IEEE International Symposium on Computer-Aided
Control System Design (CACSD, 2000, pp. 83–88.

[36] O. Nierstrasz, S. Ducasse, T. Gı̌rba, The story of
moose: an agile reengineering environment, SIGSOFT
Softw. Eng. Notes 30 (2005) 1–10.
URL http://doi.acm.org/10.1145/1095430.

1081707

11

http://doi.acm.org/10.1145/1842752.1842800
http://doi.acm.org/10.1145/1842752.1842800
http://doi.acm.org/10.1145/504311.504306
http://doi.acm.org/10.1145/504311.504306
http://hal.inria.fr/inria-00532825/en/
http://doi.acm.org/10.1145/949344.949360
http://doi.acm.org/10.1145/949344.949360
http://www.omg.org/docs/ptc/03-10-04.pdf
http://www.omg.org/docs/ptc/03-10-04.pdf
http://www.laputan.org
http://www.pharo-project.org
http://hal.univ-brest.fr/hal-00504325/en/
http://hal.univ-brest.fr/hal-00504325/en/
http://cassoulet.univ-brest.fr/mme
http://www-adele.imag.fr/users/German.Vega/idm/seance4/MattersOfMetaModeling.pdf
http://www-adele.imag.fr/users/German.Vega/idm/seance4/MattersOfMetaModeling.pdf
http://www.omg.org/mda
http://www.metacase.com
http://www.omg.org/mda/
http://doi.acm.org/10.1145/1095430.1081707
http://doi.acm.org/10.1145/1095430.1081707

	Introduction
	Glossary
	Model
	Meta-model
	The four level architecture
	Model transformation
	MDE workbench
	MDE meta-workbench
	Model Driven Engineering
	The STEP standard and the EXPRESS language
	Modelling an example

	An approach for early verification and validation of meta-models
	Verification and validation during an Unified Process iterations
	Outline of our meta-modeling process
	Using the target system for verification and validation within the meta-workbench

	Using Platypus
	Basic principles behind Platypus
	A first meta-model in Smalltalk
	Declaring and manipulating types
	Generating the code
	Using conforming models produced from the target system
	Improving the meta-model

	An implementation with Pharo and Platypus
	Two modeling levels
	Internal representation of types
	Specialization of Platypus

	Related work
	Conclusion

