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Abstract— Testing analog circuits is a complex and very time
consuming task. In contrary to digital circuits, testing analog
circuits needs different configurations, each of them targets a
certain set of output parameters which are the performances
and the test measures. One of the solutions to simplify the test
task and optimize test time is the reduction of the number of to-
be-tested performances by eliminating redundant ones. However,
the main problem with such a solution is the identification of
redundant performances. Traditional methods based on calcula-
tion of the correlation between different performances or on the
defect level are shown to be not sufficient. This paper presents
a new method based on the Archimedean copula generation
algorithm. It predicts the performance value from each output
parameter value based on the dependence (copula) between the
two values. Therefore, different performances can be represented
by a single output parameter; as a result, less test configurations
are required. To validate the proposed approach, a CMOS
imager with two performances and one test measure is used.
The simulation results show that the two performances can be
replaced by a single test measure. Industrial results are also
reported to prove the superiority of the proposed approach.'

I. INTRODUCTION

In the functional test of analog circuits, the performances
of each circuit are measured and verified to check if they are
inside the specifications or not. If all the specifications are
verified then the circuit is considered as functional (good)
otherwise, it is considered as faulty, and thus it is rejected.
However, if the number of the specifications is important, test
time becomes more important and has a direct consequence
on the test cost. For some analog circuit with a very high
number of performances, the functional test is practically
impossible to perform. Reducing this number is mandatory.
The major problem in reducing the set of the performances
is that it generates an important number of faulty circuits
which will be sold and hereby increase the value of the defect
level (proportion of faulty circuits that pass the test). The test
engineers have to be careful in choosing a subset for which the
defect level remains constant or increase only slightly. Until
now, there is no efficient method that can reduce the set of
the performances significantly. In this work we will try to
eliminate a performance by predicting its values by observing
another output parameter (test measure and performance). The
idea is based on using the dependency structure (copula) of

'This work is supported by the ISSTB (Institut Supérieur des Sciences et
Technologies de Brest), France.

the output parameters. A copula is a multivariate uniform
distribution. For the case of a two dimensional copula, if a set
of values of the first dimension is generated from the univariate
uniform distribution than the values of the second dimension
can be obtained by applying a simple transformation function.
One of the advantages of this method is that it can consider a
non linear dependency between the output parameters. Let us
consider a performance that we want to predict from an output
parameter for an initial set of produced circuits. Some of these
circuits will be taken in order to calculate the copula between
the considered output parameter and this performance. Then,
this copula will be used to predict the performance of the other
circuits of the initial set by calculating only the value of the
output parameter. This approach will be detailed in this paper.
In the next section, we will review some previous work. In
section III, we will introduce the Archimedean copulas theory.
In Section IV, we will present the proposed methodology used
to predict any performance from any output parameter. Section
V will present the application of this method for the case study
of a CMOS imager. Finally, we conclude the paper with some
future work.

II. PREVIOUS WORK

Several methods are proposed to reduce the time required
in the functional test. Some methods are based on ordering
the performances [1] [2] [3]. In these methods the first tested
performances are those that have a high probability to detect
faulty circuits. Decision binary trees have been used in [4],
where binary classifiers are used to compact the complete
test set by eliminating redundant tests. In [5] a subset of
specifications is chosen based on the defect level test metric.
Other methods are based on ATPG (Automatic Test Pattern
Generation) algorithms used to predict the performances from
the circuit responses [6]. In [7] a regression model calculated
from a subset of tests is used to predict other tests outside of
the considered subset. With the same idea of using regression
models, [8] proposed a technique that predicts the values of the
performances from a small set of test measures. The method
proposed in [9] tries to predict performances based on models
built on the correlation of the output parameters. In [10] a fast
exploration of the functional test space is used to determine
redundancy in functional tests. Machine learning has also been
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used recently in [11] to learn the intricate mappings between
a subset of functional tests and direct pass/fail decisions.

The idea that the non linear dependency between the output
parameters exist and can be of major importance in circuit
behavior leads us to consider the copulas theory to track these
dependencies. In [12] we used the copulas theory to generate a
large sample of circuits from a small one, in order to estimate
the test metrics and to fix optimally the test limits with high
precision. In this work, we propose a new method where any
performance can be predicted from any output parameter by
estimating their copula. This copula can be estimated from an
initial small subset of produced circuits. Then, a new copula
with the same parameters will be generated using the values of
the considered output parameter. This new copula will then be
used to predict the performance values of all the circuits. The
problem of fixing the test limits is not reported here because
the limits of the predicted performance are the same as the
one of the initial performance (i.e., the specification). Also,
the test limits can only be fixed at the design stage from the
Monte Carlo simulation. However, the proposed method can
be applied directly to a real set of produced circuits.

III. ARCHIMEDEAN COPULAS THEORY
A. Estimating the copula

The theory of the Copulas will not be described formally in
this paper. Basic definitions and properties of copula functions
are presented in [13]. A succinct introduction to copulas for
test metrics estimation is given in [12][14]. To illustrate how
to calculate copulas from any sample, we propose to consider
the bivariate example of Figure 1.

f2(x2)

I\ f1(x1)

u2

Fig. 1. Calculating the copula from a population.

The scatter plot of a bivariate random vector X = (X1, X5)
is shown in the upper right corner of Figure 1. To separate
the dependencies between these two random variables from
their marginal distributions, we apply the transformation u; =
F;(x;), where each initial sample point (x1, x2) is transformed

into a new point (u1, us) using the marginal CDF (Cumulative
Density Function) of each variable (£} for x; and Fs for x5).
The result of this transformation is the bivariate random vector
U = (U1, Us) shown in the lower left corner. This new sample
distribution corresponds to an empirical copula for which the
marginal distributions are uniform. This complete and scale-
free description of dependence is more suitable to be fit to
well known multivariate parametric laws called copula.

B. Archimedean copulas

Archimedean copulas include a large variety of copula
families that can be easily constructed to model non linear
dependencies and non elliptical distributions. For example,
Archimedean copulas can describe asymmetric dependencies,
where the dependence coefficients in the upper and the lower
tails are different. Some basics about Archimedean copulas
will be discussed in this section. The dependence coefficient
Kendall’s 7 will be considered instead of the classical linear
correlation factor p. An estimator 7 of this coefficient is
calculated as follows:

2
T= " SGNIN\Li =3 )\Yi—Yj)l, i7j:17"'7n (D
i 2l )
where

1 ifz>0
sg(2) =1 1 if. <0

and, (1,91),...,(@n,yn) are n observations from a vector
(X,Y) of continuous random variables.

A two dimensional Archimedean copula is a function C
from [0, 1]? to [0, 1] which has the following form:

o p(u1) + o(uz)) if
C’(ul,u2) = Qp(ul) + ‘p(u2) < @(O)
0 otherwise

2
where ¢ is called the generator function of the Archimedean
copula. Notice that the generator function allows to write the
copula as a sum of functions of the marginal distributions.
For 0 < u < 1, ¢ is defined as ¢(1) = 0, ¢’'(u) < 0 and,
¢ (u) > 0.

In the following, we will present two families of
Archimedean copulas. The first one is the Gumbel copula
family and the second one is the Clayton copula family.
These copulas are used in the test vehicle in order to predict
performance values from those of the output parameters.

1) Gumbel Copula:

The Gumbel copula [13] is an Archimedean copula whose
generator function is defined as:

o(u) = (—In(u))’ 3)

with, § € [1,4+o00[. For the two dimensional case its
associated function C'(u1,u2) can be written as follows:

C(u1,uz) = exp (_ (= In(w))? + (- ln(uz))9]1/9> 4)
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The parameter € depends on Kendall’s 7 and is calculated
as follows:

®)

Figure 3(a) shows the CDF of the Gumbel copula with a
parameter # = 1.26 and Figure 2(b) shows a set of 1000
samples generated from this copula.

u2

CDF: C(uj,uz)

(b)

Fig. 2. (a) CDF of a Gumbel copula with & = 1.26, (b) 1000 samples
generated from the Gumbel copula.

2) Clayton Copula:
The Clayton copula [16] [17] is an Archimedean copula
whose generator function is defined as:

plu) = 5™~ 1) ©

with, 6 €] — 1,0[U]0, co[. For the two dimensional case its
associated function C'(u1,us) can be written as follows:

Clur,uz) = max  [up” +uz” — 1] Ve 0) @
The generalized form of this equation is given in [13].

The parameter 6 depends on Kendall’s 7 and is calculated
as follows:

6=— (8)

T—1
Figure 3(a) shows the CDF of the Clayton copula with a
parameter § = —0.63 and Figure 3(b) shows a set of 1000
samples generated from this copula.

CDF: C(uu2)

() (b)

Fig. 3. (a) CDF of a Clayton copula with # = —0.63, (b) 1000 samples
generated from the Clayton copula.

3) Archimedean copulas generation algorithm: To generate
n samples from a 2-dimensional Archimedean copula with the
generator ¢ we use the following Marshall & Olkin algorithm
[15] which is illustrated by Figure 4:

ey

@
3)
“

Generate n independent variables z1, ..., z,, with dis-
tribution function D (Z ~Gamma distribution for the
Clayton copula and Z ~Positive Stable distribution
for the Gumbel copula, cf. Table I).

Generate n independent variables 1, ..., z,, with the
uniform distribution X ~ [0, 1].

Generate n independent variables y1, ..., ¥, with the
uniform distribution Y~ ~ U[0, 1].

Return ((u1,v1),. .., (Un,vy)), Where,

ui = p(=In(z;)/z) and v; = o(=In(y:) /).
1e€l,...,n.

The parameters of the distribution D used in this algorithm
are given in the following Table I.

Copula family Distribution D Parameters of D
Clayton Gamma (T") T(1/6,1)
Gumbel Positive Stable (St) | St(1/6,1, (cos(7/(260)))?,0)
TABLE I

PARAMETERS OF THE D DISTRIBUTION.

X : Uniform distribution (0,1)

Part 1 h X1 X2 Xi Xn (2)

u = 1st dimension of the Archimedean
Copula with a generator @
[ ]

D distribution =
(Stable distribution for the Gumbel Copula
Gamma distribution for the Clayton Copula)

u| e
ui = @(—log(xi)/zi)
o |
° °
u * °
n °
uz [ ] [ ]
(1 ) X1 X2 Xi Xn
Zi ui

Y

Vv =2nd dimensiQn of the Archimedean (u, V) = Archimedean Copula
Copula with a generator ¢ with the generator @
Vi
' vi = @(-log(vi)/zi) Vi °
]
° ° (ui,vi)
Vi Vi 'Y
[ ] >
4 [ ]
\ ° °
[ ]
Vi ° V. o © (4)
°
V2 o vi|e®
Vi y2 )i Vn ur u2 ui Un
Y : Uniform distribution (0,1)
Vi y2 Vi Vn (3)

Fig. 4. Illustration of the Marshall & Olkin algorithm.
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IV. PERFORMANCE PREDICTION METHOD

The algorithm presented above is the main part of the
proposed method used to predict performance values from
values of any output parameter. Figure 5 shows the steps of the
proposed method. Let S be a set of n produced circuits, P1
a considered performance and 7' the output parameter which
will be used to predict the values of P1. We will consider a
subset of only m < n circuits. From this subset, we estimate
the copula C1 of P1 and T, ie., C1 = (V,W1), where
V = CDF(T) and W1 = CDF(P1). Note that, V and
W1 have a uniform distribution /[0,1]. The algorithm of
Marshall & Olkin presented above can be used to generate
another copula C2(V, W2) with the same parameters as those
of C1(V,W1). We can consider this procedure as a method
that predicts the values of W1 knowing the values of V.
Therefore, using C2 we can then predict the values of W1
of all the circuits. Finally, we can calculate the values of the
performance P1 of all the circuits by calculating the inverse
CDF of W2, ie., P1 ~ P2=CDF~}(W2).

S :Initial Sample
of n circuits

Generate n samples of a new
theoretical copula C2(V,W2)
having the same distribution
as C1(V,W1) using the known

P1 i , values of V
a performance : Calculate the empirical !
of the circuits copula C1(V,W1) from
a subset of m<<n circuits
{ V=CDF(T)and W1=CDF(P1) |'F { }

T
a test measure
of the circuits

Calculate the
inverse CDF of W2 :
P2 =CDF-1(W2)
P1~P2

Fig. 5. Performance prediction method.

V. TEST VEHICLE

The considered case-study is a BIST technique for a CMOS
imager presented in [18]. The analog and mixed-signal
parts of the imager include a large pixel matrix, the column
amplifiers and the data converters. The pixel matrix usually
composed of millions of pixels is typically read line by line
through the column amplifiers. Figure 6 shows the pixel
structure composed by PMOS transistors and a photodiode.
This type of pixel gives a logarithmic relationship between
the output voltage (V) and the incoming light (represented
as the photogenerated current Ip,p).

The main performance measured for the pixel matrix and the
column amplifier are the Fixed Pattern Noise (FPN). The FPN
represents the difference that exists between two pixels (or two
column amplifiers) under constant illumination. Different light
sources are used to measure this noise. Two major kinds of
FPN are measured: Pixel Response Non Uniformity (PRNU)
that is obtained by using light sources and Dark Signal Non
Uniformity (DSNU) that is obtained under dark conditions.

The BIST technique consists of the application of a voltage
pulse at the anode of the photodiode, to measure the output
voltage VA of the pixel. The whole analog ground of the
pixel is externally pulsed (not shown in Figure 6). This
electrical measurement is performed very fast, and the output

Column amplifier
Input stage
- Vpol P
Logarithmic compressor

Ysel

Fig. 6. Logarithmic pixel structure.

measurement is thus not dependent on the incoming light. This
BIST measurement is intended to capture the major sources
of DSNU, such as transistor mismatches.

The specifications of the two performances are PRNU &
[—0.0306, 0.0306] Volt, and DSNU € [—0.0216,0.0216] Volt
are fixed at 20 which leads to a yield of ~ 460dppm (defect
part per million, i.e. 460 pixels out of specifications in 1
million). Since we have only 16383 pixels, if the specifications
are fixed to 30 or more, only a few faulty circuits (= 0) will
be generated. That is why we choose to fix the specifications
at 20 to generate an important number of defect circuits. Then,
the proposed method can be evaluated efficiently by comparing
the original yield calculated from the initial performances and
the predicted yield obtained from the predicted performances.

A. Performance prediction of the CMOS imager

In our case study, we will try to predict the values of the
PRNU and the DSNU of each circuit just by calculating the
values of VA. Thus, we will take a subset of m = 3000
circuits from which the empirical copula of VA and PRNU
(or DSNU) will be estimated. This one will then be used to
generate another theoretical copula with the same parameters
by taking into account the values of VA. Finally, this new
copula will be used to predict the performance values from
the values of the VA. For more clarity, we detail this method
in the following steps :

1) Let S be the set of 16383 pixels

2) Let T'= V A be the considered test measure

3) Let P1 = PRNU (or P1 = DSNU) be the perfor-
mance that we want to predict from VA

4) Consider a small subset S’ C S of 3000 circuits

5) Estimate the empirical copula C'1(V,W1) in this subset
(S"), where V is the CDF of T' (V = CDF(T)) and
W1 is the CDF of P1 (W1 = CDF(P1)).

6) Generate a set of 16383 values from a new theoretical
copula C2(V,W2) with the same parameters as C1
using the Marshall & Olkin algorithm presented in
Section III-B.3. Note that the first dimension of this
copula is the 16383 values of V, i.e., the CDF of T
calculated from the set S.
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7) Calculate P2 = CDF~Y(W2). The values of P2 are
close to the values of P1 predicted from V.

B. Results

We will use the steps presented above to predict the values
of the first performance PRNU from those of the test measure
VA. The same steps will be used to predict the values of the
second performance DSNU from the test measure VA.

First, we will estimate the empirical copula of PRNU and
VA by calculating W1, the CDF of PRNU and V', the CDF of
VA from a subset of 3000 pixels. Figure 7 shows the obtained
copula. If we compare this copula to the one of Figure 2(b) we
conclude that it is a Gumbel copula. This comparison has been
validated using a goodness of fit test of copulas, not discussed
here for sake of simplicity. This copula is characterized by the
parameter 6 which is calculated from Kendall’s 7 correlation
factor using the Equation (5). In our case, 6 is equal to 1.26.

W1 = CDF(PRNU)

T = CDF(VA)
Fig. 7. 3000 samples of the empirical copula of the PRNU and VA.

Now, instead of considering only the 3000 circuits, we
will take into consideration all the 16383 pixels. We will
generate 16383 samples from the new theoretical Gumbel
copula C2(V,W2) with the parameter # = 1.26 in which
the first dimension is equal to the values of the CDF of VA.
Figure 8 shows the obtained copula.

w2
06 08

04

02

00
L

00 02 04 06 08 10

V= CDF(T)

Fig. 8. 16000 samples generated from the theoretical Gumbel copula.

Then, by calculating the inverse CDF of W2 we will obtain
the values of P2, the predicted performance, which is close to
the PRNU. Figure 9 shows the joint distribution of the PRNU
and the test measure VA obtained from the initial performance
(in black o) and from the predicted performance (in gray +).
It is clear that the two distributions are very close.

VA

048 049 050 051 052 053 054 055

-0.06 -0.04 -0.02 0.00 0.02 0.04

PRNU

Fig. 9. The joint distribution of the test measure VA and the initial
performance (black o) compared to the joint distribution of the test measure
VA and the predicted performance (gray +).

Figure 10 shows the first 200 values of the initial perfor-
mance (in black *) and those of the predicted performances
for the same circuits (in red +). As we can see, the values
are very close to each other. We have also compared the
Yield (proportion of the good circuits) obtained in each case.
It is equal to Y1 = 462dppm in the initial PRNU and
Y2 = 474dppm in the predicted PRNU.

*: original performance
+ : predicted performance

0.04
L

0.02

11 |
I t‘ (AR ‘ﬁ I |
I s i wm

PRNU
0.00
L

02
|
—
4ty
—
—
PRE————

A I

0 50 100 150 200

-0.04

Circuit number

Fig. 10. A set of 200 values of the initial performances (black *) vs. those
of the predicted performances (red +).

For the case of the second performance DSNU, we used
the same procedure as presented above. Figure 11 shows the
obtained copula between the DSNU and the test measure VA.
If we compare it to the one of Figure 3(b) we conclude that it
is a Clayton copula. A goodness of fit test of copula is used
to validate this conclusion.

Following the procedure presented above for the case of
the Gumbel copula, Figure 12 shows the values of the initial
DSNU and those of the predicted DSNU. In this figure, only
the first 200 values are drawn. It is clear that the two graphs
are close. The Yield estimated in each case is equal to Y1 =
466dppm in the initial DSNU and Y2 = 454dppm in the
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00 02 04 06 08 10
V=CDF(VA)

Fig. 11. 3000 samples of the empirical copula of the DSNU and VA.

predicted DSNU.

*: original performance
+: predicted performance

0.04
1

0.02
]

PRNU
0.00
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g. ' 1

] [ [

g |
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Circuit number

Fig. 12. A set of 200 values of the initial performances (black *) vs. those
of the predicted performances (red +).

VI. CONCLUSIONS

This paper has presented a new method for the prediction
of performance values from those of the output parameters
(test measures and performances) in a set of produced circuits.
The proposed method is based on the Archimedean copula
generation algorithm. Marshall & Olkin’s algorithm is used to
generate from a uniform distribution another uniform distri-
bution to obtain a dependent couple that follows any targeted
copula. This algorithm has also been used to generate from the
CDF of any output parameter, which is uniform, the CDF of
any performance by estimating their copula. The method has
been applied to a set of pixels of a CMOS imager with two
performances PRNU and DSNU and one test measure VA. The
obtained results based on the estimation of the Yield shows
that the predicted performance is very close to the original
one. Future work will target the use of the same method to
fix the test limits without calculating the test metrics.

Copule | tau de dépendance

a1
a1
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